

otvorenezmluvy.sk
Technical documentation

Introduction
CrowdCloud is an application that helps to collect, search, analyze vast amounts of documents
and through power of crowdsourcing find the interesting ones. We use powerful features that
help users to slice-and-dice documents using faceted search and notify users when documents
matching their criteria are added. Users can interact with documents by commenting, marking
them as suspicious and even highlighting parts of documents. Documents are automatically
downloaded from public sources and processed through OCR that extracts text even from
non-text documents.

The pilot application running on www.otvorenezmluvy.sk collects Slovak government contracts
(documents) that are published at various official government sites.

Installation
CrowdCloud is a classic Ruby on Rails 3.2 application, gems are managed using Bundler,
application is deployed via Capistrano. Database schema is managed using raw SQL schema
dumper (not Rails default).

Full source code is available at https://github.com/otvorenezmluvy

Prerequisites
● Linux environment (debian-based is prefered)
● MRI Ruby 1.9.3+
● PostgreSQL database 9.1+
● ElasticSearch
● Redis
● Tesseract OCR
● GraphicMagick
● MemCache (optional)

Installation guide
1. Install and start prerequisites if needed (e.g. elasticsearch, redis).
2. Add eulang analyzer (for handling accented characters) to elasticsearch.yml config

index:

 analysis:
 analyzer:
 eulang:
 type: custom

https://github.com/otvorenezmluvy
http://www.otvorenezmluvy.sk/

 tokenizer: standard
 filter: [standard, lowercase, asciifolding, stop]

3. Application settings for database and elasticsearch can be found in database.yml and

crowdcloud.yml

4. Run default Rails application bootstrap (bundle install, rake db:create, rake
db:schema:load, rake db:seed)

5. Create elasticsearch indexes & index data (if available) with rake
crowdcloud:index:rebuild

6. Optional. Start downloading data from CRZ source by running rake
rowdcloud:crz:download and rake resque:work

Project structure

Top level architecture
Project consists of these three main parts:

● Wrappers/parsers
● Public web interface
● Administration interface

Data model
The core model works with arbitrary documents and attachments as defined in the Documents
Core module, the pilot implementation (www.otvorenezmluvy.sk) deals with contracts (a
specialization of document) from two sources with corresponding modules CRZ and Egov.

Documents Core
● Document - represents a single published document

○ has_many Attachments
○ has_many Comments
○ has_many Heuristics

● Attachment - represents an attachment (pdf/text) file related to a Document
○ has_many Pages

● Page - represents a single page of an Attachment
○ has_many Comments

CRZ Specific Documents
● Crz::Document < Document - abstract class represents a document from CRZ portal

http://www.otvorenezmluvy.sk/

○ has_one Crz::DocumentDetail
● Crz::DocumentDetail - represents various specific fields for a Crz::Document
● Crz::Contract < Crz::Document - represents a contract from CRZ portal

○ has_many Crz::AppendixConnections
● Crz::Appendix < Crz::Document - represents an appendix from CRZ portal
● Crz::AppendixConnection - represents a connection to an appendix from a

CRZ::Contract

EGov Specific Documents
● Egovsk::Document < Document - abstract class represents a document from Egov.sk

portal
○ has_one Egovsk::DocumentDetail

● Egovsk::DocumentDetail - represents various specific fields for a Egovsk::Document
● Egovsk::Contract < Egovsk::Document - represents a contract from Egov.sk portal
● Egovsk::Appendix < Egovsk::Document - represents an appendix from EGov.sk portal

Intelligence
● Heuristic - represents an automatic heuristic for scoring document suspiciousness.

○ has_many Documents

Questionnaire
● Question - represents a question from questionnaire.

○ has_many QuestionChoices
● QuestionChoice - represents a question choice for a particular Question

○ has_many QuestionAnswers

User activities
● Comment - represents a user comment on a Document and/or particular Page area of

Document.
○ has_many Votings
○ has_many CommentReports

● CommentReport - represents a user reporting of a Comment (e.g. malicious, abusive...)
● Voting - represents users voting for/against a particular Comment
● Watchlist - represents a Document watched by a User
● DocumentOpening - represents a Document opened by a User
● QuestionAnswer - represents an user answer to a Question

Stream
● Event - represents an event in user’s activity stream and has following subclasses

○ UserRegisteredEvent - represents an event when user has registered
○ QuestionAnswerEvent - represents an event when a question is answered

○ DocumentEvent - abstract class representing event related to a document
■ DocumentOpenedEvent - represents an opening of document by user
■ WatchingStartedEvent/WatchingStoppedEvent- represents an event by

user that starts/stops watching a document
■ ControversyReportedEvent - represents an event when users marks a

document as controversial
○ CommentEvent - abstract class representing event related to a comment

■ MyCommentEvent - represents an event related to users comment
■ OthersCommentEvent - represents an event related to comments by

other users (e.g. on a watched document)

Processes

Downloading and preprocessing contracts
New contracts are downloaded periodically, from a cron job. The cron job is defined in
config/schedule.rb. This file is automatically picked up by the whenever gem which
translates it into a cron configuration and updates local crontab on each deploy. Jobs are then
managed by unix daemon cron and run at the specified intervals. The cron job invokes rake
tasks defined in lib/tasks/crowdcloud.rake which start the download process. The rake
tasks check the remote websites (currently CRZ and egov) for new updates and schedule
downloads for each new contract. The rake tasks themselves do not download data, they just
parse remote websites/invoke third-party APIs and schedule Resque jobs.

The actual downloading and preprocessing happens in Resque jobs. The actual logic and
execution depends on the scraped website, but these steps are common among all scraping
jobs:

● download the HTML with contract metadata
● parse the HTML, extract metadata and links to attachments
● download the pdf attachments
● split pdfs into images (one image per page) using a tool graphicsmagick
● extract text, either using pdftotext tool or Tesseract OCR

The metadata is saved in database and the images and texts on filesystem in
public/documents.

Note that in order to process the queued jobs, separate resque workers must be running.
Resque workers can be started by invoking rake resque:work.

Components

Document viewer
Document viewer is a components responsible for displaying the contracts. It can display
scanned contract, its extracted plain text and provides tools for interactive annotating. It is
implemented as a standard Backbone.js application in
app/assets/javascripts/document_viewer. The same viewer is used both on portal to
show contracts and in the widget, although with different configuration. Document viewer is
instantiated as shown in the example and accepts several options.

var dv = DV.DocumentViewer.init({
 container: '.document',

 attachments: <%== @attachments.to_json %>,
 currentUser: "<%= current_user.label %>",
 onReply: CrowdCloud.Comments.replyTo,
 onShowReplies: CrowdCloud.Comments.showComment,
 width: '673px',
 height: '990px',
 annotationsAllowed: true,
 zoom: false,
 commentList: false
});

Option name Type Description

container string CSS selector for the wrapping DOM element where the
document viewer shall be rendered.

attachments array JSON-encoded array of attachments. Each attachment
should provide: name, number and array of pages.
Each page should provide: scanUrl, textUrl and
optionally an array of annotations.

comments array JSON-encoded array of comments related to the
document.

currentUser string Name of the user. It is displayed when adding new
annotation.

onReply function Callback invoked when user chooses to reply to
annotation.

onShowReplies function Callback invoked when user chooses to see replies to
an annotation.

width integer Width of the document viewer in pixels. parseInt’d
before usage.

height integer Height of the document viewer in pixels. parseInt’d
before usage.

annotationsAllowed boolean Should we allow to annotate parts of the contract?

zoom boolean Can we zoom?

commentList boolean Should we display a toggleable tab which shows all
comments? If set to true, the comments are pulled from
the comments option.

Extending the project

Adding a new source parser / wrapper
Before adding a parser/wrapper for a new source you will probably need to add a model for
holding custom fields for your documents. The best way to start is to look how existing models
work and extend Document class (e.g. Crz::Document, Crz::DocumentDetail or
Egovsk::Document, Egovsk::DocumentDetail).

A word of warning: These models don’t use classic single table inheritance that is common for
RubyOnRails, but for the sake of extensibility pull custom fields to separate models
*DocumentDetail.

If you want your documents custom fields to be indexed (to fully leverage the power of faceted
fulltext searching) make sure you add them to Document::Indexable mixin and refer to the next
section of how to add a new facet to the interface for such fields.

There are no restrictions on how to download, parse and process your own documents. Look at
existing parsers for Crz and Egovsk for example production ready parsers.

Warning: Make sure documents are saved using Configuration.document_repository
.save(document) method instead of the default ActiveRecord::Base.save. Using a repository
object decouples model from various callbacks (indexing, heuristics calculations, etc.) and is
considered a best practice for easier testing.

Extending faceted search

Adding a facet
Facets for search GUI are defined in Settings.facets method and there are multiple ready-to-use
types of facets:

● FulltextFacet - fulltext search in document (_all field in ElasticSearch) you probably need
only one of this facet.

● SearchableTermsFacet - facet containing strings with autocomplete feature
● DateFacet - facet for fields containing date, default bucketing by month.
● RangeFacet - facet for arbitrary ranges
● StatisticalFacet - facet for calculating statistical properties on fields (e.g. sum)

After adding new facet/s to this definition you might need to supply some translations and
templates for customizing the look&feel to make it fully working, but the process is standard and

should be straightforward for any Rails developer.

Adding a sort field
Adding a new field that should be used for sorting is done by adding it to definition defined in
Configuration.factic[:sort_fields]. Again, some translations need to be added.

Contact information
Authors: minio, s.r.o. (kontakt@minio.sk), Aliancia Fair-Play (www.fair-play.sk), Transparency
International Slovensko (www.transparency.sk)

Feel free to contact us anytime.

http://www.fair-play.sk/
mailto:kontakt@minio.sk
http://www.transparency.sk/

