CoAP - Constrained Application Protocol

KEY FEATURES :

- single application layer (message sublayer, request/response sublayer on message sublayer)

e T T +
| Application |
oo +

dommm e mmmm e — - + \

| Requests/Responses | |
T | | CoaP
| Messages |
oo +

e T T +

| UDP |
oo +

Figure 1: Abstract Layering of CoAP

- forlow-power, lossy networks, constrained environments, for M2M applications
- ontop of lpve
- UDP binding with optional reliability supporting unicast/multicast requests
- asynchronous message exchanges
- provides request/response interaction between endpoints
- support discovery of services and resources
- support concepts of Web (URIs, Internet media types (Content-type), ...)
- support simple proxy and caching capabilities
- cacheis on one of the endpoints or on intermediary (proxy)
- proxy used for : limit network traffic, improve performance, access resources of
sleeping devices, security
- CoAp is similar to HTTP -> support cross-protocol proxy
- support GET, PUT, POST, DELETE
- it converts method/response code, media type, options
support security binding to Datagram Transport Layer Security

MESSAGE TRANSMISSION :

As CoAP is bound to unreliable transports such as UDP, CoAP messages may arrive out of order,
appear duplicated, or go missing without notice. For this reason, CoAP implements a lightweight
reliability mechanism, without trying to re-create the full feature set of a transport like TCP. It has
the following features:

o Simple stop-and-wait retransmission reliability with exponential
back-off for Confirmable messages.
o Duplicate detection for both Confirmable and Non-confirmable

messages.

MESSAGE TYPES - Realiability Mechanism :

- Confirmable message : requires ack or reset as return message
- Non-confirmable message : no need of return message
- Acknowledgements : confirmation of receiving message, doesnt indicate success or failure of
request
- Reset message : indicates that (non)confirmable message arrived, but because of some
missing context, server could not proccess it
- it can be used as CoAP ping (empty CON message)

Empty message : it contains only and only fixed 4B header -> code : 000

MESSAGING MODEL

- exchanging of messages over UDP between endpoints
- 4B header woth optional compant binary options and payload
- every message contains messagelD (2B -> 250 messages in a second)
- for detection of duplicates and for optional reliability
- if receiver(server) is not able to process NON message , server sends RST message
- example

1. client: CON(messagelD)

2. server: ACK (messagelD)

1. client: NON(nova messageld)

2. server: (may reply with RST)

REQUEST/RESPONSE MODEL :

- URI, payload media type and other HTTP options are stored in CoAP options.

- Token is used for matching response to request (it is different from messagelD !!!)

- Request is part of CON/NON message, response is part of ACK (piggybacked response)
- examples of piggybacked response (response in ACK) :

1. client: CON (messagelD) , GET /temp [URI], token

2. server: ACK (messagelD), 205, token, payload [22.5 C]

1. client: CON (messagelD), GET /temp [URI], token

2. server: ACK (messagelD), 404, token, payload ["not found"]

- separate response -> if server cannot immediately reply :
1. client: CON (messagelD), GET /temp [URI], token
2. server: cannot immediately reply, sends empty ACK (messagelD)
3. time pass

4. server: server is able to reply -> sends new CON (new messagelD), 205, token (is the
same), payload [22.5 C]

5. client: ACK (messagelD)

- if client sends NON:
1. client: NON (messagelD), GET /temp, token

2. server: NON (new messagelD), 205, token (is the same), payload [22,5C]

it +----- +----- +----- +----- +
| | coM | NON | ACK | RST |
R it +----- +----- +----- +----- +
Request	X	x	-	-
Response	X	X	x	-
Empty	*	- [x [x		
+-—mm - +----- +----- +----- +----- +

MESSAGE FORMAT

%] 1 2 3
1234567898123 45678968122345678981
e S S S S S T S s
|ver| T | TKL | Code | Message ID |
e S M S S S S S S S S
| Token (if any, TKL bytes) ...
e S S S S S T S s
| Options (if any) ...
e S M S S S S S S S S
[11111111] Payload (if any)

+-t-+-F-F-F-F+-t-+-F-F-F-F-+-F-F-+-F+-F-F+—F-F+-F-F-+-F-F+-F-F-+-+-+-+
Figure 7: Message Format

- CoAP uses data section of UDP datagram
- CoAP does not support UDP-lite or UDP zero checksum
- Fixed 4B header :

1. Version : 2b -> CoAp version number — must be '01'

2. Type : 2b -> CON = 0; NON = 1, ACK = 2 , Reset = 3

3. Token Length : 4b -> indicates length of token (0-8B)
4, Code : 1B -> 3b class, 5bit detail [4.04]
5. messagelD : 2B -> for matching ACK/RST to CON/NON

- variable-length Token value (up to 8B)
- for corelation of request/response
- Itis simply said request/D
- CoAP options in Type-length-value format (0 - ... B)
- CoAP options format : option number, length of option value, option value
- CoAP defines a single set of options that are used in both requests and responses:

- S R —— R oo +

| No. | CJU | M| R | Name | Format | Length | Default |

- S R —— R oo +

| 1] x| | | % | If-Match | opague | 0-8 | (none)

| 2] x| x| - | | Uri-Host | string | 1-255 | (see

| [R N B | | | below) |

| a| | | | x| ETag | opaque | 1-8 | (none) |

| 5| x| | | | If-None-Match | empty | @ | (none)

| 7] x| x| - | | Uri-Port | uint | @-2 | (see |

| [R N B | | | below) |

| 8| | | | x | Location-Path | string | 8-255 | (none)

| 11 | x| x| - | x | Uri-Path | string | ©-255 | (none)

| 12 | | | | | Content-Format | uint | ©-2 | (none)

| 14 | | < | - | | Max-Age | uint | 8-4 | 60

| 15 | x| x| - | x | Uri-Query | string | 8-255 | (none) |

| 17 | x | | | | Accept | uint | B8-2 | (none)

| 20 | | | | x | Location-Query | string | 8-255 | (none)

| 35 | x| x| - | | Proxy-Uri | string | 1-1834 | (none) |

| 38 | x| x| - | | Proxy-Scheme | string | 1-255 | (none) |

| 6@ | | | x | | sizel | uint | 8-4 | (none)

- S R —— R oo +
C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

o e o +

| Media type | Encoding | ID | Reference |

o e o +

| text/plain: | - | @ | [RFC2046] [RFC3676] |

| charset=utf-8 | | | [REC5147] |

| application/link-format | - | 48 | [RFC6698]

| application/xml | - | 41 | [RFC3823] |

| application/octet-stream | - | 42 | [REC2845] [REC2046]

| application/exi | - | 47 | [REC-exi-28140211] |

| application/json | - | 5@ | [RFC7159]

o e o +

Table 9: CoAP Content-Formats

- payload marker -> indicates the end of CoAP options and start of the payload
- (1B - OXFF)
- Ifitis missing, payload also missing

- Implementation Note: The byte value OxFF may also occur within an option length or
value, so simple byte-wise scanning for OxFF is not a viable technique for finding the
payload marker. The byte OxFF has the meaning of a payload marker only where the
beginning of another option could occur.

- Payload (up to the end of UDP data section)

Examples at : https://datatracker.ietf.org/doc/html/rfc7252#appendix-A

https://datatracker.ietf.org/doc/html/rfc7252#appendix-A

