

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Informatics and Information Technologies

Application of deterministic Ethernet in autonomous vehicle

Bc. Dávid Buhaj

Bc. Marek Číkoš

 Bc. Pavol Gočal

 Bc. Martin Ilavský

 Bc. Milan Urminský

Supervisors: Ing. Ondrej Perešíni, Ing. Lukáš Kohútka

Content

1. INTRODUCTION .. 4

1.1 Winter semester goals .. 4

1.2 Summer semester goals .. 5

1.3 General view of project .. 6

1.3.1 GPS and compass .. 7

1.3.2 Laser .. 7

1.3.3 Camera .. 7

1.3.4 Control unit ... 7

1.3.5 Vehicle construction .. 7

2. ANALYSIS .. 9

2.1 GPS ... 9

2.1.1 GPS modules ... 12

2.2 DISTANCE SENSORS .. 18

2.2.1 Ultrasonic sensors ... 18

2.2.2 Infrared sensors ... 18

2.2.3 Laser sensors ... 19

2.3 BATTERIES .. 21

2.3.1 Gogen Power Bank 12000 mAh black-gray ... 21

2.3.2 USB Battery Pack for Raspberry Pi - 10000mAh - 2 x 5V outputs 22

2.3.3 Xiaomi Power Bank 20000mAh White .. 23

2.4 CAR PLATFORMS ... 24

2.4.1 GEARS SMP Mobile Platform ... 24

2.4.2 Track Chassis .. 24

2.4.3 C37 4WD Car .. 25

2.4.5 Pre-Built 4WD IG52 ... 26

2.4.6 GRIZZLY (RUV) .. 26

2.5 BOARDS .. 28

2.5.1 Raspberry Pi 3 Model B .. 28

2.5.2 DE1-SoC-MTL2 .. 28

2.5.3 BANANA Pi-M2 + ... 30

2.5.4 Arduino UNO .. 31

2.6 Camera ... 32

2.6.1 Outdoor Full HD WDR PoE Day/Night Bullet Network Camera - DCS-7513 32

2.6.2 TRENDnet Indoor/Outdoor (TV-IP312PI) ... 37

2.6.3 Raspberry Pi Camera Module V2 - 8 Megapixel,1080p ... 40

2.6.4 Raspberry Pi PiNoir Camera V2 Video Module ... 41

2.6.5 D8M-GPIO Terasic ... 42

2.7 Conclusion from sensor analysis .. 44

2.8 DE-Hermes Switch 3-1 BRR ... 45

3. SOLUTION DESIGN .. 50

3.1 Logical design .. 50

3.2 Physical design ... 51

3.3 Communication protocol .. 52

3.3.1 Type field .. 52

3.3.2 Source board field ... 52

3.3.3 Number of source board .. 52

3.3.4 Destination board field .. 53

3.3.5 Number of destination board field .. 53

3.3.6 Type of message field ... 53

3.3.7 Laser data message .. 53

3.3.8 Road side camera data message .. 54

3.3.9 Infrared camera data message ... 54

3.4 Navigation with GPS .. 55

3.5 Laser data processing ... 58

3.6 Communication Raspberry Pi - Arduino .. 64

3.7 Camera data processing .. 66

3.7.1 Infrared camera ... 66

3.7.2 Communication protocol ... 67

3.7.3 Road signs camera for future work ... 67

3.8 Angle measuring .. 68

4. IMPLEMENTATION .. 69

4.1 GPS and compass navigation ... 69

4.1.1 General information .. 69

4.1.2 Connection description .. 71

4.2 Control Unit .. 73

4.2.1 Global variables ... 73

4.2.2 Manual control .. 73

4.2.3 Processing packets ... 73

4.2.4 Moving vehicle .. 74

4.2.5 Decision making .. 74

4.3 Car wiring ... 77

4.4 Car construction ... 80

4.5 Laser data processing ... 83

4.5.1 Data capturing ... 84

4.5.2 Data sorting ... 85

4.5.3 Creating of ranges ... 85

4.5.4 Merging last and first range .. 86

4.5.5 Filtering ranges with short distance of space .. 86

4.6 Image processing for roadside detection .. 87

4.6.1 Frame processing ... 88

5. Testing .. 91

5.1 First experiments .. 91

5.2 GPS and compass outdoor testing .. 91

5.3 Manual control testing .. 93

5.4 Laser testing ... 93

5.5 Camera testing .. 95

6. Future work .. 98

6.1 WiFi manual control ... 98

6.2 Increased GPS precision ... 98

6.3 Fix issues with TTTech switches ... 98

6.4 Altera FPGA extension .. 98

6.5 Bodywork ... 99

6.6 Obstacle detection .. 99

6.7 Road sign detection .. 100

7. Technical documentation ... 101

7.1 Starting procedure .. 101

7.2 GPS, Compass .. 101

7.3 Control Unit .. 101

7.4 Laser processing ... 101

7.5 Camera processing ... 102

Conclusion .. 103

Bibliography ... 104

4

1. INTRODUCTION

Problem of classic Ethernet network is delivery based on „best effort “. This means

that there is no guaranty of packet delivery (for example during network congestion).

Deterministic Ethernet is solution for this problem. Deterministic Ethernet has been

developed by TTTech. This technology can guarantee packet delivery during network

congestion. That is why deterministic Ethernet is widely used in real time application like

automotive industry, space industry and others.

The main purpose of this project is to use deterministic Ethernet in autonomous vehicle. The

vehicle should be able to avoid obstacles on the road, navigate, recognize signs. This

document aims to show reader basic information of our work. It consists of several sections

like analysis, solution design, implementation and experiment.

This project was developed in an iterative and incremental agile software development

framework called Scrum. It means that every member of team has their tasks to do and also

reports to write.

1.1 Winter semester goals
Winter semester goals can be divided in the following points:

 assignment specification and application selection

 choice of software tools for communication, code storage and task management

 component analysis

 order of components

 vehicle construction

 communication design

 basic communication between devices

Assignment specification and application selection

Our team project was a big deal that it was not directly specified. For us it meant that we had

to invent our own application. It was the first and main goal of the first weeks of the semester.

Choice of software tools

The goal of the selection of software tools was to find the tools that will help us in developing

our product. Tools were related to communication, code sharing and task management.

5

Component analysis

The goal of the analysis was to analyze the components from which the vehicle will be

constructed. It is also important for compatibility in order to avoid the scenario that the two

components cannot communicate with each other.

Order of components

The output from the analysis of components were devices that we have been chosen for

vehicle construction. Since we cooperate with Austrian company TTTech all of the purchases

has to be done via this company. Buying process begins with provided list of components and

prices for company approval. If the list is approved, then the components are ordered by

company. If the list it’s not approved, we have to make deeper analysis and suggest new

components. The whole process is under the direction and control of our external supervisor.

This process takes a lot of time and it was our main slow factor.

Car construction

Based on the purchase of components, the objective is to have the physical vehicle to the end

of the winter semester.

Communication design

Our autonomous car will communicate through local network. From that reason, solution

requires protocol, which will enable communication. The goal of the communication design is

to implement new protocol, which makes communication among end devices possible.

Basic communication between devices

One of the milestones of the winter semester is to create basic communication between

devices on the local network of autonomous vehicle. This means that the objective is to send

information from one device to another and vice versa.

1.2 Summer semester goals
Summer semester goals can be divided into following parts:

 Vehicle construction

 Control unit implementation

 Laser implementation

 GPS and compass implementation

 Camera implementation

 Testing of vehicle

6

Vehicle construction

Finish all the necessary parts on the vehicle. Mainly powering various boards, switches,

wheels and so on. It is necessary to make a customized solution to ensure power supply. We

will use 2 types of batteries. In addition, all the components and various other things that will

occur during the project will be required.

Control unit implementation

The aim is to complete the program on the Raspberry Pi, based on the prototypes created

during the summer semester. The most important part is decision-making on vehicle motion

based on received data from various sensors. The goal is also to implement manual control

that can be used during autonomous mode to avoid dangerous situations.

Laser implementation

Laser will be used to detect obstacles and to avoid them. It will be placed in an elevated

position in the center of the vehicle so that nothing can affect it. It is necessary to program the

processing of data from the laser according to the specified specification and the sending of

this data to the central control unit.

GPS and compass implementation

Pomocou GPS a kompasu sa auto bude môcť pohybovať po definovanej trase. Takisto budú

dáta z týchto senzorov rozhodovať spolu s dátami s lasera a smere obídenia prekážok. Dáta

z týchto senzorov je nutné spracovať podľa špecifikácie, čím sa zaistí presná navigácia

vozidla od jedného bodu k druhému.

Camera implementation

Using the GPS and compass, the car will be able to move via defined route. Also, the data

from these sensors will be used together with laser data for obstacle avoidance. The data from

these sensors must be processed according to the specification, which ensures accurate

navigation of the vehicle from one point to another.

Vehicle testing

Demonstration of the functionality of our solution will be tested in real conditions near the

building of FIIT using various test scenarios to test the functionality of all sensors.

1.3 General view of project
Goal of our project was to create autonomous vehicle based on deterministic Ethernet which

uses deterministic TTTech switches. Requirements included vehicle size, number of engines

and used boards. Four sensors are used to autonomous steering. GPS, compass, laser and

camera.

7

1.3.1 GPS and compass

GPS is used to determine position of vehicle and to navigate it via predefined path. Compass

is measuring vehicle heading. Also, a correction for GPS degree must be calculated because

GPS measures geographical position and degree is computed against geographical north pole

and compass measures degree to magnetic north pole. This difference between angles is

called declination angle which is the 'Error' of the magnetic field in our location. Value of this

angle for specific location can be found online. Its value for Bratislava is 0.07504916 in

radians. GPS and compass module are located on Arduino board and they collaborate to

compute the relative degree to next destination point. For further information about GPS and

compass behavior and implementation see sections 3.4 and 4.1.

1.3.2 Laser

A laser scanner rotates around itself scanning the surroundings of the vehicle to avoid

collision with other objects. Each rotation creates a number of ranges between which the

vehicle can safely move. For further information about laser behavior and implementation see

sections 3.5 and 4.5.

1.3.3 Camera

A camera records the road to navigate the vehicle on it. Each recorded frame is being

processed searching for the road side. After it is found, an angle is calculated by using the

reversed tangent function (arctan) on the coordinates of two points that we get on each frame.

The frame processing is mostly built on the floodfill method. For further information about

camera behavior and implementation see sections 3.7 and 4.6

1.3.4 Control unit

The control unit is the brain of our vehicle. It makes all the decisions and controls the

movement of the vehicle. All data from sensors are sent to this device and movement orders

are then sent to the engines. The control unit not only allows autonomous movement of the

vehicle, but also manual control.

1.3.5 Vehicle construction

We have constructed our vehicle from ordered parts and tested its movement control. Current

state of our vehicle can be seen on picture below. Design can be found in chapters 3.1 and 3.2

and car wiring in chapter 4.4. Experiments from movement testing are in chapters 5.1 and 5.2.

8

Constructed vehicle

9

2. ANALYSIS

This section contains analysis of components which some of them are part of autonomous car.

Components are divided into sensors, batteries, car platforms, boards, cameras.

2.1 GPS

GPS receivers use a constellation of satellites and ground stations to compute position and

time almost anywhere on earth. At any given time, there are at least 24 active satellites

orbiting over 12,000 miles above earth. The positions of the satellites are constructed in a way

that the sky above your location will always contain at most 12 satellites. The primary

purpose of the 12 visible satellites is to transmit information back to earth over radio

frequency (ranging from 1.1 to 1.5 GHz). With this information and some math, a ground

based receiver or GPS module can calculate its position and time.

The data sent down to earth from each satellite contains a few different pieces of information

that allows your GPS receiver to accurately calculate its position and time. An important piece

of equipment on each GPS satellite is an extremely accurate atomic clock. The time on the

atomic clock is sent down to earth along with the satellite’s orbital position and arrival times

at different points in the sky. In other words, the GPS module receives a timestamp from each

of the visible satellites, along with data on where in the sky each one is located (among other

pieces of data). From this information, the GPS receiver now knows the distance to each

satellite in view. If the GPS receiver’s antenna can see at least 4 satellites, it can accurately

calculate its position and time. This is also called a lock or a fix.

All of GPS modules can be compared according to parameters. Here are some of them.

Accuracy - GPS accuracy varies but you can usually find out where you are, anywhere in the

world, within 30 seconds, down to +/– 5 meters. The +/– is there because accuracy can vary

between modules, time of day, clarity of reception, etc. Overall, to get the best accuracy from

GPS, it must be in clear view of the sky and moving.

Antenna - GPS module is receiving signals from satellites about 12,000 miles away, so for

the best performance, we need a clear path between the antenna and most of the sky. Weather,

clouds, snow storms, shouldn’t affect the signal, but things like trees, buildings, mountains,

the roof, will all create unwanted interference and GPS accuracy will suffer.

There are many antenna choices, but these are some of the most common.

http://learn.sparkfun.com/tutorials/gps-basics/gps-glossary

10

Ceramic patch antenna.

This antenna is low profile, inexpensive, and compact, but it has lower reception compared to

other types of antennas. This antenna needs to face upwards with a clear view of the sky to get

good a good signal, so the gain of the antenna is greatest when facing up.

Helical antenna

This antenna can take up more room than the ceramic patch, but the shape of the antenna

allows for a better signal in any orientation, at the expense of slightly lower gain in any one

specific orientation.

Module with a SMA antenna attachment

http://learn.sparkfun.com/tutorials/gps-basics/gps-glossary
https://www.sparkfun.com/products/10890
https://cdn.sparkfun.com/assets/6/3/7/5/f/50f8899fce395f1b3f000000.jpg
https://www.sparkfun.com/products/10920
https://cdn.sparkfun.com/assets/6/f/a/d/5/50f98486ce395ff35f000002.jpg

11

The SMA attachment gives the ability to mount antenna in a different location than our main

circuit. This can be beneficial if main system is not in good view of the sky. For example,

inside of a building or in a car which can be our case.

Baud Rate - GPS receivers send serial data out of a transmit pin (TX) at a specific bit rate.

The most common is 9600bps for 1Hz receivers but 57600bps is becoming more common.

Channels - The number of channels that the GPS module runs will affect time to first fix

(TTFF). Since the module doesn’t know which satellites are in view, the more

frequencies/channels it can check at once, the faster a fix will be found. After the module gets

a lock or fix, some modules will shut down the extra blocks of channels to save power.

Chipset - The GPS chipset is responsible for doing everything from performing calculations,

to providing the analog circuitry for the antenna, to power control, to the user interface. The

chipset is independent of the antenna type, therefore you can have a range of different

antennas for GPS modules with specific chipsets. Common chipsets are ublox, SiRF, and

SkyTraq and all contain very powerful processors that allow for fast acquisitions times and

high reliability. The differences between chipsets usually falls on a balance between power

consumption, acquisition times, and accessibility of hardware.

Gain - The gain is the efficiency of the antenna in any given orientation. This applies to both

transmitting antennas and receiving antennas.

Lock or Fix - When a GPS receiver has a lock or fix, there are at least 4 satellites in good

view and you can get accurate position and time.

NMEA - This is a common data format that most GPS modules use. NMEA data is displayed

in sentences and sent out of the GPS modules serial transmit (TX) pin. The NMEA sentences

contain all of the useful data, (position, time, etc.).

Power - On average, a common GPS module, with a lock, draws around 30mA at 3.3V.

PPS - Pulse per second. This is an output pin on some GPS modules.

Start-up Times (Hot, Warm, and Cold) - Some GPS modules have a super-capacitor or

battery backup to save previous satellite data in volatile memory after a power down. This

helps decrease the TTFF on subsequent power-ups. Also, a faster start time translates into less

overall power draw.

http://en.wikipedia.org/wiki/NMEA_0183

12

 Cold Start - If you power down the module for a long period of time and the backup

cap dissipates, the data is lost. On the next power up, the GPS will need to download

new almanac and ephemeris data.

 Warm Start - Depending on how long your backup power lasts, you can have a warm

start, which means some of the almanac and ephemeris data is preserved, but it might

take a bit extra time to acquire a lock.

 Hot Start: A hot start means all of the satellites are up to date and are close to the same

positions as they were in the previous power on state. With a hot start the GPS can

immediately lock.

TTFF - Time to first fix. The time it takes, after power-on, to accurately compute your

position and time using at least 4 satellites. If you are in a location with a bad view of the sky,

the TTFF can be very long.

Update Rate - The update rate of a GPS module is how often it calculates and reports its

position. The standard for most devices is 1Hz (once per second). UAVs and other fast

vehicles may require increased update rates. 5 and even 10Hz update rates are becoming

available in low cost modules.

2.1.1 GPS modules

We have been deciding mainly among two boards for Raspberry Pi. Adafruit ultimate GPS

breakout and RasPiGNSS. The main decision factors were ease of installation, detailed

documentation and existing projects on forums. After selecting Altera board a PMOD GPS

Receiver (SKU: 410-237) was chosen.

2.1.1.1 Adafruit Ultimate GPS Breakout

This module has detailed step by step guide for

Arduino and raspberry pi boards and that is the main

reason we have chosen this GPS module. It offers very

good specifications according to its price.

It supports also DGPPS, WAAS, EGNOS, jammer

detection and reduction and multi-path detection and

compensation. Output of this module is in standard

NMEA format with 9600 baud rate.

Adafruit Ultimate GPS Breakout

http://en.wikipedia.org/wiki/UAV

13

Parameters

Price +/- 40 Euro

Weight 8.5g

Dimensions 25.5mm x 35mm x 6.5mm

Sattelites 22 tracking, 66 searching

Patch Antenna Size 15mm x 15mm x 4mm

Update rate: 1 to 10 Hz

Position Accuracy: < 3 meters

Velocity Accuracy: 0.1 meters/s

Warm/cold start: 34 seconds

Acquisition sensitivity: -145 dBm

Tracking sensitivity: -165 dBm

Maximum Velocity: 515m/s

Vin range: 3.0-5.5VDC

2.1.1.2 RasPiGNSS

This module was tested for compatibility with raspberry pi 3 B and has updated installation

guide according to it. For 170 euro, it is not very much better than the previous Adafruit

ultimate GPS breakout.

Parameters

Price +/- 170 Euro

Weight 22g

Channels 32

Patch Antenna Size 15mm x 15mm x 4mm

Update rate: 1 to 10 Hz

Position Accuracy: < 2 meters

Velocity Accuracy: 0.05 meters/s

Warm/cold start: 25 seconds

Tracking sensitivity: -160 dBm

Maximum Velocity: 500m/s

Maximum Acceleration 5G

RasPiGNSS

14

2.1.1.3 PMOD GPS receiver

The Pmod GPS can provide satellite

positioning accuracy to any embedded system.

By communicating through UART with the

GlobalTop FGPMMOPA6H GPS antenna,

users may benefit from the 3 meters accuracy

for any long term traveling. Due to an end of

life notice on the Gms-u1LP antenna module,

the PmodGPS will be using the FGPMMOPA6H

module.

Parameters

Price +/- 39.99 Euro

Weight 22g

Channels 66, 22 tracking

Patch Antenna Size 50mm x 20mm x 4mm

Update rate: 1 to 10 Hz

Position Accuracy: < 3 meters

Velocity Accuracy: 0.1 meters/s

Warm/cold start: 33 / 35 seconds

Tracking sensitivity: -165 dBm

Maximum Altitude 18 000 meters

Maximum Velocity: 515m/s

Maximum Acceleration 4G

2.1.1.4 Brief analysis of other modules

PMOD GPS receiver

Gps add-on

15

The 25.75€ add-on for Raspberry Pi B is based on the NEO-6 GPS module. With an input

voltage of 3.3V and UART interface, the module returns information such as the current

location and time. The add-on is also compatible with the Raspberry Pi Model B+.

Specially designed for Pi Model B+, the GPS board provides general information about the

position and time. At a price of 47.00€, the board is based on the low power usage and high-

performance positioning module called Ublox MAX-M8Q.

The easiest way to turn your fruit-named single board computer into a navigation device is to

use a USB GPS dongle. At a price of 39.00€, the small piece of hardware supports Linux and

ARM architecture. Also, it’s based on the high sensitive GPS chipset called SiRF Star III.

GPS expansion board

USB GPS Dongle

16

Using the standard NMEA protocol to provide information like speed, position and altitude,

the GPS shield works great both inside and outside. It is available at a price of €82.00 and

enables the data via serial port.

The €35.00 GPS module is another receiver based on the SiRF StarIII chipset. Like the USB

GPS dongle described above, the EM-506 provides the position very accurate even in urban

canyon and dense foliage environment. The features include a position accuracy of 2.5m, and

without any network assistance, it can predict for up to three days the satellite positions.

GPS shield

EM-506

17

The 3G/GPRS shield is a device designed for Internet of Things applications. And because we

are talking here about GPS data, the shield also provides the location and stay connected to

the 3G network. The price is huge, about €149.00, and it’s compatible with Pi, Intel Galileo

and Arduino boards.

With an accurate position of 2.5 meters and a velocity of 0.1 m/sec, the Dexter Industries GPS

is a good solution to build an all-in-one tracking application. The €39.00($45.00) shield can

work on Raspberry Pi only with the Arduberry shield. The Arduberry shield is compatible

with the Raspberry Pi and allows you to attach the receiver shield.

3G/GPRS shield

Dexter Industries GPS

18

2.2 DISTANCE SENSORS

2.2.1 Ultrasonic sensors

 Advantages

 do not use much electricity;

 simple in design;

 relatively inexpensive;

 Disadvantages

 density, consistency, and material can distort an ultrasonic sensor’s readings.

2.2.1.1 HC-SR04

 Working Voltage DC 5 V

 Working Current 15mA

 Range: 2cm - 400cm

 Accuracy: 3mm

 Dimension: 45*20*15mm

 Price: about $2/1 piece

Ultrasonic sensors are popular for their price and reliability. Laser rays can be in some

outdoor environment disrupted and in these cases, ultrasonic sensors can take a place. With

this type of ultrasonic sensor (HC-SR04) is really easy to work and implement. They work

very well with Arduino microcontrollers. Though we have chosen 360° laser sensor, which is

described further, these sensors can be buy in next phase

of project, if there will be some problems with laser

sensor.

2.2.2 Infrared sensors

 Advantages

 can detect infrared light from far distances

over a large area;

 operate in real-time;

 can receive infrared light that is irradiated

from both living and non-living objects.

HC-SR04

Sharp GP2Y0A02YK0F

19

 Disadvantages

 incapable of distinguishing between objects that irradiate similar thermal energy

levels.

2.2.2.1 Sharp GP2Y0A02YK0F

 Analog output varies from 2.8V at 15cm to 0.4V at 150cm

 Distance measuring range: 20 to 150 cm

 Package size: 29.5×13×21.6 mm

 Supply voltage: 4.5 to 5.5 V

 Price: €14.15

This type of infrared sensor is a distance measuring sensor unit, composed of an integrated

combination of PSD (position sensitive detector), IRED (infrared emitting diode) and signal

processing circuit. The variety of the reflectivity of the object, the environmental temperature

and the operating duration are not influenced easily to the distance detection because of

adopting the triangulation method. This device outputs the voltage corresponding to the

detection distance. So, this sensor can also be used as a proximity sensor. It is also suitable for

robot applications.

2.2.3 Laser sensors

 Advantages

 Higher accuracy

 Fast acquisition and processing

 Higher speed of measurement

 Disadvantages

 Higher costs

 2.2.3.1 RPLIDAR 360° A2

 360 degree laser scanner development kit

 Omnidirectional laser scan

 User configurable scan rate

 Ideal Sensor for robot localization & mapping

 Price: €412.61

RPLIDAR 360° A2

20

RPLIDAR A2 is the next generation low cost 360 degree 2D laser scanner (LIDAR) solution.

It can take up to 4000 samples of laser ranging per second with high rotation speed. The

system can perform 2D 360-degree scan within a 6-meter range. The generated 2D point

cloud data can be used in mapping, localization and object/environment modeling. The typical

scanning frequency of the RPLIDAR A2 is 10hz (600rpm). Under this condition, the

resolution will be 0.9°. And the actual scanning frequency can be freely adjusted within the 5-

15hz range according to the requirements of users. The RPLIDAR A2 adopts the low cost

laser triangulation measurement system, which makes the RPLIDAR A2 has excellent

performance in all kinds of indoor environment and outdoor environment without direct

sunlight exposure. Meanwhile, before leaving the factory, every RPLIDAR A2 has passed the

strict testing to ensure the laser output power meet the standards of FDA Class I.

It is suitable for applications as obstacle avoidance, autonomous mapping, route planning or

navigation. From that reason, we have chosen this type of distance sensor for our application

to measure distance from obstacle around the car robot.

21

2.3 BATTERIES

2.3.1 Gogen Power Bank 12000 mAh black-gray

Key features

Capacity 3.7 V - 12000 mAh / 44.4 Wh

Input: Micro USB 5 V / 2 A

Output: 2 x USB (5 V / 2.1 A and 5 V / 2.5 A)

LED charge status indicator

LED flashlight

Power on the road

Thanks external rechargeable battery GoGEN high capacity 12000 mAh will make your travel

easier, because your device as smartphone, MP3 and MP4 player, GPS navigation, outdoor

camera, camera or tablet will be able to use a much longer without the fear that the end of the

stay You will no longer have the "juice" to operate the device. Conventional mobile phones

and recharge at least 5 times, depending on the capacity of the battery being charged devices.

5 V outputs with 2.1 and 2.5 and allows you to charge the device with higher current

consumption such as tablets and mobile phones from Apple.

Fast charging

Thanks to the current 2.5 A can with UPS GoGEN charge your device up to two times faster

than conventional chargers. The battery can use almost any mobile device, which can be

powered via the USB port. LED will show the remaining power of the backup source.

Gogen Power Bank 12000 mAh black-gray

Price: 25.99 Eur

22

2.3.2 USB Battery Pack for Raspberry Pi - 10000mAh - 2 x 5V outputs

Description

A large-sized rechargeable battery pack for Raspberry Pi or anything else that uses 5V. This

pack is intended for providing a lot of power to an GPS, cell phone, tablet, etc. But we found

it does a really good job of powering other miniature computers and micro-controllers.

Inside is a massive 10,000mAh lithium ion battery, a charging circuit (you charge it via the

USB cable attached), and two boost converters that provide 5VDC, 1A and 2A each via a

USB A port. (The markings indicate one is good for 1A and one is good for 2A) The 2A

output is best for charging tablets or other power-hungry devices. But either can be used for

when you want to power a Beagle Bone or Raspberry Pi, Wi-Fi adapters, maybe even small

displays.

The charging circuit will draw 1A from a 5V supply (plug a microUSB connector into the

pack and then to a computer or wall adapter). You can charge and power something at the

same time but the output switches to the USB input when charging so the output voltage may

fluctuate. Its not good as a 'UPS' power supply for an embedded linux board, although

microcontrollers like Arduino may not care about the voltage drop as much. Also, there's

~80% efficiency loss on both ends so if you charge it at 1A and draw 1A at the same time, the

battery pack will eventually go empty. However, if you're powering something that’s 500mA

or less, you can keep it topped up no problem. Also, when you start and stop charging the

pack, it will flicker the output, this can cause a 'power sensitive' device like the Pi or an

iPhone to reset on the power supply. If using it with a low current load, say under 100mA, the

pack may 'fall asleep' - you can use this circuit to keep the pack awake.

2 USB Battery Pack for Raspberry Pi - 10000mAh

23

2.3.3 Xiaomi Power Bank 20000mAh White

This modern and elegant Power Bank features an ultra-high capacity of 20 000 mAh which

allows for multiple recharge of most devices. This external source can be used for charging

mobile phones, iPods, GPS navigation, MP3 players, cameras and digital cameras. Appreciate

the large capacity of this battery on long trips, road trips and holidays, wherever there is no

access to power network.

Key Features

Power Bank with a lightweight and durable aluminum body

A pair of USB to charge two devices simultaneously

Rounded edges for easy grip

High capacity sufficient for multiple phone recharge

Support for fast charging (DC 5V / 2A 9V / 2A 12V / 1.5A)

LEDs indicating the battery status

Compatible with all USB devices

Li-Ion battery with a capacity of 20,000 mAh

Practical and Neat

Integrated Li-Ion battery can be easily recharged via the USB connector. LEDs will indicate

the actual state of your battery. Cutting-edge control microchips offer safe protection against

over-voltage, over-heating, over-charging and discharging. This Power Bank features a sleek

white casing with an elongated shape that fits comfortably to your palm. With this excellent

backup battery your devices will always be ready to use.

Xiaomi Power Bank 20000mAh White

24

GEARS SMP Mobile Platform

2.4 CAR PLATFORMS

2.4.1 GEARS SMP Mobile Platform

 Robust aluminum chassis for your RC

or autonomous robot experimentation

 Innovative suspension system

 Customizable using GEARS

aluminum parts

 Additional payload capacity: 8,1 kg

 Does not include encoders

 0.46 m x 0,50 m x 0,33 m

 Price: €1,500.07 (without encoders)

The GEARS-SMP Mobile Platform was conceived for educational programs looking to

integrate robotic sensors and control in a robust mobile platform. The platform can be used

indoors and outdoors and navigates the terrain using an innovative suspension system and

skid steering. Although the standard version has a 4.5" ground clearance, the entire platform

can be customized, raised or lowered or added to using GEARS-EDS parts sold separately.

2.4.2 Track Chassis

 Motor voltage: 6V-12V

 0.96 x 0.55 x 0.25 m

 Price: $88.00

 Motor speed:

 3V 6915 turn 0.52A

 Turn 0.66A 6V

 Drive gearbox ratio: 39.25: 1

Big tank chassis provide much better

driving control with used tracks. This

platform also has a lot of space for placing our components on the top of the chassis. The

seller did not give a lot of information about this platform.

Track Chassis

25

3 C37 4WD Car

6WD ATR RC with 90mm motors

2.4.3 C37 4WD Car

 Car body: Aluminum Alloy

 400* 300*130 mm

 Working voltage: 12V

 The Car whole weight: 2 kg

 Working carrying capacity: 18kG

 Price: $128.34

The platform has four robust wheels,

which can provide better stability in rough

surface. Although overall chassis dimensions are not too big, there is possibility to mount

bigger chassis above the wheels, where we can put all components.

2.4.4 6WD ATR RC with 90mm motors

 IG90 gear motors

 ATR frame: 0.35 x 0.91 m

 Length of chassis: 1.04 m

 35Ah battery

 Price: $2,499.00

This is a rugged frame made of 0,47cm

thick aluminum to accept IG90 gear

motors. The aluminum is all laser cut and

CNC bent for an exact fit-up.

The IG90 ATR frame is 0,35m wide x 0,91m long. The sides are 5 cm high (bottom edge to

top surface). As configured with 0,33cm tiller tires shaft and wheel sets it has a ground

clearance of about 12,7cm and total width (wheel edge to wheel edge) of about 0,69m. The

length of chassis is about 1,04m (wheel edge to wheel edge). The overall height is just the

wheel diameter of 33cm.

26

Pre-Built 4WD IG52

GRIZZLY (RUV)

2.4.5 Pre-Built 4WD IG52

 Fully assembled and ready to run

 IG52 24VDC 285 RPM Gear Motors

 Spektrum Transmitter and Receiver

2.4GHz

 12 Volt 18Ah Sealed Lead Acid Battery

(run in series for 24V)

 Speed: 3 mph

 0.74 m x 0,74 m

 Payload of approximately 18-27 kg

This is a robot series that is designed to drive over just about any terrain for use with

surveillance, academic research, and most practical robotic applications. It works on any

indoor surface and most outdoor surfaces. The platform is already configured, but custom

configuration is possible.

2.4.6 GRIZZLY (RUV)

 industry-leading robot workhorse

 four independently driven wheels

 1750 x 1282 x 811 mm

 Max Payload: 600 kg

 Speed: 18 mph

 16-degree front axle articulation

 200 Ah, 48V sealed lead acid battery pack

 User Power: 5V, 12V, 24V and 48V

 Unknown price

Grizzly is a large all-terrain robotic utility vehicle that offers the performance of a tractor and

the precision of an industrial robot. This all-electric workhorse has a maximum continuous

drawbar force of 1400 lbf and a payload capacity of 600kg.

Grizzly is built for the most demanding outdoor environments, making it ideal for mining,

military and agricultural research. It interfaces with a variety of payloads, including single-

point hitch implements as well as all of Clearpath’s sensing, computing and manipulator

packages.

27

Grizzly has four independently driven wheels, each with high-resolution (2500 counts per

revolution) encoders and finely tuned closed-loop control. The result is precise linear position

control even at low speeds.

28

2.5 BOARDS

In this section, analysis of available boards is presented. We have chosen four boards -

Raspberry Pi 3 Model B, DE1-SoC-MTL2, Banana Pi-M2+ and Arduino Uno.

2.5.1 Raspberry Pi 3 Model B

Raspberry Pi 3 is the third-generation Raspberry Pi. For Raspberry Pi 3, Broadcom have

supported us with a new SoC, BCM2837. This retains the same basic architecture as its

predecessors BCM2835 and BCM2836, so all those projects and tutorials which rely on the

precise details of the Raspberry Pi hardware will continue to work. The 900MHz 32-bit quad-

core ARM Cortex-A7 CPU complex has been replaced by a custom-hardened 1.2GHz 64-bit

quad-core ARM Cortex-A53. Combining a 33% increase in clock speed with various

architectural enhancements, this provides a 50-60% increase in performance in 32-bit mode

versus Raspberry Pi 2, or roughly a factor of ten over the original Raspberry Pi.

Raspberry Pi 3 Model B Specification

Processor Chipset Broadcom BCM2837 64Bit Quad Core Processor

powered Single Board Computer running at 1.2GHz

Processor Speed QUAD Core @1.2 GHz

RAM 1GB SDRAM @ 400 MHz

Storage MicroSD

USB 2.0 4x USB Ports

Max Power Draw/voltage 2.5A @ 5V

GPIO 40 pin

Ethernet Port Yes

WiFi Built in

Bluetooth Low Energy (BLE) Built in

CSI camera port/DSI display port Built in/Built in

2.5.2 DE1-SoC-MTL2

The DE1-SoC-MTL2 Development Kit is a comprehensive design environment with

everything embedded developers need to create processing-based systems. The DE1-SoC-

MTL2 delivers an integrated platform including hardware, design tools, and reference designs

for developing embedded software and hardware platforms in a wide range of applications.

The fully integrated kit allows developers to rapidly customize their processor and IP to best

suit their specific application. The DE1-SoC-MTL2 features a DE1-SoC development board

targeting Altera Cyclone® V SX SoC FPGA, as well as a capacitive LCD multimedia color

touch panel which natively supports five points multi-touch and gestures.

29

The all-in-one embedded solution offered on the DE1-SoC-MTL2, in combination of a LCD

touch panel and digital image module, provide s embedded developers the ideal platform for

multimedia applications with unparallel processing performance. Developers can benefit from

the use of FPGA-based embedded processing system such as mitigat ing design risk and

obsolescence, design reuse, lowering bill of material (BOM) costs by integrating powerful

graphics engines within the FPGA.

DE1-SoC-MTL2 Specification

Cyclone V SE SoC—5CSEMA5F31C6N

Dual-core ARM Cortex-A9 (HPS)

85K programmable logic elements

4,450 Kbits embedded memory

6 fractional PLLs

Memory Device 64MB (32Mx16) SDRAM for the FPGA

1GB (2x256MBx16) DDR3 SDRAM for the

HPS

microSD card socket for the HPS

Peripherals

Two port USB 2.0 Host

UART to USB (USB Mini B connector)

10/100/1000 Ethernet

PS/2 mouse/keyboard

I2C multiplexer

Connectors

Two 40-pin expansion headers

One 10-pin ADC input header

One LTC connector (one Serial Peripheral

Interface (SPI) master ,one I2C bus, and one

GPIO interface)

Display 24-bit VGA DAC

Sensors G-Sensor on HPS

Switches, Buttons and LEDs

5 user keys (4 for the FPGA and 1 for the

HPS)

10 user switches for the FPGA

11 user LEDs (10 for the FPGA and 1 for

the HPS)

2 HPS reset buttons (HPS_RESET_n and

HPS_WARM_RST_n)

Six 7-segment displays

Power 12V DC input

30

2.5.3 BANANA Pi-M2 +

Banana Pi M2 is a second-generation single board computer with an upgraded SoC to provide

even more power for computing tasks. It features high performance quad-core SoC, 1GB of

DDR3 SDRAM, Gigabit Ethernet, 4 USB, and HDMI connection. It can run on a variety of

operating systems including Android, Lubuntu, Ubuntu, Debian, and Raspbian.

CPU A31S ARM Cortex-A7™ Quad-core 256KB L1 cache 1MB L2 cache

GPU PowerVR SGX54MP2 Comply with OpenGL ES 2.0 OpenCL

1x,DX9_3

Memory 1GB DDR3 (shared with GPU)

Storage Support MicroSD Card(up to 64GB)

Onboard Network 10/100/1000 Ethernet RJ45

WiFi WiFi 802.11b/g/n

Video In Parallel 8-bit camera interface

Video Out HDMI,LVDS/RGB (no composite video)

Audio Out 3.5 mm Jack and HDMI

Audio In On board microphone

Power Source 5V DC @ 2A (4.0mm/1.7mm barrel plug - centre positive) or USB

OTG

USB Ports 4x USB 2.0

Buttons Power/Reset: next to Camera Connector

GPIO GPIO,UART,I2C BUS,SPI BUS,ADC,PWM,+3.3V,+5V,GND

LED Power key and RJ45

OS Android and Linux etc.OS

31

2.5.4 Arduino UNO

Arduino/Genuino Uno is a microcontroller board based on the ATmega328PIt has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz

crystal, a USB connection, a power jack, an ICSP header and a reset button. It contains

everything needed to support the microcontroller.

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

32

2.6 Camera

For our vehicle, we will need 2 cameras to monitor the surroundings for good navigation on

the road. One of these cameras is supposed to record the traffic signs, while the other will be

used as an infrared sensor for road lines. The size of the cameras is very important, because

we are working with a fairly small vehicle with limited space and carrying capacity.

Also our budget is not too big, so the price has to be reasonable.

2.6.1 Outdoor Full HD WDR PoE Day/Night Bullet Network Camera - DCS-7513

Camera Hardware Profile

 1/2.8” 2 Megapixel progressive CMOS sensor

 30 meter IR illumination distance

 Minimum illumination: 0 lux with IR LEDs on

 Built-in Infrared-Cut Removable (ICR) Filter module

 10x digital zoom

 3 to 9 mm motorised varifocal lens

 Aperture: F1.2

 Angle of view (16:9)

 (H) 121.2° to 38.1°

 (V) 62.1° to 21.3°

 (D) 148.4° to 43.8°

Camera Housing

 IP-66 compliant weatherproof housing

 Cable management bracket

Image Features

 Configurable image size, quality, frame rate, and bit rate

 Time stamp and text overlays

 Configurable motion detection windows

 Configurable privacy mask zones

 Configurable shutter speed, brightness, saturation, contrast, sharpness, zoom, focus,

and aperture

33

Video Compression

 Simultaneous H.264/MPEG-4/MJPEG format compression

 H.264/MPEG-4 multicast streaming

 JPEG for still images

Video Resolution

 16:9 at 1920 x 1080,1280 x 720, 800 x 450, 640 x 360, 480 x 270, 320 x 176, 176 x

144 up to 30 fps

 4:3 at 1440 x 1080, 1280 x 960, 1024 x 768, 800 x 600, 640 x 480, 320 x 240, 176 x

144 up to 30 fps

Audio Support

 G.726

 G.711

External Device Interface

 10/100 BASE-TX Ethernet port with PoE

 1 DI / 1 DO

 DC12 V, 100 mA output

 SD/SDHC card slot

 Audio input/output

 DI/DO connector 12 V DC output

Network Protocols

 IPv6

 IPv4

 TCP/IP

 UDP

 ICMP

 DHCP client

34

 NTP client (D-Link)

 DNS client

 DDNS client (D-Link)

 SMTP client

 FTP client

 HTTP / HTTPS

 Samba client

 PPPoE

 UPnP port forwarding

 RTP / RTSP/ RTCP

 IP filtering

 QoS

 CoS

 Multicast

 IGMP

 ONVIF compliant

Security

 Administrator and user group protection

 Password authentication

 HTTP and RTSP digest encryption

System Requirements for Web Interface

 Browser: Internet Explorer, Firefox, Chrome, or Safari

Event Management

 Motion detection

 Event notification and uploading of snapshots/video clips via e-mail or FTP

 Supports multiple SMTP and FTP servers

 Multiple event notifications

 Multiple recording methods for easy backup

Remote Management

35

 Take snapshots/video clips and save to local hard drive or NAS via web browser

 Configuration interface accessible via web browser

Operating Systems

 Windows 7/Vista/XP/2000

D-ViewCam™ System Requirements

 Operating System: Microsoft Windows 7/Vista/XP

 Web Browser: Internet Explorer 7 or higher

 Protocol: Standard TCP/IP

D-ViewCam™ Software Functions

 Remote management

 Control and manage up to 32 cameras

 View up to 32 cameras on one screen

 Management functions provided in web interface

 Scheduled, motion detection, and manual recording triggers

Dimensions

 223.5 x 97.5 x 90.7 mm

Weight

 2050 g (with bracket and sunshield)

External Power Adapter

 Input: 100 to 240 V AC, 50/60 Hz

 Output: 12 V 1.25 A

Power Consumption

 11.02 watts ± 5 %

36

Temperature

 Operating: -40 to 50 °C (-40 to 122 °F)

 Storage: -20 to 70° C (-4° to 158° F)

Humidity

 Operating: 20% to 80% non-condensing

 Storage: 5% to 95% non-condensing

Certifications

 CE

 CE LVD

 FCC

 C-Tick

Price: 700€

This is a surveilance camera made for outdoor building security. It provides images and also

streams of footage in full hd resolution. Being an IP camera, it sends the recorded data using

the ethernet connection. Does provide an infrared illumination, so it can work at night.

Since this camera is quite big, it might prove to be a problem to install it on our vehicle. It’s

price is very high considering our budget. It’s built for windows operating system and since

we are going to work with the Raspberry Pi motherboard, we’ll be working in linux OS.

Outdoor Full HD WDR PoE Day/Night Fixed Bullet Network Camera - DCS-7513

37

2.6.2 TRENDnet Indoor/Outdoor (TV-IP312PI)

Lens

 Focal length: 4 mm

 Focal depth: 20 cm+

 Aperture: F2.0

 Board lens

 Sensor: 1/3" progressive scan CMOS

Viewing Angle

 Horizontal: 77°

 Vertical: 42°

 Diagonal: 90°

Zoom

 User-defined digital zoom

Minimum Illumination

 IR off: 0.19 lux

 IR on: 0 lux

 50 meter IR illumination distance

 Smart IR reduces close object overexposure

Video

 D-WDR: 0-100 scale

 3D Digital Noise Reduction (DNR)

 Shutter speed: 1/3 - 1/100,000

 H.264: 2048 x 1536 up to 20 fps

 MJPEG: 704 x 480 up to 30 fps

Hardware Standards

 IEEE 802.1X

 IEEE 802.3

 IEEE 802.3u

 IEEE 802.3x

 IEEE 802.3af

Device Interface

38

 10/100 Mbps PoE port

 Power port (for non-PoE installations, power adapter sold separately (12VDC1A))

 Integrated adjustable mounting base

 LED indicator

Housing

 Weather rating: IP66

 Adjustable sun visor

Network Protocol

 IPv4, IPv6, UDP, TCP, ICMP, ONVIF v2.2, DHCP, NTP, DNS, DDNS, SMTP, FTP,

SNMP (v1, v2c, v3), QoS

 NFS, SMB/CIFS

 HTTP, HTTPS

 PPPoE

 UPnP, RTSP, RTP, RTCP, SSL

Operating Temperature

 -30 - 60 °C (-22 - 140 °F)

Operating Humidity

 Max. 95% non-condensing

Certifications

 CE

 FCC

 UL 60950

Dimensions

 104 x 104 x 243 mm (3.9 x 4.1 x 9.6 in.)

Weight

 835 g (1.8 lbs.)

Power

 Input: PoE (802.3af)

39

 Consumption: 9 Watts max.

 Optional Power Supply (Sold separately)

 Output: 12 V DC 1 A

 5.5 mm barrel connector

 TRENDnet power adapter, model 12VDC1A, sold separately

Management Interface

 Multi-language support: English, French, German, Russian, and Spanish

 IP address filter

 QoS traffic prioritization

 Time, date, and text overlay

 Image settings: brightness, contrast, saturation, sharpness, smart IR, exposure time

(1/3 – 1/100,000), video standard, day/night switch, sensitivity, switch time, mirror,

D-WDR, white balance, digital noise reduction

 D-WDR enhances video quality in high contrast daytime lighting

 3D Digital Noise Reduction enhances night vision quality

 Scheduled recording: continuous and motion detection

 Video storage: to computer, NAS, CIFS/SAMBA share or through software

 Motion detection fields: define custom motion detection areas, motion sensitivity, and

dynamic motion analysis

 Privacy masks: define custom privacy mask areas

 Tamper detection: email notification if the viewing field darkens suddenly

 Video playback: advanced playback functionality with visual timeline displaying

detected motion and scheduled recordings

 Alert messages: storage full, storage error, and illegal login

 Snapshot: real time snapshot, motion detection with schedule, video tamper detection

with schedule

 Supported dynamic DNS services: Dyn.com and NO-IP.org

 Management Setting: maximum 32 user accounts

 Supports remote management

 Storage logs: Alarm, Exception, Operation, and others

 Compatibility: Internet Explorer® 9.0 or higher, Firefox® 13.0 or higher, Safari® 4.0

or higher, Chrome™ 24.0 or higher

40

Price

110€

This is another surveillance IP camera and like the first, it records in high resolution and also

has an infrared filter that can be turned on and off. But also has the size and compatibility

issues, however the price is a lot lower and actually reasonable.

TRENDnet Indoor/Outdoor (TV-IP312PI)

 2.6.3 Raspberry Pi Camera Module V2 - 8 Megapixel,1080p

Number of Channels 1

Supported Bus Interfaces CSI-2

Maximum Supported Resolution 3280 x 2464

Maximum Frame Rate Capture 30fps

Dimensions 23.86 x 25 x 9mm

Length 23.86mm

Width 25mm

Height 9mm

Connection 15cm ribbon cable for CSI port

Maximum Operating Temperature +60°C

Minimum Operating Temperature -20°C

Price

41

21€

This camera module is made specifically for the raspberry Pi motherboard. Provides high

definition images/footage. With it’s really tiny size it can fit anywhere, it has practically no

weight at all. Camera accessible using libraries, e.g. Picamera. Does not have infrared vision.

Raspberry Pi Camera Module V2

2.6.4 Raspberry Pi PiNoir Camera V2 Video Module

Number of Channels 1

Supported Bus Interfaces CSI-2

Maximum Supported Resolution 3280 x 2464

Maximum Frame Rate Capture 30fps

Dimensions 23.86 x 25 x 9mm

Length 23.86mm

Width 25mm

Height 9mm

Connection 15cm ribbon cable for CSI port

Maximum Operating Temperature +60°C

Minimum Operating Temperature -20°C

Price 21€

The specifications for this camera are the same as the one before. The only difference

between these two camera modules is the absence of the infra-red filter in the lens. To work in

42

the night, this module would need an infrared illuminator, however i think for our purposes it

is not needed.

Raspberry Pi PiNoir Camera V2 Video Module

2.6.5 D8M-GPIO Terasic

 Package Interface: 2x20 GPIO with 3.3V I/O standard

 MIPI Camera Module:

o Chip P/N: OV8865

o Color Filter Arrangement: Bayer Pattern

o View Angel: 70 degrees

o Lens Type: 1/3.2 inch

o Pixels: 3264x2448 (8-megapixels)

o Frame Rate: Maximal 60 frame per second at 1408 x 792 resolution and 30

frame per second at 3268 x 2448 resolution

o Support Focus Control

o Interface: MIPI

 MIPI Decoder:

o Chip P/N: TC358748XBG

o MIPI CSI-2 Compliant

o MIPI to Parallel Port Converter

o Supports up to 4 data lanes

 Package Size: 73.4x60.0 mm

43

D8M-GPIO Terasic

Price 99$

This camera module is suitable for our project thanks to its direct compatibility with the

Altera boards. It connects directly to the FPGA board via the GPIO interface. Its price is

reasonable and properties are meeting our demands.

44

2.7 Conclusion from sensor analysis
In our project, we use Arduino Uno and Raspberry Pi boards. The reason we decided to use

these boards is that they support every sensor we use; it is easy to write programs in their

environment. Also, compatibility with sensors is very good.

From the GPS sensors, we selected PMOD GPS Receiver. We have chosen this module

because it can be used with both Altera and Arduino boards. Compatibility with Altera is for

future implementation of real time TT frames in FPGA. Our implementation will use this GPS

receiver on Arduino UNO.

As a supplement to GPS receiver PMOD 3-axis digital compass was chosen to determine the

car heading. This compass can also be used with Altera and Arduino boards for the same

reason as in GPS.

As for the cameras we chose the Raspberry Pi PiNoir Camera V2 Video Module for its low

price, compatibility with the Raspberry Pi and sufficient properties and the D8M-GPIO

Terasic for its compatibility with the Altera boards.

Every device placed in an autonomous car needs a power supply. We decided to use 7.2V

LiPo batteries for powering up four Arduino boards located near wheels. These LiPo batteries

also power up electronic speed controllers and motors which are used to move the car. For

other devices we decided to use 12V motorcycle Pb battery. Advantage of this battery is its

large capacity. This 12V battery is used for powering up all four switches and every other

device located in the car.

After discussion with all of us, we realized that none of the analyzed car platforms are suitable

for our project. They have either too small dimension, or the custom configuration will bring a

lot of problems. Therefore, we have decided to build our own car platform. It means we must

buy all parts (wheels, motors, chassis) independently and put it together.

For lack of time, it is easier if our solution will not provide steering by turning front wheels.

Changing direction will be allowed by moving wheels on one side (the wheels on the second

side can move in opposite way).

The chassis should have dimension around 800x600 mm. Our member Marek has experiences

with welding, so he can construct chassis with our requirements.

45

2.8 DE-Hermes Switch 3-1 BRR
The DE-Switch Hermes 3-1 BRR is a combined switch ECU that is designed for application

development and evaluation of Deterministic Ethernet for in-vehicle network architectures

considering multiple communication standards, including:

 Audio-Video Bridging (AVB),

 Time-Sensitive Networking (TSN), and

 Time-Triggered Ethernet in combination with a BroadR-Reach® physical layer.

Deterministic Ethernet enables the convergence of critical and non-critical application data

streams on one network. The DE-Switch Hermes 3-1 BRR enables the evaluation of in-

vehicle network requirements for diagnostics, control applications, infotainment and advanced

driver assistance systems (ADAS).

It can be deployed to show the full potential for the next generation of Ethernet-based domain

architectures using Deterministic Ethernet.

Specifications:

Dimensions (L x W x H): 146.6 x 92 x 38 mm

Weight: 315 g (with housing)

400 g (weight of cable harness)

Power Supply: Nominal: 12 V / 24 V

Absolute maximum ratings: 6 to 36 V

Fields of Application:

 Automotive

 Buses and trucks

 Farming and off-highway

The DE-Switch Hermes 3-1 BRR

External Interfaces

46

The DE-Switch Hermes 3-1 BRR has

 3 BroadR-Reach® physical layer interfaces that enable 100 Mbit/s full-duplex

communication over unshielded twisted single pair (UTSP) cabling,

 one 1-Gbit/s Ethernet port (100/1000Base-Tx),

 1 RS-232 serial interface

The DE-Switch Hermes 3-1 BRR has the following standard interfaces, such as CAN and

FlexRay™, and digital and analog I/Os for customized evaluation projects.

 3 CAN interfaces (125 kbit/s up to 1 Mbit/s),

 1 FlexRay™ interface (channel A and B),

 4 analog inputs (0 to 5 V or 4 to 20 mA, 0 to 10 V provided by DE-Switch Hermes 3-1

BRR),

 2 digital timer inputs (0.1 Hz to 20 kHz),

 4 digital high-side PWM outputs:

o 3 A permanent

o 4 A peak

o 5 A overall maximum

Standards Compliance

 IEEE 802.1D™-2004 (layer 2 switching)

 IEEE 802.1Q™-2011 (VLAN support)

 QoS handling based on IEEE 802.1Q PCP bits

 Support for SR Class A, Class B and Class C traffic

 IEEE 802.1AS™-2004 (Timing and Synchronization for Time-Sensitive Applications

in Bridged Local Area Networks)

 IEEE 802.1Qbv™-2015 (Enhancements for Scheduled Traffic)

 SAE AS6802 (Time-Triggered Ethernet)

 The switch forwards best-effort traffic in compliance with IEEE 802.3-2005

(switching).

47

 The switch forwards VLAN-tagged frames according to IEEE 802.1Q (VLAN core

capabilities).

Functional Description

 The DE-Switch Hermes 3-1 BRR provides Ethernet for in-vehicle network

architectures and implements network switching functionality that is implemented on

the NXP SJA1105T automotive Ethernet switch.

 The DE-Switch Hermes 3-1 BRR has 3 x BroadR-Reach® physical layer interfaces

that enable 100 Mbit/s full-duplex communication over unshielded twisted pair

cabling in addition to one 100/1000Base-Tx port.

 A management CPU is connected with the Ethernet switch via a 100 Mbit Ethernet

interface and an SPI configuration interface. The management CPU runs the switch

management protocols (for RSTP and IEEE802.1AS). For customized evaluation

projects, external interfaces, such as CAN, FlexRay™, it is possible to use analog and

digital I/Os.

Following figure with block diagram gives an overview of the main features of the DE-Switch

Hermes 3-1 BRR:

Block diagram of the DE-Switch Hermes 3-1 BRR

48

Primary Components

 Ethernet Switch: The Ethernet Switch is an automotive-compliant 5-port Ethernet

switch. The device contains a variety of cross-wire media-independent interfaces to

connect any kind of physical layer. The control interface is a serial peripheral interface

(SPI), which is necessary to read and write internal registers of the switch chip. Four

ports are connected via physical interfaces to the ECU connector, and one port is

connected to the management CPU.

 Management CPU: The management CPU covers all the control and monitoring

features of the system. The CPU also loads and stores the configuration for the

Ethernet Switch. The device is responsible for the correct setting of the peripherals,

which includes the configuration of the switch and the physical layer and the control

of the digital and analog I/Os and communication interfaces.

 100base-T1 BroadR-Reach® Physical Layer: The physical layer is an OPEN

Alliance BroadRReach ®-compliant Ethernet physical layer that is optimized for

automotive use cases. The device provides 100 Mbit/s transmit and 100 Mbit/s receive

capability over a single unshielded twisted single pair (UTSP) cable, supporting a

cable length of at least up to 15 m. The system has three physical layers. The MII of

each physical layer is connected to the Ethernet Switch, whereas the medium-

dependent interface (MDI) is connected to the ECU connector via an analog front end.

 Gigabit Physical Layer: A Gigabit Ethernet transceiver implements the Ethernet

physical layer portion of the 100BASE-TX and 1000BASE-T standards. The reduced

Gigabit mediaindependent interface (RGMII) is connected to the Ethernet Switch. As

the PCB does not have a standard RJ-45 connector, the MDI is connected to the ECU

connector via dedicated magnetics HX5008NL.

 Power supply and reverse polarity protection: The power supply and reverse

polarity protection block contain all the parts that are necessary to provide proper

supply voltages for the board electronics. The input voltage range, which is between 6

V and 36 V is protected against reverse polarity. The nominal voltage range is 12 V or

24 V.

 Communication Interfaces: The DE-Switch Hermes 3-1 BRR provides additional

communication interfaces beside the Ethernet functionality:

49

o An RS-232 interface is also connected to the ECU connector as a user interface

and for debug purposes.

o CAN and FlexRay™ interfaces are implemented.

 Digital and Analog I/O: The DE-Switch Hermes 3-1 BRR has several control and

monitoring features to combine network-control functionality with electronic control

functionality in one ECU.

 4 high-side PWM output stages up to 3 A with current measurement and digital

feedback provide availability to control relays and engines. A summed current of 5 A

at the same time is the limit.

 4 analog inputs and 2 digital timer inputs can be used for different sensor

applications.

Ethernet ports

The Ethernet Switch has 5 independent ports. The ports are configured as follows:

Port Description

0 1 Gbit/s Ethernet port (100/1000Base-Tx)

1 BroadR-Reach® channel 0 (100 Mbit/s full-duplex communication over UTSP cabling)

2 BroadR-Reach® channel 1 (100 Mbit/s full-duplex communication over UTSP cabling)

3 BroadR-Reach® channel 2 (100 Mbit/s full-duplex communication over UTSP cabling)

4 100 Mbit/s MAC-MAC interface to management CPU

We are going to use four Hermes switches in our application. Each switch will be connected

to one wheel. Switches will be connected to each other in circle topology.

50

3. SOLUTION DESIGN

3.1 Logical design

Logical design of car is shown on picture. We will use all four available deterministic

Hermes switches, four Arduino Uno boards (A), one Raspberry Pi 3 model B board (R), three

Altera boards (AL), two cameras (C), laser (L), GPS sensor (G) and digital compass (O).

Each of the Hermes switches has four available Ethernet ports. Redundancy is achieved with

ring topology, so in case of one link failure, other switches will still be able to communicate.

This topology is not resistant against two or more links failures. Full mesh topology would

solve this problem but we are limited by the count of physical ports on the switches.

Each Arduino board will control one wheel, but to connect them to the switches, Ethernet

shields are required, because Arduinos do not have Ethernet port by default. Raspberry Pi will

send signals to control the speed of each wheel.

Raspberry Pi will act as central point and other boards with sensors will send control

information to it. On the front of the car, two cameras will be used. One will handle line assist

feature, and the other one will handle road signs recognition. On the top of the model will be

360° degree laser sensor for detections of the obstacles. For car navigation, we will use GPS

sensor. Navigation with GPS is described in section 3.3.

Logical design of car model

51

3.2 Physical design

Physical design of the car is shown in the picture. There are four wheels which were bought in

RC shop. These wheels are from large RC buggy so larger payload on this car is not

a problem for them. In every edge of the car an Arduino and regulator are located. Every

Arduino controls one motor through a regulator. Therefore, we can achieve smooth speed

regulation and reverse drive as well.

Large more powerful Altera boards are located in front part of the car. The first Altera board

on the left controls IR video camera for line checking and the second Altera board on the right

controls normal video camera for road signs recognition.

Laser is located on the top, in the middle of the car. It is because laser must not have any

obstacle in its field of view and it is easier to compute a distance from obstacle if laser is

located in the middle of the car. GPS sensor has to be in the middle of the car as well because

the car is a larger one so GPS positions in the edges of the car may be different. A compass is

located in the back part of the car. There are also located a smaller Altera board and a master

raspberry pi board. The batteries in the picture are not shown. They will be placed to suitable

position later in this project.

Physical design of the car

52

3.3 Communication protocol
Communication is based on UDP protocol. The reason why preferring UDP to TCP is that we

do not require reliable packet delivery because of „real time“ application. On the contrary, we

require to deliver packet fast and without delay to meet requirements of real time. Also, UDP

protocol supports broadcast, which can be useful. The communication protocol is shown on

screen below.

Communication protocol

3.3.1 Type field

Field called TYPE is used to distinguish if packet is send from central unit or to central unit. It

has size of 1B.

Type field

3.3.2 Source board field

Source board field is used to distinguish which board send packet. Value 0 stands for

Arduino, 1 stands for Raspberry and 2 stands for Altera.

Source board field

3.3.3 Number of source board

The field is set to value of source board that sends packet. So far, we do not have more than

four boards so the field can obtain values from 1 to 4.

Number of source board field

53

3.3.4 Destination board field

Destination board field is similar to source board field. It identifies destination board which

packet is send to. Value 0 stands for Arduino, 1 stands for Raspberry and 2 stands for Altera.

Destination board field

3.3.5 Number of destination board field

This field is similar to field called number of source board field. The field is set to value of

destination board that packet is send to. The field can obtain values from 1 to 4.

Number of destination board field

3.3.6 Type of message field

Message can have different meaning. Value 0 represents notifying of IP address. This type of

message is send when IP address is assigned to inform central board. Value 1 stands for

instruction from central board to others. Value 2 defines message which servers for

acknowledgment of received instruction. Value 3 defines data from infrared camera. Value 4

stands for road side camera and value 5 represents laser data. Value 6 is for data from GPS.

Type of message field

3.3.7 Laser data message

When laser data are sent, message is as show on screen no 8. First field represents number of

available ranges. Next bytes define specific range of angles.

Laser data message

54

3.3.8 Road side camera data message

Data from road side camera are sent in format shown on screen no. 9.

Road side camera data message

3.3.9 Infrared camera data message

Data from infrared camera are sent in format shown on screen no. 10.

Infrared camera data message

55

3.4 Navigation with GPS

GPS receiver and compass will be used on Arduino UNO board. At first we must determine

vehicle position. GPS generates NMEA output sentences which contain all measured GPS

information. These NMEA sentences are GGA, GSA, GSV, RMC and VTG. Our solution

will use GGA sentence which contain information about latitude and longitude. Format of

GGA sentence:

$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,17.8,M,,*65 is shown in

the table below.

Format of GGA NMEA sentence

Name Example Units Description

Message ID $GPGGA GGA protocol header

UTC Time 064951.000 hhmmss.sss

Latitude 2307.1256 ddmm.mmmm

N/S Indicator N N=north or S=south

Longitude 12016.4438 dddmm.mmmm

E/W Indicator E E=east or W=west

Position Fix Indicator 1 0 - Fix not available

1 - GPS fix

2 - Differential GPS fix

Satellites Used 8 Range 0 to 14

HDOP 0.95 Horizontal Dilution of Precision

MSL Altitude 39.9 meters Antenna Altitude above/below mean-sea-level

Units M meters Units of antenna altitude

Geoidal Separation 17.8 meters

Units M meters Units of geoids separation

Age of Diff. Corr second Null fields when DGPS is not used

Checksum *65

<CR> <LF> End of message termination

GPS navigation will collaborate with digital compass which returns 3 axis values. These

values are used to compute the compass heading degree. Assume simplified version of map

shown on picture below. Black dots represent nodes of optimal path from node A to node B.

56

Simplified navigation map

Before navigation, a path from current position to defined destination must be known. This

path will be hardcoded in first versions of navigation. For the future implementations tools for

finding optimal path (for example based on OpenStreet maps) can be used to compute the

path.

Data processing

After the path is known, the navigation process begins. Every place in the world can be

defined with latitude and longitude. The precision of GPS sensor is around 5 meters, therefore

we can only approximately tell where our vehicle is. Defined path will be represented by

nodes on the real road. Distance between these nodes must be greater than GPS precision, so

we can navigate from one node to another.

Car first needs to determine the closest node of the path. Then the degree between actual

position and closest node position will be calculated (see picture below). This degree is then

transformed into relative degree. Relative degree is computed also with compass data.

Direction of car heading is always represented as 0, so the computed degree from GPS must

be transformed according do this heading so the vehicle know which side it should turn. This

calculated relative degree is sent to central processing unit (Raspberry Pi), which will control

the movement of the car to the selected node based on other signals from other sensors. As

mention earlier, we cannot accurately tell, if the car is in the selected node. We will consider

node reached, when the car will be in the defined range from the selected node.

57

Calculation of navigation degree

After car reaches the node, then the next node from the path is selected and the navigation

process begins from start. Whole process of navigation is shown on diagram below.

Activity diagram of GPS navigation

act Gps nav igation

Start

End

Get current position

Compute path to

destination

Select closest node

[Is the position of car in defined range from node?]

Nav igate to node

[Is the current node also a destination node?]

Select next node

in path

No

No

Yes

Yes

58

Communication Protocol

Data field of the designed communication protocol will contain 2 additional bytes for sending

computed relative degree. Two bytes are used because of theoretical maximum value of 360

which cannot be represented with 1 byte. For example, value 261 will be represented as

below.

Example of data payload from GPS and compass

relative degree byte 1 # relative degree byte 2

0x01 0x05

3.5 Laser data processing

RPLIDAR A2 can take up to 4000 samples of laser ranging per second with high rotation

speed. The range scan data can be processed via the communication interface of the

RPLIDAR and control the start, stop and rotating speed of the rotate motor via PWM.

During the working process, the RPLIDAR will output the sampling data via the

communication interface. And each sample point data contains the information in the

following table.

The RPLIDAR Sample Point Data Information

Data type Unit Description

Distance mm
Current measured distance value between the rotating

core of the RPLIDAR and the sampling point

Heading degree Current heading angle of the measurement

Start Flag (Bool) Flag of a new scan

Checksum The Checksum of RPLIDAR return data

The RPLIDAR Sample Point Data Frames

The RPLIDAR outputs sampling data continuously and it contains the sample point data

frames in the above figure. Host systems can configure output format and stop RPLIDAR by

sending stop command.

59

The Obtained Environment Map from RPLIDAR Scanning

Communication interface

The RPLIDAR A2 uses separate 5V DC power for powering the range scanner core and the

motor system. And the standard RPLIDAR A2 uses XH2.54-5P male socket. Detailed

interface definition is shown in the following figure:

RPLIDAR Power Interface Definition

Color
Signal

name
Type Description Min Typical Max

Red VCC Power Total Power 4.9V 5V 5.5V

Yellow TX Output
Serial port output of the scanner

core
0V 3.3V 3.5V

Green RX Input Serial port input of the scanner core 0V 3.3V 3.5V

Black GND Power GND 0V 0V 0V

Blue MOTOCTL Input
Scan motor /PWM Control Signal

(active high, internal pull down)
0V 3.3V 5V

RPLIDAR External Interface Signal Definition

60

Communication Protocol

After receiving data from sensor, these data are processing, counting and evaluating for next

processing. All counting is performed in microcontroller responsible for communication with

laser sensor. This microcontroller sends data to control unit with ranges of angles, where is

enough space for passing through this area. With this information, control unit can decide

which side to choose in next move. This principle is shown in next figure:

Detecting obstacles around the laser sensor

The microcontroller sends only ranges with enough distance to pass through. In figure above,

there are only two ranges with enough space.

For smaller range of angles, there is also necessary to count, if car robot can fit into this space.

61

Exclusion of angles with short distance between obstacles

The frame structure with open ranges is shown in next figure:

Frame structure

The worst-case scenario is with 180 open ranges. It means, that every second angle meets the

distance condition and there is enough space. And vice versa, every second angle does not

meet the condition, and there isn’t enough space. In this case, it is obvious that robot must

stop, because in any direction it hasn’t enough space.

So, for number of ranges (value n) must be reserved 1 byte. Start and end angle can have

value in range from 0 to 360, so there must be reserved 2 bytes.

If there are less than 180 open ranges, the rest of ranges are filled with zeroes. In the example

below, there are only 2 open ranges, so only range number 1 and 2 are filled with some

values. Rest of them are filled with zeroes. Field number of ranges ensures that these fields

are not evaluating.

If the first number is bigger than second one, it means there is overflow and range of angles

exceeds zero angle.

start angle end angle start angle end angle start angle end angle start angle end angle

n x₁ x₂ x₃ x₄ x₅ x₆

ranges of ranges
range #1 range #2 range #3 …

62

ranges of

ranges

range #1 range #2 range #3 …

start

angle

end

angle

start

angle

end

angle

start

angle

end

angle

start

angle

end

angle

2 160 280 300 120 0 0 0 0
Example with two open ranges

Data processing

Diagram below illustrates data processing from receiving data to sending frame with open

ranges.

After receiving data from sensor, each angle is evaluated by distance. If distance matches, it

means the distance is less then certain limit distance, angle is added into open range. If not,

range is closed. After that, range is evaluated, if there is enough space for passing through. It

is counted with trigonometry functions. If range is enough big, it is added into frame with

start and end angle.

When all angles are evaluated, the frame can be send to control unit. Since evaluating begins

with zero angle, first and last range can be merged before sending.

63

Data processing from laser sensor

64

3.6 Communication Raspberry Pi - Arduino

In this section a communication between Raspberry Pi and Arduino is described. In our

autonomous vehicle, there are four Arduino devices. Every single device controls one motor

which is connected to one wheel. After system startup, Arduinos have no IP addresses and

they cannot communicate with master Raspberry.

Arduinos are therefore configured as DHCP clients and master Raspberry is configured as

DHCP server. After system startup, every Arduino send DHCP DISCOVER message. Then

master Raspberry sends DHCP OFFER message. Arduino sends DHCP REQUEST message

and master Raspberry sends DHCP ACKNOWLEDGE message. Now every Arduino has its

own IP address.

DHCP communication

After this process all Arduinos send initial message to Raspberry. In this message, Arduino

tells its IP address and its number. This number is important because master Raspberry use it

to recognize which Arduino controls which motor. For example, number 1 means that it is an

Arduino which controls front right motor.

Now everything is ready and Raspberry can send instructions to Arduinos. In single

instruction there is defined type of message which is in case of instruction ‘01‘ and after this

code there is a number in range from 0 to 255 which represents new motor speed. Numbers

from 127 to 0 are used to reverse the vehicle. Number 128 is used if we want our vehicle to

stay at one place without movement. Last part of numbers from 129 to 255 are used for

forward speed regulation.

If master Raspberry wants to send an instruction to Arduino, it uses UDP protocol where there

are instruction numbers encoded. When Arduino receives an instruction, it executes this

instruction (sets a new wheel speed) and after that it sends an acknowledge message via UDP.

65

This message is important for Raspberry to know. It can detect failure on Arduino. If battery

runs out, Arduino does not send acknowledge messages. This is how Raspberry knows that

something happened. If there is at least one Arduino which does not respond, Raspberry

immediately stop the vehicle to prevent from any damage.

66

3.7 Camera data processing

3.7.1 Infrared camera

This camera is recording the road in front of the vehicle in order to navigate it on the road.

The navigation is done by checking the roadside and informing about movement changes

needed to keep in certain distance from it.

This is done by firstly marking the road, by expanding the area around a point in front of the

camera according to its approximate color and then searching for an area to the right of the

road that we can consider to be the roadside.

After that we keep an approximate distance from the roadside by calculating the angle in

which the vehicle should move to increase / decrease the distance between them.

Road image

67

Floodfilled image

In this image we can search for the roadside thanks to the fact that the road is marked with a

specific color. Everything that doesn’t belong to the floodfill range to the right of the center-

bottom of the image, can be considered as the roadside.

3.7.2 Communication protocol

As was mentioned above, the result of the image processing is an information about the

direction change needed to improve the position of the vehicle. According to the rotation, the

angle used is sent to the control unit, where the front of the vehicle is equal to 0°.

Frame structure

Angle of direction change

x

Where x belongs from –90° to 90°.

3.7.3 Road signs camera for future work

This camera is taking pictures of the road surroundings, namely the area to the right of the

road, to record any road signs. The images should be in good quality to be able to perform a

correct analysis. That might delay the framerate of the processing, however that is not a

problem in this case. The motherboard to which the camera is connected then compares these

68

images with a stored list of road signs (image recognition). When it finds a match, it sends the

recognized road sign as an integer to the device in charge of control. This also means that the

control device has to have a custom list of these road signs (in number form) with special

behavior for each of them.

Frame structure

Number of road signs Road sign x1 Road sign x2 Road sign xn

n #1 #2 #n

3.8 Angle measuring

When it comes the angle measurement. We calculate the angle of movement change by

finding the roadside to the right of the vehicle. When it’s found we get the point coordinates

for it and since we have the coordinates for our initial center bottom point with a preset

distance we want to keep from the roadside (80px in our case).

Specifically, both points are given by their coordinates (location on horizontal line and

location on vertical line). So, one point in 2D space is given by x (horizontal) and y (vertical).

As there are needed only two points, computation includes four values. These two points

create right triangle. Thus, by using trigonometric functions it is possible to count angle

between two points. In this case, it is used tangent equation. Since the angle must be

calculated, inverse function is used (arcus tangent).

Principle of angle measuring

69

4. IMPLEMENTATION

4.1 GPS and compass navigation

4.1.1 General information

GPS and compass are implemented on Arduino UNO board. Program has hardcoded map that

consists of 23 navigation points. Map is represented by arrays of structures. Structure

represents one navigation point and consists of float latitude and longitude values. Created

map is shown on the picture below.

Testing map for vehicle

To use the compass, hold the module so that Z is pointing 'up' and you can measure the

heading with X and Y axis. These axes are labeled on the chip. Heading is then calculated

using arctangents of X and Y axis.

Also, a correction for GPS degree must be calculated because GPS measures geographical

position and degree is computed against geographical North Pole and compass measures

degree to magnetic north pole. This difference between angles is called declination angle

70

which is the 'Error' of the magnetic field in our location. Value of this angle for specific

location can be found online. It’s value for Bratislava is 0.07504916 in radians.

Code is implemented in Arduino IDE. Tables below shows most important global variables

and constants with their description and also most important functions with their description.

Most important global variables and constants in GPS navigation

Global variables and

constants

Description

ACCURACY Variation in which vehicle is considered in the point

MAP_LENGTH Length of the navigation map

ARDUINO_NUMBER Number of Arduino to use in protocol

MASTER_RPI_IP IP address of control Raspberry PI

localPort Port used for communication between Arduino and RPI

notifyMessage[] Message sent for RPI when Arduino obtains new GPS and

compass data and calculates relative angle (last two zeros will

be changed)

nav_map[] Navigation map

mac[] MAC address of Arduino

Most important functions in GPS navigation

Function Description

int find_closest_point(nav_point actual) Function that finds closest point to actual

position. Returns index of closest point in

navigation map

int degree_based_on_quadrant(float x, float y,

float degree)

Function for degree calculation based on

quadrant

float calculate_relative_degree(float compass,

float directionValue)

Function to calculate relative degree of next

node, current compass degree is represented

as zero on vehicle

float calculate_compass_degree(nav_point

start,nav_point endPoint)

Function to calculate direction degree

between two nodes

bool is_in_node(nav_point actual,nav_point

dest)

Function to determine if actual node is in

defined range of end node

71

4.1.2 Connection description

Wiring scheme for Arduino, compass and GPS sensor

In the picture above is wiring scheme for Arduino, compass and GPS sensor. Both GPS and

compass are powered up by 3.3V from Arduino. There was a small problem because Arduino

has only one 3.3V pin. Cutting a wire and duplicating it in the middle of the wire solved this

issue. For ground there were enough pins on Arduino so it was simple to connect both devices

to it.

GPS sensor uses UART communication protocol to communicate with Arduino.

Implementation in the picture above is quite specific. UART protocol uses TXD a RXD pins

72

to communicate between devices. If both TXD and RXD pins are connected, both devices can

communicate in both directions. However our car needs only information about its position.

There is no need to send messages to GPS sensor. Therefore only TXD pin is used to send

information about position from GPS to Arduino. In Arduino’s code there is defined pin 2 to

be RXD pin of UART communication protocol. The result is only one way communication

between GPS sensor and Arduino board possible.

Compass uses I2C communication protocol to transfer information about its direction. SDA

pin on compass is connected to A4 pin on Arduino. SCL pin on compass is connected to A5

pin on Arduino. Arduino board allows I2C communication only through A4 and A5 pins.

After powering up the devices compass is ready to use instantly. GPS sensor, however, tries

to find satellites at first. It takes variable amount of time depending on obstacles nearby. If

GPS sensor does not have any GPS signal, green led diode blinks. Arduino board begins to

send relative angle to main Raspberry board only after GPS sensor has established connection

to satellites so position information is valid.

Arduino sends relative angle to Raspberry board every second. This process cannot be

speeded up because GPS sensor cannot inform Arduino about position more often (there is

1Hz frequency). Sensors with fixed compass are located in the front of the vehicle as shown

on the picture below.

Compass and GPS sensors

73

4.2 Control Unit

Control unit code is written in python and contains 2 main threads. One thread is responsible

for receiving packets and updating data in sensors objects. Second thread is used for vehicle

manual controlling.

4.2.1 Global variables

In code, there are several global variables used in processing, decision making and moving

vehicle. For speed control, there are:

 MOVE_FORWARD – value sent to vehicle to move forward

 SPEED_NEUTRAL – value sent to vehicle to set neutral speed

 MOVE_BRAKE – value sent to vehicle to stop vehicle

 MOVE_BACKWARD – value sent to vehicle to move backward

For laser processing, there are:

 MIN_DISTANCE – value used for object minimal distance from vehicle

 DIRECTION – direction of vehicle

 ANGLE_CONSTANT – used in processing for range of angles

4.2.2 Manual control

Manual control has been developed to overcome auto control. User can manually control

vehicle with w, a, s, d keyboard letters. W stands for moving forward, A for turning left, S for

moving backward, D for moving right. Also there is Q option for stopping vehicle. Manual

control is possible only in command line. While holding W, speeds are sent to wheels from 91

to 150 incremented by 1. If holding S, speeds are sent to wheels from current value to

minimal 30 decremented by 1. If there is transition from 91 to 90, first MOVE_BRAKE value

is sent, then SPEED_NEUTRAL value is sent and then 89 value is sent. After that, value is

decremented by 1 till it reaches 30.

4.2.3 Processing packets

Processing packets is done in separate thread. In while loop, control unit listen for packet on

port 5000 and IP address 192.168.1.200. After control unit is started, it waits until all wheels

send their IP addresses assigned by DHCP server (which is configured on control unit). Till

all IP addresses are received, there is no decision making.

74

After all IP addresses are received, control unit stars to listen to communication in network.

Based on communication protocol, control unit differs every packet. When packer is received,

control unit processes it and make decision if suitable.

4.2.4 Moving vehicle

Vehicle can move in four directions – forward, backward, left, and right. It can also stop if

necessary. For moving forward, control unit sends a message to wheel specifying speed value.

Range of speed is from 91 to 150 – MOVE_FORWARD constant.

If vehicle needs to stop, control unit sends two messages to every wheel. First message is sent

with value of MOVE_BRAKE constant and second message with value of

SPEED_NEUTRAL constant.

If vehicle is turning, two wheels are going faster than other two. For example, if turning left –

right wheels have speed value equal 130 and left wheels have speed value of 100. If turning

right, the concept is the same.

For backward moving, the concept is the same as for moving forward. The difference is if

there is manual controlling (section 4.2.2).

4.2.5 Decision making

Decision of direction is done based on received data from laser, GPS, compass and camera.

Two directions are computed using these data. First is calculated with laser, GPS and compass

and second is calculated with camera. Final direction is then decided based on these two

computed directions. Laser, GPS and compass direction has highest priority because it is used

to for collision avoidance and navigation. Camera direction has lower priority as it is used for

keeping vehicle in the driving lanes. This direction is taken into consideration only if the

higher priority direction is straight. Table below shows all possible combinations and the final

direction.

Decision making based on received data

Laser, GPS, Compass Camera Final direction

↑ ↑ ↑

↑ → →

↑ ← ←

→ ↑→← →

75

← ↑→← ←

X ↑→← X

First direction is computed with laser, GPS and compass data. Data from GPS and compass

on Arduino are transferred into relative degree value which is received by central control unit.

This degree tells where the next navigation point is. Laser data contains ranges of free angles

(without obstacle). Only ranges which are big enough for vehicle are received.

 We need to specify range for the straight movement because we can’t go straight only

if the relative angle is 0. We specified range of 20 angles for this purpose. There are several

cases for determining direction based on these values. On the following pictures is relative

direction shown as blue arrow, free angles as green areas and restricted angles as red areas.

Case 1: Relative direction is in range <350, 10> degrees and this angle is in free zone based

on data from laser. Decision: straight.

0

90

180

270

8

Case 1 in decision making

Case 2: Relative direction is in range <350, 10> degrees and this angle is in restricted zone

based on data from laser. Decision: find closest free range to relative degree and turn that

way. In the picture below angle 340 is closer, so the decision will be left.

76

0

90

180

270

8

60

340
52

20

Case 2 in decision making

Case 3: Relative direction is not in range <350, 10> and direction angle is in free zone.

Decision: turn to direction. Turn for direction in range <0,180> will be right and for range

<181,360> it will be left.

0

90

180

270

280

Case 3 in decision making

Case 4: Relative direction is not in range <350, 10> and direction angle is in restricted zone.

Decision: find closest free range to relative degree and turn that way. In the picture below

degree 230 is closer so the decision will be right.

77

0

90

180

270

210
170

230

20

40

Case 4 in decision making

Case 5: There is no free zone received from laser. Decision: stop.

0

90

180

270

235

Case 5 in decision making

Camera decision is much simpler than decision from laser, GPS and compass. Only one

degree is received from camera that is responsible for keeping vehicle in road lines. This

angle is in range <-90, 90> degrees. Values in range <-20, 20> are represented as straight

direction. Other positive values results to right direction and other negative values results to

left direction. For the future improvements turning intensity for each degree can be specified

for more precise correction of steering.

4.3 Car wiring

In the picture below is shown wiring diagram which describes how cables and devices are

connected within the car. Every Arduino use 3 wires to connect to regulator. First cable is

+5V (red), second cable is ground (grey) and third cable is PWM signal which controls a

motor movement. Every regulator is connected to its battery which provides a power supply

78

for an Arduino and a motor. There is also a kill switch in case of emergency. Kill switch

switches of every regulator in the car so the car will stop immediately after a kill switch was

pressed.

Wiring diagram of the first circuit in autonomous car

79

Wiring of first circuit in real vehicle

In the picture below is shown the second wiring diagram which describes how 12V battery

powers up another devices placed in the car. Red cable represents +12V and green cable

represents ground. There are also used voltage limiters to convert 12V to 5V power supply.

Parts connected with light blue cables use specific cables for their connection.

80

Wiring diagram of the second circuit in autonomous car

Wiring of the second circuit with first circuit connected together

4.4 Car construction

A car construction can be seen in the picture below. A basic rectangle is made of L - shaped

metal with dimensions 20x20mm. It is welded in every corner. Four small platforms were

81

placed inside the main rectangle to hold motors with transmissions. Every platform has 3

drilled holes with 3mm diameter. These holes are used to mount motor to platform. Platforms

are also welded to main rectangle. Inside the rectangle there is a wooden surface which is

used to store every device used in the car. The whole car weights around 7 kilograms.

Car construction scheme

There were also made some changes to physical design of the car. Updated design can be seen

in the picture below. The biggest change was made thanks to Altera boards. We decided not

to use these boards so we replaced them with another Arduino and Raspberry Pi. GPS and

compass were connected to the fifth Arduino and camera with laser were connected to another

Raspberry Pi. There is also only one camera instead of two cameras in solution design. This is

because we only recognize lines in the road, not road signs.

82

Updated physical car design

In the picture below there is the final physical design of the autonomous car. We used zip-ties

to catch all the hardware to the construction. Laser is placed on wooden tower which is high

enough to properly read distances from obstacles nearby. In front of the car there is a camera.

It is taped to paper box from Arduino board. This solution is lightweight and stable. Compass

is screwed to the wooden floor of the car to ensure its proper direction. GPS sensor is placed

freely to the front of the car, because it does not need to be in precise location in the car.

83

Final physical design of the autonomous car

We used a loctite glue to lock the wheels to transmission axes. Motors with great

transmissions provide great amount of torque so wheels need to be loctited. In the rear part of

the car there is located large heavy Pb 12V battery. This battery is used to power everything

except from motors and hardware which is used to control motors. Converters from 12V to

5V power supply are placed freely in the middle of the car.

4.5 Laser data processing

Processing of laser data is written in Python programming language using pre-defined

libraries. Libraries include functions, which provide easy working with laser sensor (e.g.

connect to laser, start motors, iterate through measurements or scans, stop motors, get info

about laser, set PWM frequency).

Developing of laser processing was made in IDE for Python - Pycharm Community Edition.

For processing data some external libraries had to be included into project: numpy for creating

matrixes and math for mathematical operations, e.g. cosine or square root.

Diagram below illustrates processing of one sample with measured data:

84

Data captured from laser (quality, angle, distance)

Created ranges from measured data (based on distance and quality)

Merge last and first range (if exceeds 360°)

Filter ranges with short distance of space between two end points

Created final frame with open ranges

Sort captured data in list based on angles

Processing of measured data from capturing data to create final frame to send

This section of implementation includes description of each part from diagram above.

4.5.1 Data capturing

Laser libraries include functions for iterating through scans or measurements. For this

purpose, it is better to iterate through scans, where each scan contains three values:

 Quality – if quality equals zero, given measurement was not successful – due to

either object is too close to laser, or too far from laser.

 Angle – angle from specific measurement.

 Distance – distance from specific measurement.

def iter_scans(self, max_buf_meas=500, min_len=5, force=False):

scan = []

iterator = self.iter_measurments(max_buf_meas, force)

for new_scan, quality, angle, distance in iterator:

 if new_scan:

 if len(scan) > min_len:

 yield scan

 scan = []

85

 if quality >= 0:

 scan.append((quality, angle, distance))

Function returns list of the measurements. Each measurement is tuple with following format:

(quality, angle, distance). After that, the list is evaluating.

4.5.2 Data sorting

Since measurements in list are sorted based on when they are captured (it means some

measurements can be reversed), list of scans need to be sorted based on angles. For next

processing and creating ranges it would be difficult to work with this original not sorted list.

 s_scan = sorted(scan, key=lambda x: x[1]) #sorting of measured data based

on angle

4.5.3 Creating of ranges

This is the most complex part of algorithm. Ranges represents angles, which have all

distances between two end angles longer than limited distance, and distance of space between

these two points are longer than limited distance of space. Detail description of ranges are

described is here: 3.5 Laser data processing.

First condition in loop through all measured data is checking of quality. We suppose if quality

is zero, there is enough space and assign this angle maximal measured space. It is mainly

because of losing of many data, since application is designed for outdoor environment, where

distances of objects are bigger than maximal measured distance from sensor. However, laser

is in the middle of chassis, so it avoids of measuring objects, which are too close from sensor.

for meas in s_scan:

 if(meas[0] == 0): #if quality is zero, suppose distance as max

measurable

 distance = MAX_DISTANCE

 else: #otherwise, assign original distance

 distance = meas[2]

After checking of quality, distance can be checked. If actual distance is less than limited

distance, range must be closed (only if previous angle has longer distance than limited). If

range must be closed, array representing range is created. Array includes four values – begin

angle, distance in begin angle, end angle, distance in end angle. This range is then append to

list of all open ranges.

if(distance < LIMIT_DISTANCE): #if distance is less then limited distance

 if(previous_bigger == 1): #if in previous angle was distance bigger

then limited, close range

86

 range = [begin_angle, begin_distance, s_scan[j-1][1], s_scan[j-

1][2]] #create range (beg-angle, beg-dist, end-angle, end-dist

 ranges.append(range) #append created range to array of ranges

 previous_bigger = 0; #set control variable to zero

For remembering previous measurements, help variables are keeping – previous_bigger,

begin_distance and begin_angle.

4.5.4 Merging last and first range

Since processing of measurements begins with angle zero, first range can only start from zero

degree (if distance in that angle is bigger than limited). Similarly, last range can end only with

angle 359. From first processing this is represented as two angles, since in real life it is only

one angle. From that reason, if this situation occurs, these two ranges must be merged into one

(e.g. begin angle is 270 degrees and end angle is 30 degrees). Python provides feature for

accessing last element in array – index -1. If merging is needed, first range is updated – begin

distance and angle are changed for begin distance and angle from last range, and last range is

removed from array of ranges.

if(ranges[0][0]>0 and ranges[0][0]<2 and ranges[-1][2]>357 and ranges[-

1][2]<360): #if range exceeds 360 degrees, merge first and last range

 ranges[0][0] = ranges[-1][0] #edit angle in first range -> change

for begin angle from last range

 ranges[0][1] = ranges[-1][1] #edit distance in first range -> change

for begin distance from last range

 del ranges[-1] #delete last range

4.5.5 Filtering ranges with short distance of space

Created ranges usually includes angles, which are too short. For their deletion, cosine

sentence is used. Known are two sides (distances from begin angle and end angle) and angle

between these two sides (difference between begin and end angle). From cosine sentence,

third side can be count. Only ranges with big enough space between two end points to pass

between obstacles are assigned to new created array.

87

Illustrated values for cosine sentence

def count_distance_of_space(range):

alfa = range[2] - range[0] #getting angle alfa

val = math.pi / 180.0 #pre-counting for converting radians to degrees

ret = math.cos(alfa * val) #countig of cosinus alfa

return math.sqrt(square(a) + square(b) - 2 * a * b * ret) #cosinus

sentence - known b,c, alfa, return side c

def remove_short_ranges(ranges):

if(space > LIMIT_SPACE):

 new_ranges.append(r) #if space is bigger then limited distance for

space, add to new ranges

4.6 Image processing for roadside detection

Image processing is written in Python language using the Open CV library (cv2) as well as

numpy library for matrices and mathematical calculations, time for timeouts, socket for udp

communication and data sending and picamera for Raspberry Pi camera module control.

The camera continuously captures frames which are then being processed one by one.

88

4.6.1 Frame processing

Processing of camera output

89

The frames are being captured using the picamera module which is also used to setup the

wanted resolution and the expected framerate. After that a small timeout is used to ready-up

the camera for continuous capture of frames (video).

camera = PiCamera()

camera.resolution = (320, 240)

camera.framerate = 20

rawCapture = PiRGBArray(camera, size=(320, 240))

time.sleep(0.1)

for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):

Each frame is then processed by Open CV flip, crop and floodfill functions. Flip ensures the

frame orientation, according to the camera module positioning.

 frame = frame.array

 frame = cv2.flip(frame, 0)

 frame = cv2.flip(frame, 1)

Crop cuts out parts of the frame, to lower the size of the frame, fasten the processing and

avoiding of unimportant parts of the frames, since we are only interested in the road which is

situated in the lower part of the frame we cut the frame in half vertically.

 if not frame == None:

 h, w = frame.shape[:2]

 cropped = frame[int(h/2):h,0:w]

Floodfill is a filter that repaints the frame given by filling the area around a point given, that

falls in the color range to a specific color.

Firstly a point in the bottom center is chosen which color is used as the floodfill base color for

comparison (RGB). Next a value has been chosen for the higher and lower threshold to the

base color. Floodfill then overwrites the current frame with the “repainted” colors. The color

to which it repaints is defined in the parameters, in our case we use a grey color

(150,150,150).

 point = (int(w/2),h-10)

 mask[:] = 0

 value = 10

 lo = (value,value,value)

 hi = (value,value,value)

 flags = 4

90

 cv2.floodFill(flooded, mask, point, (150, 150, 150), lo, hi, flags)

After floodfill we find the roadside by looking for a lighter color then our custom grey we

added in the last procedure. We start from the very right side of the frame going up and

looking for a different color.

def get_angle (point, frame):

 b,g,r = frame[point[1]][point[0]]

 h, w = frame.shape[:2]

 distance = 0

 for j in range(5,100,5):

 b2,g2,r2 = frame[h-j-1][w-1]

 if b2 > b or g2 > g or r2 > r:

 break

If it is found, we then search from the center to the right side of the frame for the roadside.

 for i in range(int(w/2),w,3):

 b2,g2,r2 = frame[h-j-1][i]

 if b2>b or g2 > g or r2 > r:

The we test the found roadside with the test_area method. Which checks a 3x3 area from the

found roadside to ensure we didn’t find a random light spot.

 boolean = test_area (h-j-1,i,frame,b,g,r)

If the area seems correct, we calculate the angle in which the vehicle should move to keep an

approximate distance of 80px from the roadside. We use the arctan goniometric function and

the known coordinates of our points.

 if boolean == True :

 distance = i - int(w/2) - 80

 if distance < 20 and distance > (- 20) :

 return 0

 else :

 angle = int(np.rad2deg((np.arctan((distance)/(j)))))

 print (angle)

Calculated angle is then converted to unsigned byte, since our angle values can only be

between (-90°, 90°).

 if angle < 0 :

 angle = angle + 128

 return angle

 return None

After we got the angle we send it to the control unit by UDP using our custom protocol.

def send_camera_angle(angle):

91

 # 01 - message to central unit

 # 01 - source board is raspberry pi

 # 02 - # of source board

 # 01 - destination board is raspberry pi

 # 01 - # of destination board

 # 0011 - type of message is infrared_camera_data

 if angle == None:

 angle = 0

 data = bytearray([1, 1, 2, 1, 1, 0, 3, angle])

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 sock.sendto(data, ("192.168.1.200", 5000))

5. Testing

5.1 First experiments

After we constructed vehicle, we tested its movement. This test was performed indoors. First

time we tested vehicle movement in our lab, where we it was constructed. There were two

types of tests:

 straight movement,

 turning.

Purpose of straight movement test was to prove that vehicle is able to go straight without

human control. This test was successful, despite its high noise. Unfortunately, there is no way

we can fix high noise.

Turning test was held in the hallway. The purpose of this test was to prove that vehicle is able

to turn. This test was also successful. Thanks to our software implementation and vehicle

construction, vehicle was able to turn almost on the spot.

5.2 GPS and compass outdoor testing
Outdoor testing was held near FIIT faculty on parking lot. For auto controlling and moving

vehicle we created map of vehicle road on parking lot shown on the picture below. This map

consisted of few turns to confirm the functionality of GPS and compass decision algorithm.

Vehicle is supposed to go from one point of map to another till it reaches last point (end of

road).

92

Testing map

Compass precision showed minimum deviations. It was only affected when then vehicle was

right above metal channel hatches. Bigger deviations were detected in GPS accuracy which is

essential for precise navigation. This accuracy can be affected by near buildings, weather

conditions and number of tracked satellites. NMEA messages from GPS contains information

about satellite numbers and deviation. These fields can be used to prevent any action until

favorable conditions are met. However, they can never met and vehicle will just stand on

place.

During many tests, we finally got precise GPS position and navigation could be tested.

Vehicle was successfully navigated via predefined route and also to make a successful turn so

the functionality of navigation based on GPS and compass were proven. Picture from this

testing can be seen below and video of successful turn is located on the enclosed CD.

93

Outdoor testing

5.3 Manual control testing

For manual testing we used area near FIIT. We started our vehicle and using WASD we move

it from one point to another. Testing was successful. The only thing we had to change was

speed of wheels. We set it so vehicle goes in appropriate speed. We tested moving forward,

moving backward and also turning vehicle to left and right. All test cases worked.

5.4 Laser testing
Laser processing was tested in area of FIIT faculty in big hall. Near vehicle few boxes which

simulated obstacles were placed, as is shown in figure below. After turning program on, we

were watching what ranges are sent and what is the behavior of vehicle (control system). We

could see some weaknesses, mainly caused some wrong measurements from laser.

Laser processing tests were provided also without existence of vehicle. Correct choice of

ranges could be tested without another devices.

94

Laser process testing

Here are sent ranges from measurement:

 Range #1: [350.9, 3128.5, 3.3125, 6697.25]

 Range #2: [4.28125, 6688.75, 58.078125, 2000]

 Range #3: [77.109375, 2000, 115.390625, 2000]

 Range #4: [120.15625, 2000, 142.15625, 2000]

 Range #5: [192.140625, 2000, 229.734375, 2000]

 Range #6: [244.84375, 6499.25, 333.109375, 6716.25]

From given test scenario we expected 4 ranges. Nevertheless 6 ranges were detected and sent.

First range ends in 3,3° and next open range begins in 4.2°. Between them there was some

wrong measurement, but quality bit was higher than 0, so this scan is considered as valid:

Fourth wrong scan from measurement

of scan angle distance quality

4 3,5 0,0 13

If first two ranges were merged, probably it could represent angle between brown box and

trash bin (begin angle = 350°, end angle = 58°).

Similar situation occurred in next range, where even four ranges in row had distance zero and

quality higher than 0.

Another wrong scans from measurement

of scan angle distance quality

118 116.4 0,0 13

119 117.3 0,0 13

95

120 118.2 0,0 12

121 119.2 0,0 11

Similarly, if range #3 and range #4 were merged, there could arise range, which probably

represents real range between trash bin and laptop (begin angle = 77°, end angle = 142°).

Range #5 and range #6 are almost real representation from given scenario. There are

deviations with figure above, but it is caused by wrong drawn coordinate system.

The control variables for algorithm were set as follow:

 LIMIT_DISTANCE = 1500 - limit distance in front of obstacle (in millimeters)

 MAX_DISTANCE = 2000 - maximum distance, which is assigned when measurement is not

successful (in millimeters)

 LIMIT_SPACE = 500 - maximum length of space between two end points (in millimeters)

Most ranges have start or end distance equaled 2000 mm. This is caused by quality bit, which

is equaled zero. In that case, given scan was not successful and we supposed obstacle is far

away from sensor, so for that angle, maximum measurable distance is assigned.

With provided ranges, there were made also tests for functional behavior of vehicle. Decision

maker on control unit was tested to all cases according to section 4.2.5 Decision making. All

cases were simulated with change of DIRECTION variable and all decisions were processed

according to specification.

5.5 Camera testing
Camera processing was tested inside the faculty. A white roll of textile was used to simulate

the road side and the behavior and sent angles have been monitored.

96

Normal picture of the tested area (taken from behind the camera)

Processed frame from camera view

97

Angles calculated during the

camera manipulation

98

6. Future work
This section contains other ideas for future work development and upgrades.

6.1 WiFi manual control
Hotspot with private network can be deployed on control Raspberry Pi to provide wireless

connectivity to all boards of the vehicle to provide simplified control of vehicle. Hotspot

should use private range of IP address space with additional DHCP server (careful one DHCP

server is already running on this board to assign IP addresses to Arduino boards).

Connectivity between this network and internal 192.168.1.0/24 network must be ensured. This

can be done by tunneling between wlan0 and eth0 interfaces.

6.2 Increased GPS precision
GPS precision is essential for correct navigation, therefore some new additions to increase

GPS precision should be applied. Combinations of more GPS boards with computed

triangulation should solve the problem. If this will not fix the issue, GPS should be only

supplementary and camera should be used for track recognition. Probability of turn could be

then computed with GPS, but it must be confirmed by the camera. Keep in mind that GPS is

the more precise the faster is vehicle moving.

6.3 Fix issues with TTTech switches
Large problems have arisen with TTT switches that do not always work as they are meant to.

Turning switches on with the same topology of cabling has not always lead to full switch

functionality. Long debugging sessions were needed to somehow fix the issues which later

again appeared. This long spent time was a big complication with every testing. Our own

small switch was sometimes used to fix these issues so we could test our programs. In future

work this issue is should by primary to fix. Possibilities without interference of TTTech are

very limitless. Another small issue is big power consumption of switches (4 switches 1.5 A).

6.4 Altera FPGA extension

For future work FPGA on provided Altera boards can be programmed to contain IP cores

shown on picture below. It will allow communication with all three sensors via UART and

I
2
C protocol. Cores are made in Altera Quartus Prime program using QSys tool.

 NIOS II – free version of 32-bit embedded-processor architecture designed for

smallest possible logic utilization of FPGAs. Contains JTAG debug module and up to

256 custom instructions. Acts as avalon mm master.

 RAM – random access memory. Acts as avalon mm slave.

99

 MAC - is IP core for communication with Ethernet interface with deterministic

Ethernet support from TTTech. Acts as avalon mm slave.

 AVALON UART - The UART core with Avalon interface implements a method to

communicate serial character streams between an embedded system on an Altera

FPGA and an external device which is in our case Laser and GPS. Acts as avalon mm

slave.

 AVALON I2C - simple two-wire, bidirectional interface developed for I2C

communication with any I2C slave device with compatible pins in our case with

compass. Acts as avalon mm slave.

Altera

UART

I2C

USB -UART

GPS

Compass

Laser

NIOS II

RAM
Avalon

I2C

Avalon

UART

Avalon

UART
MAC

ETH

FPGA

Realization of FPGA

6.5 Bodywork
Bodywork should provide protection from weather conditions, crashes and also for aesthetical

appearance. Design should consider easy access to all batteries, boards and also space for

camera and laser. Camera and compass must have clear vision to road and surroundings of

vehicle.

6.6 Obstacle detection
Since laser sensor can detect obstacles in its angle of measurement (which is less than 1°),

obstacles below and above the sensor cannot be detected. With this solution, we cannot detect

for examples curbs, through which our vehicle cannot pass. This problem can be solved by

implementation at least two ultrasonic sensors to front and back part of vehicle’s chassis.

100

While we have used low cost laser sensor RPLIDAR, we could see some inaccurate

measurements from RPLIDAR sensor. Obstacle detection can be improved by replacing

RPLIDAR for some better laser range finder, e.g. Hokuyo URG-04LX-UG01. However, its

price is above 1000$.

6.7 Road sign detection
From the start of the project we planned to use a second camera for road sign detection, but

due to various problems and difficulties we did not have enough time to implement this

feature with the expected Altera boards. The hardware is bought, only the software is missing.

101

7. Technical documentation

7.1 Starting procedure

1. Connect all devices to appropriate ports and power supplies.

2. Turn on witch using moto battery. It takes about 30 – 60 seconds to start the switches

to operating state.

3. Connect to Raspberry PI with laser and camera using VNC and start their python

programs.

4. Connect to control Raspberry PI and start DHCP server using command sudo service

isc-dhcp-server restart.

5. Start laser program, view section 7.4.

6. Start camera program , view section 7.5.

7. Start control unit program.

8. Turn on Arduinos for wheel control with external switch. They will request IP

addresses and vehicle is ready to operate.

9. Vehicle will not move until some data from laser, GPS and camera are received.

Manual control can be done in program on control unit.

7.2 GPS, Compass
Program with GPS and compass control will start automatically after powering up Arduino.

Blinking red LED on GPS means that signal from satellites is not acquired, you need to wait

until the led will stop to blink.

7.3 Control Unit
IP address of control unit is 192.168.1.200/24 and can be used to connect to it via VNC.

Preinstalled DHCP server is isc-dhcp-server for assigning IP addreses to Arduino boards.

Vehicle is not functional without working DHCP, because control unit is waiting for all

Arduino boards (means 4 wheels are available). Other DHCP servers can be used as well.

Program handler.py located in PycharmProjects can be run from command line using

command python handler.py. Python 3 is required to run this program. Vehicle will start when

it receives all 4 messages from Arduinos.

7.4 Laser processing
For laser processing, firstly laser sensor must be connected to USB port. After that, correct

USB port name with connected Lidar sensor must be chosen (for Windows '\\\\.\\com3', for

Linux '/dev/ttyUSB0'). This could be done in main file laser_process.py by rewriting

argument in constructor for creating instance of data object Lidar. Program is executed by

same python file. If Lidar is connected and correct port is chosen, basic info about Lidar

sensor should appeared and measurement with sending open ranges should start.

102

7.5 Camera processing
For camera processing, the camera should be connected to a Raspberry Pi device. On the

device a virtual environment is needed to be selected, since we used a virtual environment for

the OpenCV installation. Following commands need to be executed : source ~/.profile then

workon cv and after that you just need to start the main script play_video.py (by using python

of course).

103

Conclusion

This document summarizes work on team project on Faculty of Informatics and Information

Technologies in Slovak University of technology. Goal of the project was to create

autonomous vehicle based on prototype deterministic Ethernet switches from TTTech

Company.

Proposed solution was design with specification of number of used switches, number of

engines, measurements and others. One of the main problems was little knowledge about

electronics. Despite of that we have built vehicle with power supplies for all different

components which considers all voltage and power requirements.

GPS, compass, laser and camera are used for autonomous movement. Data from these sensors

are processed by Raspberry Pi control unit which controls movement of all four wheels.

Solution was tested in real environment near the building of FIIT.

Project is supposed to be extended by other team projects and bachelor thesis on Faculty of

Informatics and Information Technologies and Faculty of Electrical Engineering and

Information Technology of Slovak University of technology.

104

Bibliography

[1] https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/

[2] http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=930

[3] http://www.banana-pi.org/m2.html

[4] https://www.arduino.cc/en/Main/ArduinoBoardUno

[5] https://www.intorobotics.com/14-gps-modules-navigate-track-movements-raspberry-pi-

project/

[6] https://www.adafruit.com/product/746

[7] http://store.digilentinc.com/pmod-gps-gps-receiver/

[8] https://www.alza.sk/

[9] https://www.raspberrypi.org/forums/viewtopic.php?f=28&t=150138

[10] http://www.micropik.com/PDF/HCSR04.pdf

[11] http://www.robotshop.com/en/rplidar-a2-360-laser-scanner.html

[12] http://www.sharpsma.com/webfm_send/1487

[13] http://www.robotshop.com

[14] https://www.clearpathrobotics.com/grizzly-robotic-utility-vehicle/

[15] http://www.superdroidrobots.com/

