
CoAP - Constrained Application Protocol

KEY FEATURES :

- single application layer (message sublayer, request/response sublayer on message sublayer)

- for low-power, lossy networks, constrained environments, for M2M applications

- on top of Ipv6

- UDP binding with optional reliability supporting unicast/multicast requests

- asynchronous message exchanges

- provides request/response interaction between endpoints

- support discovery of services and resources

- support concepts of Web (URIs, Internet media types (Content-type), ...)

- support simple proxy and caching capabilities

- cache is on one of the endpoints or on intermediary (proxy)

- proxy used for : limit network traffic, improve performance, access resources of

sleeping devices, security

- CoAp is similar to HTTP -> support cross-protocol proxy

- support GET, PUT, POST, DELETE

- it converts method/response code, media type, options

- support security binding to Datagram Transport Layer Security

MESSAGE TRANSMISSION :

As CoAP is bound to unreliable transports such as UDP, CoAP messages may arrive out of order,

appear duplicated, or go missing without notice. For this reason, CoAP implements a lightweight

reliability mechanism, without trying to re-create the full feature set of a transport like TCP. It has

the following features:

 o Simple stop-and-wait retransmission reliability with exponential

 back-off for Confirmable messages.

 o Duplicate detection for both Confirmable and Non-confirmable

 messages.

MESSAGE TYPES - Realiability Mechanism :

- Confirmable message : requires ack or reset as return message

- Non-confirmable message : no need of return message

- Acknowledgements : confirmation of receiving message, doesnt indicate success or failure of

request

- Reset message : indicates that (non)confirmable message arrived, but because of some

missing context, server could not proccess it

 - it can be used as CoAP ping (empty CON message)

Empty message : it contains only and only fixed 4B header -> code : 000

MESSAGING MODEL :

- exchanging of messages over UDP between endpoints

- 4B header woth optional compant binary options and payload

- every message contains messageID (2B -> 250 messages in a second)

- for detection of duplicates and for optional reliability

- if receiver(server) is not able to process NON message , server sends RST message

- example

 1. client: CON(messageID)

 2. server: ACK (messageID)

 1. client: NON(nova messageId)

2 . server: (may reply with RST)

REQUEST/RESPONSE MODEL :

- URI, payload media type and other HTTP options are stored in CoAP options.

- Token is used for matching response to request (it is different from messageID !!!)

- Request is part of CON/NON message, response is part of ACK (piggybacked response)

- examples of piggybacked response (response in ACK) :

 1. client: CON (messageID) , GET /temp [URI] , token

 2. server: ACK (messageID) , 205, token, payload [22.5 C]

 1. client: CON (messageID), GET /temp [URI], token

 2. server: ACK (messageID), 404, token, payload ["not found"]

- separate response -> if server cannot immediately reply :

 1. client: CON (messageID), GET /temp [URI], token

 2. server: cannot immediately reply, sends empty ACK (messageID)

 3. time pass

 4. server: server is able to reply -> sends new CON (new messageID), 205, token (is the

same), payload [22.5 C]

 5. client: ACK (messageID)

- if client sends NON:

 1. client: NON (messageID), GET /temp, token

 2. server: NON (new messageID), 205, token (is the same), payload [22,5C]

MESSAGE FORMAT :

- CoAP uses data section of UDP datagram

- CoAP does not support UDP-lite or UDP zero checksum

- Fixed 4B header :

 1. Version : 2b -> CoAp version number – must be '01'

 2. Type : 2b -> CON = 0; NON = 1, ACK = 2 , Reset = 3

 3. Token Length : 4b -> indicates length of token (0-8B)

 4. Code : 1B -> 3b class, 5bit detail [4.04]

 5. messageID : 2B -> for matching ACK/RST to CON/NON

- variable-length Token value (up to 8B)

- for corelation of request/response

- It is simply said requestID

- CoAP options in Type-length-value format (0 - ... B)

- CoAP options format : option number, length of option value, option value

- CoAP defines a single set of options that are used in both requests and responses:

- payload marker -> indicates the end of CoAP options and start of the payload

- (1B - 0xFF)

- If it is missing, payload also missing

- Implementation Note: The byte value 0xFF may also occur within an option length or

value, so simple byte-wise scanning for 0xFF is not a viable technique for finding the

payload marker. The byte 0xFF has the meaning of a payload marker only where the

beginning of another option could occur.

- Payload (up to the end of UDP data section)

Examples at : https://datatracker.ietf.org/doc/html/rfc7252#appendix-A

https://datatracker.ietf.org/doc/html/rfc7252#appendix-A

