
1/4

Methodology	for	Writing	Code	in
the	Kotlin	Language
This	methodology	contains	current	coding	style	in	the	Kotlin	language
used	by	the	Kill	Bills	team.

Naming	Style
If	in	doubt,	default	to	the	Java	Coding	Conventions	such	as:

use	of	camelCase	for	names	(and	avoid	underscore	in	names)
types	start	with	upper	case
methods	and	properties	start	with	lower	case
use	4	space	indentation
public	functions	should	have	documentation	such	that	it	appears
in	Kotlin	Doc

Colon
There	is	a	space	before	colon	where	colon	separates	type	and
supertype	and	there's	no	space	where	colon	separaters	instance	and
type:

interface	Foo<out	T	:	Any>	:	Bar	{
				fun	foo(a:	Int):	T
}	



2/4

Lambdas
In	lambda	expressions,	spaces	should	be	used	around	the	curly
braces,	as	well	as	around	the	arrow	which	separates	the	parameters
from	the	body.	Whenever	possible,	a	lambda	should	be	passed	outside
of	parentheses.

list.filter	{	it	>	10	}.map	{	element	->	element	*	2	
}

In	lambdas	which	are	short	and	not	nested,	it's	recommended	to	use
the	it	convention	instead	of	declaring	the	parameter	explicitly.	In
nested	lambdas	with	parameters,	parameters	should	be	always
declared	explicitly.

Class	header	formatting
Classes	with	a	few	arguments	can	be	written	in	a	single	line:

class	Person(id:	Int,	name:	String)

Classes	with	longer	headers	should	be	formatted	so	that	each	primary
constructor	argument	is	in	a	separate	line	with	indentation.	Also,	the
closing	parenthesis	should	be	on	a	new	line.	If	we	use	inheritance,
then	the	superclass	constructor	call	or	list	of	implemented	interfaces
should	be	located	on	the	same	line	as	the	parenthesis:

class	Person(
				id:	Int,	
				name:	String,



3/4

				surname:	String
)	:	Human(id,	name)	{
				//	...
}

For	multiple	interfaces,	the	superclass	constructor	call	should	be
located	first	and	then	each	interface	should	be	located	in	a	different
line:

class	Person(
				id:	Int,	
				name:	String,
				surname:	String
)	:	Human(id,	name),
				KotlinMaker	{
				//	...
}

Constructor	parameters	can	use	either	the	regular	indent	or	the
continuation	indent	(double	the	regular	indent).

Unit
If	a	function	returns	Unit,	the	return	type	should	be	omitted:

fun	foo()	{	//	":	Unit"	is	omitted	here

}



4/4

Functions	vs	Properties
In	some	cases	functions	with	no	arguments	might	be	interchangeable
with	read-only	properties.	Although	the	semantics	are	similar,	there
are	some	stylistic	conventions	on	when	to	prefer	one	to	another.

Prefer	a	property	over	a	function	when	the	underlying	algorithm:

does	not	throw	any	Exceptions
has	a	O(1)	complexity
is	cheap	to	calculate	(or	cached	on	the	first	run)
return	the	same	result	over	invocations


