
Slovak University of Technology
Faculty of Informatics and Information Technology

Ilkovičova 2, 842 16 Bratislava 4

Team project

LOMON
Documentation for engineering work Academic year: 2021/2022

Team supervisor: Ing. Valach Alexander

Team members (team n. 9):
Bc. Dominik Bucko
Bc. Ján Balucha
Bc. Michal Franczel
Bc. Peter Mačuga
Bc. Patrik Villant
Bc. Soňa Zhan



List of abbreviations
ADC - Analog-to-Digital Converter
AES - Advanced Encryption Standard
ALU - Arithmetic Logic Unit
API - Application Programming Interface
EEPROM - Electrically Erasable Programmable Read-Only Memory
DAC - Digital-to-Analog Converter
DES - Data Encryption Standard
GPIO - General Purpose Input/Output
GPR - General Purpose Register
GPRS - General Packet Radio Service
GPS - Global Positioning System
GSM - Global System for Mobile Communications
I2C - Inter-Integrated Circuit
MCU - Microcontroller Unit
MIPS - Million Instructions per Second
PDI - Program and Debug Interface
PLL - Phase-Locked Loop
PWM - Pulse-Width Modulation
RTC - Real-Time Clock
SPI - Serial Peripheral Interface
SPM - Store Program Memory
SRAM - Static Random Access Memory
TWI - Two-Wire Interface
UART - Universal Asynchronous Receiver-Transmitter
UI - User Interface

2



Obsah

List of abbreviations 1

Introduction 4
Global goals of the project 4

Goals for 1st semester 4

System overview 5
System Architecture 5
 Database model 5
Sensor nodes 8

Hardware 8
Microcontroller 9
LoRa module 10
Sensors 11
Development board 12

Firmware development platform 12
Containerization 12
Backend 12

Comparison between python backend frameworks: 13
API Specification 13
Web application 14

Comparison of ReactJS with other frameworks 14
Other libraries 16

Application Design 16
UX testing 21

3



1. Introduction
This document contains technical documentation for the LOMON project. Aim of this project
is to design and implement a system for gathering sensor data from vast areas using LoRa
technology, where sufficient coverage by traditional networks is impossible or impractical.
In the document, we describe the problem we are solving, outline specifications for the
project and its outputs and propose solutions.
This project is part of the Team Project course that takes place across 2 semesters of the
academic year 2021/2022.

1.1. Global goals of the project
The main goal of the project is to design and implement a system for gathering sensor data
from large areas. We will design and prototype an end device, which will be able to measure
environmental conditions and transmit the data using LoRa. We will also design a process to
update said devices using over-the-air updates. We will also design and implement an
application server, which will be able to gather and interpret data sent by devices and a
corresponding graphical interface accessible via browser. There users would be able to
observe data sent from devices, add and remove devices, categorize them and deploy
over-the-air updates. For this application, we need to create frontend and backend parts, along
with databases and interfaces which will communicate with the network server.

1.1.1. Goals for 1st semester
There are multiple goals we set out to fulfill in the first semester. First one is to get familiar
with LoRaWAN networks and embedded devices, analyze possible options in hardware and
create a prototype of the end device including sensors and test them. We will also design a
user interface, perform usability testing on wireframes and implement the frontend part of the
application. On top of that, we will design a database and backend application, which we will
also implement.

4



2. System overview
2.1. System Architecture

2.2.  Database model

A database is a collection of structured data stored in a computer system. Access to this data
is in our system provided by Django ORM. Main purpose of using ORM is to eliminate SQL
injection attacks. On the images below are physical database models generated from
PyCharm.
Main pillar of the database is table Core_devices (devices). Every device has its location to
divide devices into logical groups. Sensor and its measurements are mapped to devices to
capture measurements like battery level, temperature, humidity, etc.. Table Core_distribution
is for storing firmware distributions along with information such as signature, description and
firmware version. To handle OTA updates, there is a table named Core_rollout and junction

5



table Core_rollout_devices to assign devices and store status information about update
progress. To simplify listing of devices and its software version, there is a redundant
relationship to table Core_distribution to speed up fetching firmware versions. Commands
(Core_command) have their command text, description and they will be assigned to the
device through tag. Every device would have one unique tag which cannot be deleted or
assigned to other devices and multiple non-unique tags. Users and privileges are maintained
by Django (Figure 5). For logging there is table Core_log.

Figure 1 Core database schema
The figures below (Figure 2 – Figure 4) shows the individual blocks of the database for easier
understanding.

Figure 2 Command schema

6



Figure 3 Firmware update schema

Figure 4 Device and measurement schema

Figure 5 Django authentication schema

7



2.3. Sensor nodes
2.3.1. Hardware

Figure 6 Sensor node – high-level view

2.3.1.1. Microcontroller
Our sensor nodes are based on ESP32, a 32-bit microcontroller developed by Espressif. It is
commonly used in embedded devices and low power IoT solutions, due to many features
packaged into a single chip. We chose ESP32 over 8-bit AVR microcontrollers due to its
higher computational capability and fewer hardware constraints for development. Most
importantly, ESP32 includes hardware acceleration for cryptographic use cases, making
encryption more energy efficient. This is important, because all network traffic, transmitted
and received, needs to be encrypted. We can also use flash encryption and make our devices
more secure.

ESP32 contains two Xtensa® 32-bit LX6 cores clocked at 240 MHz. It has 448KB of ROM
and 520KB of SRAM, built in Wi-Fi (802.11 b/g/n) and Bluetooth (4.2, low energy support).

There are multiple peripheral interfaces. These include:
● 34 × programmable GPIOs
● 12-bit SAR ADC up to 18 channels
● 2 × 8-bit DAC
● 10 × touch sensors
● 4 × SPI
● 2 × I2S
● 2 × I2C
● 3 × UART
● Ethernet MAC interface with dedicated DMA and IEEE 1588 support
● Motor PWM
● LED PWM up to 16 channels

8



ESP32 also includes coprocessors for cryptographic acceleration. Supported algorithms are:
● AES
● SHA-2
● RSA
● ECC

There is an option to enable secure boot and flash encryption.

There are multiple power modes that the device can switch between to reduce power draw
and prolong battery life. The ones relevant to our use-case (we exclude mode with Wi-Fi and
Bluetooth active, because are not using them in this project) include:

● Active (Modem-sleep) - CPU is active, power usage is dependent on the clock
which we can set in the firmware. 3 clock speeds are supported: 240MHz – 30~68
mA, 160MHz – 27~44mA, 80MHz – 20~31mA.

● Light sleep – 0.8mA
● Deep sleep – Ultra-Low-Power coprocessor is active, 150 μA
● Hibernation – only built-in RTC is active. RTC timer + RTC Memory - 10 μA,

RTC timer only – 5 μA.

2.3.1.2. LoRa module

LoRa (abbreviation of “long range”) is a proprietary radio modulation technique designed
and patented by Semtech. It found its use in IoT applications, due to the longer range and
lower energy consumption than traditional wireless networks, such as Wi-Fi. The most
prominent network protocol built on the LoRa physical layer is LoRaWAN, a wide area
network connecting LoRa enabled devices to the internet or other networks via network
server using packet concentrators/gateways.

The module we are using in our devices is Semtech SX1276. As LoRa is a proprietary
technology developed by Semtech, there are no competing devices on the market, so when
using this technology we have to use the chips they provide.

Our chip has following parameters:

Supply voltage 1.8 ~ 3.6V

Frequency band (EU) 433MHz or 863MHz

Communication interface SPI

Power modes Sleep, Standby, Receive, Transmit

Power consumption in Sleep mode 0.2~1 μA

Power consumption in Standby mode 1.6~1.8 mA

9



Power consumption in Receive mode 10.8~12 mA

Power consumption in Transmit mode 20-120 mA, based on transmit power

LoRa allows us to set different transmission parameters, on top of which LoRaWAN creates
an abstraction. Supported data rates are shown in following table:

Data Rate Modulation Spreading factor Bandwidth bit/s

0 LoRa 12 125 250

1 LoRa 11 125 440

2 LoRa 10 125 980

3 LoRa 9 125 1760

4 LoRa 8 125 3125

5 LoRa 7 125 5470

6 LoRa 7 250 11000

7 FSK 50 kbps 50000

2.3.1.3. Sensors
On our device, we are using sensors that can measure conditions of the environment it is
located in. Specifically, we are measuring temperature, humidity, atmospheric pressure,
volatile organic compounds (VOC) and shocks/vibrations. There are multiple sensors to
choose from and when choosing which ones to use in our devices, we were looking at their
availability, firmware support in the form of available libraries for our platform and interfaces
which are available for connection to our device.

For measuring temperature, humidity, atmospheric pressure and VOC we have chosen the
sensor BME680, manufactured by Bosch. There were no available alternatives to this sensor
which would be able to measure all of the abovementioned environmental conditions. Sensor
BME260 is similarly capable but lacks capability of VOC measurement. We could add an
SGP30 sensor for VOC measurement, but if we want to keep our power consumption as low
as possible, using the smallest number of available sensors makes more sense. Cumulative
power consumption of multiple sensors would be higher than that of a single sensor and
adding more sensors would introduce a need to execute more measurements by
microcontroller, requiring more processor cycles and therefore longer active time, also
resulting in higher power consumption. BME680 was therefore our natural choice.

To measure shocks and vibrations, there are multiple options. The first one is the MPU6500,
which contains a 3-axis accelerometer and a 3-axis gyroscope. It can measure acceleration up
to 16G, rotational speed of up to 2000 deg/s. The second sensor is MMA8452, which is
simpler and less capable, containing only an accelerometer (up to 8G of accel.) and no

10



gyroscope. In terms of power consumption, MMA8452 uses less power (6 μA) at the lowest
power mode (12.5 Hz measuring frequency) than MPU6500 (7.3 μA at 0.98 Hz). It is also
more efficient at higher frequencies, although we cannot make direct comparison as
datasheets specify different values. For example MPU6500 consumes 18.65 μA at 31.25 Hz
update rate while MMA8452 uses 14 μA at 50 Hz update rate.

Crucially, MMA8452 can send interrupts via specified interrupt pins when detecting
acceleration above user specified threshold, making devices able to detect movement or
abnormal shocks/vibrations without need for constant polling of the device for measurements,
saving a significant amount of power. This is the primary reason why we chose MMA8452 to
use in our devices.

Both selected sensors - BME680 and MMA8452 communicate with microcontrollers via I2C
interface, which supports multiple devices on the same bus and addresses them using 16-bit
addresses.

2.3.1.4. Development board

For development, we chose Liligo LORA-32 board, which features:

● ESP32-PICO-D4 microcontroller unit
● SX1276 LoRa module
● 4MB of QSPI Flash
● CP2102 USB-to-UART interface for flashing
● Support for 3.7V LiPo batteries (contains charging circuit)
● Built-in antenna for Lo-Ra module
● 0.96” SPI OLED display (not used due to high power consumption.

2.4. Firmware development platform

We will be using Platformio as our development platform. We chose Platformio due to the
possibility of integrating it into editors such as VSCode or CLion and because it supports a
wide range of development boards with preconfigured profiles for fast development. We are
also able to search, download and include proper libraries into our code and we can compile
and upload our firmware directly from our editor.

2.5. Containerization
Containerization provides a fast, easy and portable method for creating scalable
infrastructure. It helps developers by making their projects transferable and more easily
deployable via CI/CD pipelines. Like the other parts of this project, the web application is
also dockerized, using node and nginx images.

.

11



2.6. Backend
We decided to use python as our backend programming language. Python has 2 prominent
backend frameworks, Flask and Django. Although very similar, there are some key
differences between the two.

2.6.1. Comparison between python backend frameworks:
Django Flask

ORM Django ORM SQLAlchemy

Setup Preconfigured admin, easy
database access, rigid project

structure

Bare structure, available
packages, less rigid project

structure

Admin Predefined No predefined admin site

Authentication Predefined, can be changed Have to define yourself

In the end we choose Django, because of its easy setup, and convenience regarding
predefined functionalities. Our team also has more experience with Django in larger projects.

2.7. API Specification
For API specification we used swagger and for testing our endpoints we use Postman. Basic
definitions of our specification are shown in tables below.

Table 1 Device specification

Devices

GET /devices/

POST /devices/

GET /devices/{device_id}/

PUT /devices/{device_id}/

DELETE /devices/{device_id}/

GET /devices/{device_id}/graph/

Table 2 Distribution specification

Distributions

GET /distributions/

POST /distributions/

GET /distributions/{dist_id}/

DELETE /distributions/{dist_id}/

12



PUT /distributions/{dist_id}/

Table 3 Tag specification

Tags

GET /tags/

POST /tags/

DELETE /tags/{tag_id}/

PUT /tags/{tag_id}/

POST /tags/device/

DELETE /tags/device/

Table 4 Location specification

Location

GET /locations

Table 5 Command specification

Commands

GET /commands/

POST /commands /

GET /commands /{command_id}/

DELETE /commands /{command_id }/

PUT /commands /{command_id }/

2.8. Web application
There is a plethora of frontend frameworks that can be used for web development, most
popular being ReactJS, Angular and Vue.js. All of them use either Javascript or Typescript,
latter being statically typed version of former and all of aforementioned frameworks have
advantages and disadvantages and are used based on specific requirements. In this project, we
have decided to use the framework React combined with Tailwind CSS.

2.8.1. Comparison of ReactJS with other frameworks

● Angular.js

Pros: Cons:

Detailed documentation Complex syntax

13



RXJS Migration issues

Faster compilation

MVVM l that allows developers to work
separately

● Vue.js

Pros: Cons:

Similar characteristics with Angular Lack of resources

Detailed documentation Risk of over flexibility

Good integration

Large scaling

● React.js

Pros: Cons:

Popularity, huge community Incompleteness – it is more of a library than
a framework, in a sense that it has to be
used in combination with other libraries to
provide full MVC capabilities

Hot reloading Poor documentation

Easy to learn and use, with fast
development time

Actively developed by one of the world’s
largest corporations

Scalable

JSX – declarative programming

Reusable components

● Tailwind CSS
○ Style component without adding a new style sheet for every new component
○ Better integration
○ Improves maintainability
○ Consistent UI and customizability

● Typescript
○ Strict typing
○ Early spotted bugs

14



○ Predictability
○ Readability
○ Fast refactoring
○ OOP (classes, interfaces, types, enums, inheritance ...)

2.8.2. Other libraries
● React-router-dom

○ Dynamic routing in a web application
○ Enables the navigation among views of various components in a React

application

● Framer-motion
○ Popular animation library
○ Open source

● Nivo
○ Wide variety of data visualization with ease

● React redux
○ Great for managing the state of application
○ Ensure the components behave as expected
○ Good React app architecture

● Fontawesome
○ Scalable vector images
○ Can be customized with CSS
○ Over 1,600 icons in the free set

2.9. Application Design
Our design was created in the Figma environment, where we defined the individual subpages
of the web application.

15



Figure 7 Dashboard subpage

Figure 8 Device Details Modal

16



At the beginning of the application, after the user logs in, there is a dashboard with the
devices in the individual locations. After clicking on one of the devices, a modal window will
appear with a detailed description of the device and its measured values.

Figure 9 Devices subpage

The Devices subpage allows the user to search for devices, edit tags, add a new device, edit
existing devices, and it is also possible to send a MAC command to devices using tags. A
corresponding modal window appears for each selected option.

17



Figure 10 Firmware subpage - Distributions tab

Figure 11 Firmware subpage - History tab

18



Figure 12 Firmware subpage - Rollout tab

There are three tabs on the Firmware subpage, namely: Distributions, Rollout and History. On
the Distributions tab we can observe all uploaded distributions and it is also possible to
upload another one, where the modal window for that purpose will appear. The history tab
shows the history of updates that have been made in the past. Finally, on the Rollout tab, we
can track updates and their statuses: failed, updated, or ongoing. We can also define a new
update here, which will be displayed in the modal window. On this table there is a possibility
to click on individual updates for their detailed display in the modal window.

19



Figure 13 All available modal windows in our web application

The figure above (Figure 13) shows all available modal windows for our application. Modal
windows for creating a MAC command, for defining a new update, editing tags, detailed
display of the update, creating a new device or distribution, and also for configuring an
existing device.

2.10. UX testing
To improve the user experience on our application, we have created UX testing on our
design. We used the UXTweak website for testing, where it is possible to upload a prototype
from the Figma environment to this web application. The site is used to test web interfaces
and prototypes and monitors all aspects of the user who tests the prototype or page. To create

20



UX testing, we created 5 test scenarios, the aim of which was for the user to go through all
the possibilities of the given web application during testing.

1. Scenario
The user's task is to find out information about the end device called "Sensor 1" (spreading
factor, RSSI) and its measured values.

2. Scenario
The user's task is to find devices that have a tag named "Tag1" assigned to them and then add
a new tag with name "New Tag" to the tag list. Another task will be to modify the settings of
the end device named "Sensor 1", where the user must change the name of this end device to
"Sensor One", the location to "Location 2" and add a newly created tag named "New Tag" to
this device. Finally sends any MAC command to devices that are tagged with a "New Tag".

3. Scenario
The user's task is to add a new end device to the list of end devices. This newly created
device will be named "Device New" and the location will be "Location 3". The device will be
assigned two tags: "Tag1" and "Tag2".

4. Scenario
The user's task is to examine the existing distribution, especially it’s version number and
description. Then create a new distribution called "Update 2", the version name will be
"1.1.2", the signature will be "hash1" and the distribution description will contain "New
features ...". Also upload the binary file either by using drag and drop functionality or by
clicking on the upload location. Another task of the user is to view the history of performed
updates and find out their description and time of creation.

5. Scenario
The user's task is to create a new update for a defined tag. In the form created for this, select
the distribution "Update 2" and the tags to which the update will apply will be "Tag1" and
"Tag2". This update will be called "Thing". Another task is to review the status of other
updates, where it must determine the reason for the failure of a particular update.

21


