
Git rules

Every repository must have the main branch called master

• master
◦ All tasks that were accepted by reviewers in pull request must be

merged into master branch
Every task must have it's own branch.
This branch will be identified by speficit format:

• Format = [USER-STORY-XXXX/description]
◦ XXXX - unique value generated by TFS
◦ description - text from task title separated by "-"

Examples:
USER-STORY-10517/Rewrite-GIT-methodics-to-be-more-understable
USER-STORY-10558/Virtual-reality-module

Workflow

I don't have installed Git Bash

1. Download the Git Bash program from page
2. Install Git Bash

I have installed Git Bash (Clone repository - first start)

1. Open Git Bash program (in Windows called MINGW64)
2. Type the command git config --global http.sslVerify false to

disable the SSL CERT verification, because you can have trouble with
pushing to the server

3. Go to required folder, where you want to have your local git with
command cd (Change directory)

Examples:
Change to the required directory with absolute path:
C:\School> cd C:\School\3DSpaceGen
Change to the parent directory:
C:\School> cd ..
Change to the grant-parent directory:

https://git-scm.com/downloads

C:\School\backup\January> cd ..\..
Change to the ROOT directory:
C:\School\backup\January> cd \
Display the current directory in the specified drive:
C:\> cd D:

3. Go to the TFS Git page and choose your repository (folder/file...) that
you want to clone in left side on webpage

4. After choose the repository click to the Clone button
5. Copy the displayed url, type git clone yourcopiedurl into the Git

Bash and press Enter button
6. Example: git clone http://yourwebpage.com
7. Now you have actual version of git repository in your PC

Creating branches

1. When you have cloned needed repository, then you need to REBASE
your local repository with command git rebase origin/master (more
about rebase)

2. Now you can create new branch for task with command git checkout
-b [branch_name]  
Example: git checkout -b USER-STORY-10558/Virtual-reality-
module

3. Now push your local created branch to TFS Server with command: git
push origin [branch_name]  
Example: git push origin USER-STORY-10558/Virtual-reality-
module

4. Type git rebase origin/master
5. Type git push --force  

Warning: Error message might be occured: 
fatal: The current branch USER-STORY-10558/Virtual-reality-

module has no upstream branch  
then type: git push --set-upstream origin USER-STORY-10558/
Virtual-reality-module and repeat the fifth point

6. Now you can add new folder(s)/file(s) with git add command
Examples:
Stages all changes:
git add -A
Stages new files and modifications, without deletions
git add .
Stages modifications and deletions, without new files
git add -u

https://tfs.fiit.stuba.sk:8443/tfs/StudentsProjects/_git/3DSpaceGen
https://git-scm.com/docs/git-rebase

Adding the concrete file/folder:
git add myfile.txt
With git status command you can verify the current state of your git branch

9. When you want to commit your changes type git commit -m
"#TASK_ID define_your_changes"

10. Example: git commit -m "#10517 Rewriting git methods"
11. General rule, commit often!!!

You can use the command gitk for displays changes in a repository or a
selected set of commits.
Gitk includes visualizing the commit graph, showing information related to
each commit, and the files in the trees of each revision.

10. Type git status and check if you have committed all changes
11. Use git push to upload the changes into TFS

WARNING - It is necessary to
frequently rebase

Pull request

1. Go to the TFS -> Code -> from left side choose your repository
2. Click on the branches button
3. Choose branch which you want for pull request and click on the button

New pull request

4. Set the place where you want to merge your branch - standard set into
master branch and set the title of the pull request

5. Write the description and add reviewers that you want, then click on the
button Create

6. You have created the pull request
All pull requests must be reviewed by at least one other team member. The
reviewer might reject the pull request but must specify the reason

Conflicts
Sometimes you can have conflicts in your code with master branch (when
you don't often rebasing) and when you have changes in your local branch
and after a long time you write the command git rebase
So you need to resolve the merge conflicts and continue rebasing

1. Merge conflicts you can solve with git mergetool, but you need to
configure it before first start

2. We will use the kdiff3 as preferred mergetool - click for download

For Windows Users:
git config --global --add merge.tool kdiff3
git config --global --add mergetool.kdiff3.path "C:/Program Files/
KDiff3/kdiff3.exe"
git config --global --add mergetool.kdiff3.trustExitCode false
git config --global --add diff.guitool kdiff3
git config --global --add difftool.kdiff3.path "C:/Program Files/
KDiff3/kdiff3.exe"
git config --global --add difftool.kdiff3.trustExitCode false

Fow Mac Users:
git config --global --add merge.tool kdiff3
git config --global --add mergetool.kdiff3.path "/Applications/
kdiff3.app/Contents/MacOS/kdiff3"
git config --global --add mergetool.kdiff3.trustExitCode false
git config --global --add diff.guitool kdiff3
git config --global --add difftool.kdiff3.path "/Applications/
kdiff3.app/Contents/MacOS/kdiff3"
git config --global --add difftool.kdiff3.trustExitCode false

For Linux Users
git config --global --add merge.tool kdiff3
git config --global --add mergetool.kdiff3.path "/usr/bin/kdiff3"
git config --global --add mergetool.kdiff3.trustExitCode false
git config --global --add diff.guitool kdiff3
git config --global --add difftool.kdiff3.path "/usr/bin/kdiff3"
git config --global --add difftool.kdiff3.trustExitCode false

2. So when you have installed the program, type the git mergetool and
merge your conflicts - with choosing the code which will be used and
included into merge

http://kdiff3.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=58666

3. After merging, you can type git rebase --continue
4. Now you have merged branches

