
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava 4

Product documentation

Milestone 2 – Summer semester

Team project

2018/2019

Team č. 04 : Fastar

Bc. Michaela Balážová

Bc. Kamil Janeček

Bc. Tomáš Jendrejčák

Bc. Matúš Kalafut

Bc. Matej Končál

Bc. Michal Maňak

Bc. Ján Vnenčák

Project leader: Ing. Kamil Burda

Date of last edit: 10.05.2019

2

Table of contents
1. Introduction ... 3

1.1. Dictionary .. 3

2. Big picture ... 4

2.1. Description of the project ... 4

2.2. Our goals in the end of winter semester: ... 4

2.3. Our goals in the end of summer semester: ... 4

2.4. Review of goals for winter and summer semester ... 5

2.5. The view of components connection in the system ... 5

Device ... 5

Application .. 5

Database .. 6

Web interface .. 6

3. Modules of the system .. 7

3.1. Server module .. 7

3.2. Logger module ... 7

3.3. Machine learning module .. 8

4. Manuals ... 9

4.1. Manual for product deployment... 9

4.1.1. Server .. 9

4.1.2. Logger-web ... 11

5. User testing ... 14

6. Technical documentation .. 15

3

1. Introduction

This document describes the software product, big picture of the project and its created modules.

It also contains manuals and technical documentation to the project.

1.1. Dictionary

• raw data - data obtained directly from device

• feature - measurable property or characteristic of data

• user model - collection of characteristics describing user

4

2. Big picture

2.1. Description of the project

Computers and mobile devices are sources of sensitive data such as payments, mails or social

networks. The theft of device or user account can have serious consequences. That is why we are

working on authentication through behavioral biometrics. Its advantage over existing approaches

(strong passwords, fingerprints) is the possibility of additional background authentication

without user noticing.

Our project deals with behavioral biometrics and provides user authentication directly while

using the device. Each person uses their device differently, whether they interact with a mobile

device or a computer. Based on this theory and user's unique behavior, we are able to determine

whether it is an authorised person to use the device and to prevent unauthorised access by a

foreign person to the device.

2.2. Our goals in the end of winter semester:

• have a functional logger for a computer mouse and mobile devices

o log various types of events

o support multiple web browsers

• divide data into segments

• store data in database

• use simple classifier, which can authenticate the user

• visualize raw data

• prepare a demo for product presentation

2.3. Our goals in the end of summer semester:

• visualize data from mouse and mobile

o highlight segments

▪ in touch and also gyroscope and accelerometer data

o include custom columns

o add background image to diagram

o discrete or continuous display of data

• create pipeline

o extract movement data

o split into segments

o create features

o clasification

• demo for product presentation

5

2.4. Review of goals for winter and summer semester

Our project provides a functional logger for events from a computer mouse and also for events

from a mobile device. This data is stored in a database on the server. Our product also provides

data pre-processing and performs a simple classification. Machine learning module provides

visualization functions for displaying data from a computer mouse and also data from a mobile

device. We created pipeline and a demo for our application to present our product.

2.5. The view of components connection in the system

Raw data in our program are events for which parameters are recorded - e.g. for a computer

mouse, they are x and y coordinates of the mouse on the screen, time stamp, event type.

Fig. 1 : The view of components in the system

Device

Personal user device, e.g. smartphone, notebook from which we collect data about user activity.

Application

6

Application module which stores raw data from devices in database, provides data for further

analysis and visualisation.

Database

Storage of raw data from devices.

Machine learning module

Module for raw data pre-processing, feature computation, user authentication and data

visualisations.

Web interface

Web app for visualisation of raw data or results of data analysis.

7

3. Modules of the system

3.1. Server module

The server module provides an interface for storing and querying data from database. After

accepting the data storage requirement, the server extracts metadata and then stores these data

together with the metadata in the database. It also provides the interface for obtaining

information about the data that is currently stored in the database (for now, it is only the names

of columns). It can export .csv file, which contains all stored data. The server adjusts the

response of the demand when querying and exporting. This means that we can retrieve only a

subset of data stored in the database (certain stamps, certain values).

Server API documentation is available at:

https://tp-fastar.gitlab.io/server/

3.2. Logger module

FastarLogger is a JavaScript library used to record mouse events and events from device sensors

(accelerometer, gyroscope). It allows to log pressing and releasing mouse buttons (left, middle,

right, forward and back), mouse movements, angular velocity and acceleration of the device

along all three axes.

Functionality of logger is oriented in following files:

• logger.js - class which contains logging logic and corresponding methods

• connection.service.js - file contains functions used to communication with backend server

• index.spec.js - file contains all logger unit tests

Module use WebPack to compile JavaScript modules and build library to UMD format. To

transpile ES6 code to ES5 for better compatibility Babel is used. We use

frameworks Mocha and Chai to write unit tests.

Example of logged data:

{

 "eventType": "MOUSE_MOVE",

 "payload": {

 "mouseButton": "LEFT_BUTTON",

 "positionX": 305,

 "positionY": 582

 },

 "sessionId": "5bf43285e6bdb1000b645890",

 "sessionStartsAt": 1542730372913,

https://tp-fastar.gitlab.io/server/

8

 "timeStamp": 13372.699999999895

}

Property Description

eventType type of logged event

payload additional event data (depends on eventType)

sessionId unique session identifier (obtained from BE on logger initialization)

sessionStartsAt time of session start in milliseconds

timeStamp time of event invocation in mili-seconds

Each logger initialization represents new session with unique session id obtained from backend

server.

Logged data are sent to backend server in batches of 100 logs (default).

3.3. Machine learning module

Machine learning module is responsible for data preprocessing, feature extraction and user

authentication. It is written in language Python3, using libraries sklearn, pandas, numpy and

bokeh.

Machine learning module provides funcionality to visualize data from computer mouse and

mobile device. In these function you have multiple options - to highlight segments (highlighting

in touch, gyroscope and accelerometer data simultaneously), choose between discrete or

continuous display of data, show customs column in figure and add background image to

displayed data. Using the module you can create a pipeline, which extracts data from movement,

split them into segments, create features from them and then classifies into classes.

This module contains the following packages:

• authentication

• estimator

• features

• preprocessing

• utils

• visualization

9

4. Manuals

4.1. Manual for product deployment

Developed product consists of the following components:

• Server

• Logger-web

These parts are developed in various technologies, so different procedures are required when

using / deploying them.

4.1.1. Server

Docker is used to deploy the app. It is needed to create a docker image locally or download a

docker image created after the end of the docker registry from the gitlab.

For the following instructions, you need to have a docker installed!

Local deployment

Local image creation

1. You have to be in the project folder

2. Image creation

docker build -t registry.gitlab.com/tp-fastar/server:<version> .

Download the image from the registry

1. Login

docker login registry.gitlab.com (login credentials as on gitlab)

2. Download

docker pull registry.gitlab.com/tp-fastar/server:<version-or-latest>

Launching

1. docker run --name behametrics-server -d -p <local-port>:<container-

port> registry.gitlab.com/tp-fastar/server:<version-or-latest> - container-

port is the port number on which the application is running in the containers. This

number is always in Dockerfile - EXPOSE

2. Application is running locally on port local-port

http://registry.gitlab.com/tp-fastar/server
http://registry.gitlab.com/
http://registry.gitlab.com/tp-fastar/server
http://registry.gitlab.com/tp-fastar/server

10

Stop

1. docker stop behametrics-server

Required configuration

All configuration is done using environment variables. Currently used environment variables:

• DEBUG - Flask debug configuration; defaults to True

• PORT - HTTP port; defaults to 5000

• MONGO_URI - URI used for connecting to mongo instance; defaults to

mongodb://localhost/behametrics

Easy deployment for end user

Two Docker Compose files are provided for convenience.

1. Configuration which expects MONGO_URI for database connection and exposes

endpoints on port 5000

2. Configuration which is using internal Mongo container (service) and exposes endpoints

on port 5000

Using this configuration you are able to run everything in one command but be cautious of your

data. First configuration is preferred as you are required to provide own Mongo database.

Deployment on server

The server is deployed using CI / CD processes that are defined in .gitlab-ci.yml and have stage:

deploy. Each of these processes has a defined environment to which it is deployed. An overview

of the environments along with the current deployment is available in the Operations →

Environments section of the gitlab repository. In exceptional cases, the app may be deployed to

the server manually.

In the following picture is an example of an environment called "production" along with a list

of processes that have been deployed to that environment. The process always deploys the

version according to the number of pipeline in which it runs. Version deployed by individual

processes we can find out by clicking on the number of processes - for example # 109206898.

Re-deployment of the current / previous version can be done using the button on the right

of the screen.

mongodb://localhost/behametrics

11

Fig. 2: Example of deployment of solution

4.1.2. Logger-web

Web logger is a library written in JavaScript. The library itself does not need to be deployed as a

production application to the server. It is just needed to provide library files in git repositories. It

is necessary to provide available functional library.

In order to make the executable and functional version available, we use CI / CD processes.

The definitions and sequences of these processes are written in .gitlab-ci.yml.

After successfully passing the processes, the artifacts are available in the form of the library

itself, in a folder ./lib.

Scripts

npm run build - produces production version of the library under the lib folder

npm run dev - produces development version of the library and runs a watcher

npm run test - runs the tests

npm run test:watch - runs the tests in a watch mode

npm run demo - runs demo page to show logger in action

Logger configuration

Developer is able to configure logging configuration. When instance of Logger class is created,

we can pass configuration object to class constructor (see example below).

let logger = new Logger({

 apiUrl: 'https://your-domain.com'

})

12

Configuration values:

Name Type Description Defaults

apiUrl string

Base API

URL to post

logged data

and get

session id

mouseEvents array<string>
List of mouse

events to log

['mousemove',

'mousedown',

'mouseup',

'wheel']

touchEvents array<string>
List of touch

events to log

['touchstart',

'touchend',

'touchmove',

'touchcancel']

sensors array<string>
List of

sensors to log

['gyroscope',

'accelerometer']

batchSize number

Number of

logs sent in

one POST

request

100

logToConsole boolean

If true all

logs are

shown in

browser dev

console

false

gyroscopeConfig Object

Configuration

object for

gyroscope

sensor

{frequency:

60}

accelerometerConfig Object

Configuration

object for

accelerometer

sensor

{frequency:

60}

13

Payload values:

Mouse events payload:

mouseButton - describes which button is pressed during events

positionX - provides the horizontal coordinate (offset) of the mouse pointer in global (screen)

coordinates

positionY - provides the vertical coordinate (offset) of the mouse pointer in global (screen)

coordinates

Wheel event:

mouseButton - describes which button is pressed during events

positionX - provides the horizontal coordinate (offset) of the mouse pointer in global (screen)

coordinates

positionY - provides the vertical coordinate (offset) of the mouse pointer in global (screen)

coordinates

scrollDeltaX - double representing the horizontal scroll amount

scrollDeltaY - double representing the vertical scroll amount

Touch events payload:

touches - represents a list of contact points on a touch surface

force - amount of pressure being applied to the surface by the user, as a float between 0.0 (no

pressure) and 1.0 (maximum pressure)

id - unique identifier of touch object in touches list

positionX - horizontal coordinate of the touch point relative to the left edge of the screen

positionY - vertical coordinate of the touch point relative to the left edge of the screen

Gyroscope payload:

alpha - double containing the angular velocity of the device along the device's x axis

beta - double containing the angular velocity of the device along the device's y axis,

gamma - double containing the angular velocity of the device along the device's z axis

Accelerometer payload:

accX - double containing the acceleration of the device along the device's x axis

accY - double containing the acceleration of the device along the device's y axis

accZ - double containing the acceleration of the device along the device's z axis

14

5. User testing

We have prepared demo jupyter notebooks with pipeline and visualizations of mobile and mouse

data. User had simple task to add highlighting of segments in the showed figure. The second step

for the user was to fill in the questionnaire.

We have tested 2 demo jupyter notebooks with visualizations (mouse and mobile data) on 3

users. As a first step, we explained to our testers what we do and what features our products

provides. After brief look on the jupyter notebook with mouse data, we gave him task to add

highlighting of segments. At first, all of them had problem to find a function to highlight,

because they searched for keyword segments instead of highlight. We gave our testers a little

hint to seach for another keyword and second try for all of them was successfull. Also in the

second notebook with mobile data, they had no problem to finish the same task.

From given questionnaires we found out that all testers would appreciate the library behavioral

data visualization and also they would use our functions in some of their projects. We got one

suggestion to show segments on default, not just on hover of the mouse.

Another questionnaire was about FastarLogger and FastarServer. We had one respondent, he

answered that installation of logger module was easy, even though we had not read

README file to module. We asked him if FastarLogger library would facilitate behavioral

biometrics work, he aswered yes, because it was easy to use and recorded the necessary data.

The part about FastarServer was not so positive. He claimed that the installation was not so easy

and also that we had little experience with the module. He also said, that he was initially unable

to access the logged data because of poor documentation.

Questionnaire for logger and server modules:

• https://forms.gle/bUbE3H9UeJqfdMJg6

Questionnaire for visualizations of mobile and mouse data:

• https://forms.gle/q4RKGzCUiCngEFiZ9

https://forms.gle/bUbE3H9UeJqfdMJg6
https://forms.gle/q4RKGzCUiCngEFiZ9

15

6. Technical documentation

Server module: https://tp-fastar.gitlab.io/server/

Logger module: https://tp-fastar.gitlab.io/logger-web/doc/

Machine learning module: https://tp-fastar.gitlab.io/ML-module/

https://tp-fastar.gitlab.io/server/
https://tp-fastar.gitlab.io/logger-web/doc/
https://tp-fastar.gitlab.io/ML-module/

