

Slovak University of Technology

Faculty of Informatics and Information Technologies

Team Project

NetCell – Management Document

Bc. Andrej Mlynčár

Bc. Martin Janočko

Bc. Tomáš Hermánek

Bc. Tomáš Mikuška

Bc. Lukáš Kleščinec

Bc. Ľubomír Kaplán

Academic Year: 2015/2016

Degree Course: Software Engineering

Table of Contents

1 Project Introduction .. 1

 Project Goal ... 1

 Proposed Functionality ... 1

 Members ... 2

 Contact ... 2

2 Project Roles ... 3

 Management Roles .. 3

 Short Term Roles... 3

3 Application of Management Processes ... 4

 Communication Management... 4

 Planning Management .. 5

 Winter Semester ... 5

 Summer Semester .. 7

 Documentation Management ... 8

 Risk Management .. 8

 Development Management ... 12

 Source Control .. 12

 Code Review... 13

 Issue Tracker .. 13

 Backlog ... 13

4 Used Standards ... 14

 Backlog Standards .. 14

 Creating Backlog ... 14

 Backlog Issues Approving ... 15

 Code Review Standards .. 15

 Coding Standards .. 16

 Class and Interface Names ... 16

 Variable and Function Names ... 16

 File Names .. 16

 Source Code Formatting ... 16

 Source Code Commenting .. 17

 Communication Standards ... 18

 Social Media Communication.. 18

 Email Communication ... 18

 JIRA Communication .. 18

 Confluence Communication .. 19

 Personal Communication .. 19

 Documentation and Manual Standards ... 19

 Documentation Building Process .. 19

 Documentation Styling .. 19

 User Manual Building Process .. 22

 External Document Storage Standards ... 23

 Issue Tracker Standards ... 24

 Linking Task and Issues Standards ... 25

 Issue Types... 26

 Linking .. 26

 Task Status ... 26

 Task Priorities ... 27

 Risk Management Standards ... 27

 Unrealistic Plans ... 27

 Absence of a Team Member on a Meetings ... 27

 Team Member is not able to Finish Task .. 28

 Unavailability of Team Member for Long Time Period 28

 Conflicts in Resolving Tasks ... 28

 Not Possible to Setup Development Environment 28

 Long Term of Outage of a Management System 29

 Impossible to Finish Working Prototype or Documentation 29

 Story Point Standards ... 29

 Story Point Scale ... 29

 Task Evaluation ... 29

 Team Meeting Standards .. 30

 Regular Team Meetings .. 30

 Minor Team Meetings .. 30

 Team Meeting Documentation Standards ... 31

 Testing Standards ... 31

 Test Creation ... 31

 Unit and Integration Testing ... 32

 System Testing .. 32

 Acceptance Testing ... 32

 Version Control Standards ... 32

 Keywords ... 32

 Repositories ... 33

 Development of New Functions ... 34

 Documentation of New Functions .. 34

5 Task Export .. 36

 Project Team Meetings ... 36

 Project Team Meeting on 22.9.2015 ... 36

 Project Team Meeting on 29.9.2015 ... 36

 Project Team Meeting on 7.10.2015 ... 36

 Project Team Meeting on 8.10.2015 ... 36

 Project Team Meeting on 19.10.2015 ... 37

 Project Team Meeting on 21.10.2015 ... 37

 Project Team Meeting on 28.10.2015 ... 37

 Project Team Meeting on 3.11.2015 ... 37

 Project Team Meeting on 9.11.2015 ... 37

 Project Team Meeting on 18.11.2015 .. 38

 Project Team Meeting on 23.11.2015 .. 38

 Project Team Meeting on 7.12.2015 .. 38

 Project Team Meeting on 10.12.2015 .. 38

 Project Team Meeting on 22.2.2016 .. 38

 Project Team Meeting on 29.2.2016 .. 38

 Project Team Meeting on 7.3.2016 .. 39

 Project Team Meeting on 16.3.2016 .. 39

 Project Team Meeting on 21.3.2016 .. 39

 Project Team Meeting on 4.4.2016 .. 40

 Project Team Meeting on 11.4.2016 .. 40

 Project Team Meeting on 18.4.2016 .. 40

 Project Team Meeting on 26.4.2016 .. 40

 Project Team Meeting on 5.5.2016 .. 40

 Project Team Meeting on 16.5.2016 .. 40

 Project Team Meeting on 17.5.2016 .. 41

 Project Team Meeting on 18.5.2016 .. 41

 Sprint summary ... 41

 Dub Phizix ... 41

 Pink Floyd ... 42

 Nazov Stavby .. 44

 Kratky Proces .. 46

 Deladap .. 49

 Five Finger Death Punch .. 52

 DMS .. 54

 Arctic Monkeys .. 55

6 Winter Semester Global Retrospective ... 57

7 Summer Semester Global Retrospective .. 59

1

List of Tables

Table 1 Team members ... 2

Table 2 Team contact ... 2

Table 3 Management roles ... 3

Table 4 Short Term roles .. 3

Table 5 Project plan for winter semester 2015/2016 .. 5

Table 6 Risk - Absence of a team member on a meeting ... 8

Table 7 Risk - Team member is not able to finish a task .. 9

Table 8 Risk - Unavailability of a team member for a long period of time 10

Table 9 Risk - Not possible to setup development environment 10

Table 10 Risk - Long term outage of a management system 11

Table 11 Risk - Impossible to finish working prototype or documentation 11

Table 12 JIRA Components.. 25

2

List of Figures

Figure 1 Test Picture .. 22

Figure 2 Dub Phizix burndown chart ... 42

Figure 3 Dub Phizix issue list .. 42

Figure 4 Pink Floyd burndown chart ... 43

Figure 5 Pink Floyd issue list .. 44

Figure 6 Nazov Stavby burndown chart .. 45

Figure 7 Nazov Stavby issue list ... 46

Figure 8 Kratky proces burndown chart .. 48

Figure 9 Kratky proces issue list ... 49

Figure 10 Deladap burndown chart .. 51

Figure 11 Deladap issue list ... 52

Figure 12: Five Finger Death Punch Burndown Chart. ... 53

Figure 13: Five Finger Death Punch completed issue list ... 54

Figure 14: Five Finger Death Punch not-completed issue list................................... 54

Figure 15: DMS burndown chart ... 55

Figure 16: DMS completed issue list .. 55

Figure 17: Arctic Monkeys burndown chart... 56

Figure 18: Arctic Monkeys issue list ... 56

1

1 Project Introduction

 Project Goal

Goal of this software project is creation of network topology management web-based

interface for OpenStack cloud computing system. Graphical interface will contain

feature, which can help user to design and draw custom network topologies. This

topologies can be deployed to production environment just few in clicks. Network

topologies will contain virtual network functions (VNFs) such as firewalls, load

balancers, proxies and services (httpd, db, …). Deployed VNFs will be configurable

trough web interface of this system.

Project will offer also other functionalities as template management and group

configuration management which is described below in more details. All these

functionalities offered via graphical web interface can significantly contribute to better

network management. Because of this fact, network maintenance and design done by

system and network administrators and designers, can be much more efficient and

easier. Especially in huge networks with many (>100) components, this system can

significantly help to understand how network is designed, and how various network

components can be configured.

 Proposed Functionality

 Topology Template Management - the user needs to be capable of creating

a network topology template. The template contains network devices and their

interconnections.

 Topology Deployment - as of user’s decision to launch an instance of topology

template, the template including all its VNFs and network connections is built

on top of OpenStack and put in functional state. This topology can be later

modified and reconfigured and also saved as a template.

 Group Configuration Management - user can manage configuration of

multiple devices as a single group – e.g. multiple web servers provisioned in

load-balanced environment will be maintained with the same configuration.

2

 Members

Following table contains basic information about our team members with email

address:

Table 1 Team members

Last name First name E-mail Title

Halagan Tomáš tomas.halagan@gmail.com Ing.

Hermánek Tomáš tomhermanek@gmail.com Bc.

Janočko Martin martin.janocko.gih@gmail.com Bc.

Kaplán Ľubomír castor@castor.sk Bc.

Kleščinec Lukáš lukas.klescinec@gmail.com Bc.

Mikuška Tomáš mikuska.tom@gmail.com Bc.

Mlynčár Andrej a.mlyncar@gmail.com Bc.

 Contact

Following table contains basic information about team and about contact information:

Table 2 Team contact

Team Number 2

Team Name VirtNET

Product Name NetCell

TP Official Website http://team02-15.studenti.fiit.stuba.sk/

E-mail virtnet@castor.sk

mailto:tomas.halagan@gmail.com
mailto:tomhermanek@gmail.com
mailto:martin.janocko.gih@gmail.com
mailto:castor@castor.sk
mailto:lukas.klescinec@gmail.com
mailto:mikuska.tom@gmail.com
mailto:a.mlyncar@gmail.com
http://team02-15.studenti.fiit.stuba.sk/
mailto:virtnet@castor.sk

3

2 Project Roles

There are two types of roles used on our project: Management roles and Short Term

roles. Each type is described below in more details.

 Management Roles

This type of role is selected by skills of each team member. This role cab be switched

between team members, but is necessary to inform other team members and add new

roles distribution to this document. Roles in our team are:

Table 3 Management roles

Team Member Role

Tomáš Mikuška Test Manager

Tomáš Hermánek Risk Manager

Martin Janočko Communication Manager

Lukáš Kleščinec Documentation manager

Ľubomír Kaplán Head architect, environment manager

Andrej Mlynčár Quality and process manager

 Short Term Roles

Short term tasks were performed in whole course duration not just in sprint. Following

table is containing list of team members, which were temporary assigned to mentioned

short term roles.

Table 4 Short Term roles

Web page manager Andrej Mlynčár, Lukáš Kleščinec, Martin Janočko

JIRA manager Ľubomír Kaplán, Tomáš Mikuška

Team meeting manager Everyone

Confluence manager Ľubomír Kaplán, Andrej Mlynčár

Scrum master Lukáš Kleščinec, Martin Janočko, Ľubomír Kaplán

4

3 Application of Management Processes

 Communication Management

Communication methodic which were used during project development are in detail

described in chapter 4.4 Communication Standards. According to these methodic,

team members were able to communicate via following methods and systems:

 Email communication. This communication was mostly used when we

communicated with our team leader, Ing. Tomáš Halagan. Email form of

communication is only used for sending secure information, such as passwords,

private keys etc.. Email communication is never used for formal conversations

and group communication between regular team members.

 Social media communication. This kind of communication was used at the

beginning of the winter semester, when another communication systems and

methods were not available. After the first two weeks of winter semester,

communication through social media is used only for informal communication.

In the concrete, we used facebook group chat to discuss some informal topics,

such as minor task details, interesting events during meetings, task reminders

etc.

 JIRA communication. JIRA is one of most important communication method

used in our team. At the beginning of winter semester, project was created with

name VIRTNET on faculty JIRA instance https://jira.fiit.stuba.sk. Detailed

information about our JIRA methodic are available in chapter 4.7 Issue Tracker

Standards. In addition to issue and task tracking, JIRA was used to

communicate about tasks, bugs and problems. This kind of communication was

realized by discussion in comment sections of various JIRA tasks.

 Confluence communication. Confluence is our custom wiki system. Every

important information about our project and team management is stored in this

system. Confluence was used to organize meetings, store information about our

meetings and discussion about huge tasks. No team members encountered any

problems during using this system. More information about confluence methodic

can be found in our 4.5 Documentation and Manual Standards and it is also

mentioned in our 184.4 Communication Standards.

https://jira.fiit.stuba.sk/

5

 Team meetings. This type of communication was our most efficient type of

communication. Meetings were organized regularly couple of times every week.

We can split our team meetings into two categories:

o Regular team meetings – Attendance was desired from all team

members. In this kind of meetings, we discussed major team project

tasks, sprints, risks, important decisions etc. This type of meeting was

organized approximately every week.

o Minor team meetings – In this kind of meeting, one or more minor tasks

were discussed and solved. Attendance was required from members

who were responsible for these tasks. Meeting was organized more

often, approximately one or two times a week.

 Planning Management

Chapter contains basic information, how our team managed to use planning

management to define plans for winter and summer semester.

 Winter Semester

Main project objectives and goals are in detail described in our engineering

document – global goals for winter semester. To achieve these objectives,

following plan for winter semester was created at the beginning of the academic year.

Plan was created on team meeting 29.09.2015.

Table 5 Project plan for winter semester 2015/2016

Date Description

1.10.2015 – 12.10.2015 Creation high level architecture design.

Creation of team standards.

Communication and development systems setup

(confluence, JIRA, gitlab).

1.10.2015 – 1.12.2015 Development environment (Openstack) for our software

product setup.

November 2015 TP Cup – decision if we attend this competition.

6

12.10.2015 – 19.10.2015 Execution of first sprint:

 Webpage creation.

 Creation of first version of nodeconfig core.

 Creation of first version of nodeclient core.

20.10.2015 – 2.11.2015 Execution of second sprint:

 Tuning nodeconfig and nodeclient core systems, if

changes are requested or missing functionality is

found.

 Creation of first configuration definitions.

 Creation of definition testing tools.

3. 11. 2015 – 9.11.2015 Execution of third sprint:

 Creation of client nodes scripts.

 Tuning nodeconfig and nodeclient core systems, if

changes are requested or missing functionality is

found.

 Setup of development environment (Openstack).

 Documentation and webpage changes based on

review from team leader.

10.11.2015 – 18.11.2015 Execution of fourth sprint:

 Finalization of documentation for the 1st checkpoint.

 Management core detailed architecture design.

 Management core development – basic project setup.

 Setup of development environment (Openstack)

18.11.2015 Submit first document to AIS.

20.11.2015 – 4.12.2015 Execution of fifth sprint:

 Management core development – database,

configuration, logging setup, web interface.

 Node client development – launching of VNF service

and basic configuration implementation.

5.12.2015 – 11.12.2015 Execution of sixth sprint:

7

 Creation of final documentation for WS.

 Node clients development – addition another basic

configurations.

 Management core development – web interface and

login service implementation.

11.12.2015 Submit documentation and project prototype.

 Summer Semester

Based on successful and unsuccessful goals defined in winter semester, following plan

was created to achieve completion of desired product:

Date Description

29.2.2016 – 16.3.2016 Execution of first sprint in this semester:

Creation of basic configuration for node types.

Development finish of components which were not finished

in previous semester – Code Foundation components.

16.3.2016 – 10.4.2016 Execution of second sprint in this semester:

Development of Node Type Clients with basic configuration.

OpenStack integration with Management Core platform.

10.4.2016 – 1.5.2016 Execution of third sprint in this semester:

Topology Management development.

Complex Testing of developed VNF clients.

Deployment of first production into UAT environment.

Development finalization.

1.5.2016 – 20.5.2016 Finalization of team project.

Presentation to product owner.

Review of test result.

8

Bug fixing and adding missing functionality.

Creation of product documentation.

 Documentation Management

Documentation methodic standards are described in chapter 4.5 Documentation and

Manual Standards. At the beginning of the winter semester, confluence wiki was

created, where every documentation part, external documents and attachment are

stored. Confluence also provides document versioning, so we can keep tracking what

changes were made to every document stored in our wiki.

Significant part of our fourth sprint was focused on creation of first version of

management and engineering document. These two documents were successfully

created and submitted to academic information system.

Creation of final version of documentation in winter semester was created separately,

out of any sprints at end of the semester, after prototype was created. Some of

documents, like team meeting reports, were created regularly. All of these documents

were merged into one document and submitted in academic information system.

 Risk Management

Risk management is one of the most important processes, which has to be handled to

be efficient and successful in team project. At the beginning of the winter semester,

risk management methodic were created. These methodic are documented in 4.9 Risk

Management Standards. In the first 9 weeks of semester, we discussed and planned

managing following risks:

Table 6 Risk - Absence of a team member on a meeting

Risk name Absence of a team member on a meeting

Description Team member is not able to attend team meeting.

Impact Low

Probability Medium

9

Trigger Unexpected events can happen and team member is not able

to attend team meeting.

Prevention Team meeting date and time needs to be established with

agreement of all team members.

Consequences Team member thoughts, knowledge and commends are not

available at a meeting.

Solution Member who missed meeting has to review all tasks and

notes which were created during meeting. He needs to

approve these tasks and notes. In case he disagrees,

disagreements will be discussed on next meeting.

Table 7 Risk - Team member is not able to finish a task

Risk name Team member is not able to finish a task.

Description Team member is not able to finish assigned task in time

because of the incorrectly estimated task, unexpected

problems or missing knowledge.

Impact Medium

Probability Medium

Trigger Task estimation was set incorrectly. Bad time management

from team member. Unexpected events can happen

(sickness, school/work deadlines).

Prevention Regular team reports - every team member needs to inform

other members about progress on every assigned task

Consequences Sprint is not completely finished. Task is moved to next sprint.

Other team members have to finish uncompleted task.

Solution Task will be distributed to other team members. In case task

was not completed because of the bad time management,

team member who was not able to complete task, will have

more tasks assigned in next sprints.

10

Table 8 Risk - Unavailability of a team member for a long period of time

Risk name Unavailability of a team member for long period of time.

Description Team member is not able to work on team project due to

illness, injuries etc.

Impact Critical

Probability Low

Trigger Illness, injury, unexpected study ending.

Prevention Avoid dangerous situations where team member can be

injured or can get seriously ill.

Consequences Plan created and project goal cannot be fully completed.

Solution Risk cannot be fully handled. In case this issue will be

occurred, work will be distributed between team members,

project objectives will be reduced and project plan will be

modified.

Table 9 Risk - Not possible to setup development environment

Risk name Not possible to setup development environment.

Description Openstack environment setup will not be possible.

Impact Critical

Probability Medium

Trigger Missing hardware, unexpected technical problems.

Prevention Make big effort to obtain requested hardware.

Consequences Product development would be much more difficult, because

of the missing environment, where product can be tested.

Solution Openstack environment will be setup on virtual environment.

11

Table 10 Risk - Long term outage of a management system

Risk name Long term outage of a management system.

Description JIRA, Confluence or gitlab systems are not available for long

period of time.

Impact Critical

Probability Low

Trigger Server crash, database corruption, networking problems.

Prevention Establish backup server which will be started in case of

unexpected problems on main server.

Consequences Team communication and scrum development will be

significantly restricted. All tasks and team communication will

be handled by other, nonconventional ways – email

communication, facebook chat, other not well known system

etc.

Solution -

Table 11 Risk - Impossible to finish working prototype or documentation

Risk name Impossible to finish working prototype or

documentation.

Description It will be impossible to submit working prototype to a date,

when product should be submitted to academic information

system.

Impact Critical

Probability Low

Trigger Bad time management, low effort.

Prevention Regularly work on product and documentation.

12

Consequences Team project courses will not be successfully finished with

good grades.

Solution -

 Development Management

During development of our products, we primarily focused on management processes

described in this chapter.

 Source Control

As it is described in 4.13 Version Control Standards, source control of programming

projects was realized via cloud git repository management system gitlab. Access gitlab

was granted at the beginning of academic year. Every team member except Ľubomír

Kaplán have developer access rights, Ľubomír Kaplán is administrator of gitlab system,

so he has unlimited access to every repository. Every team member have experience

with operating git system, so only minor technical difficulties with initialization of

repositories and accounts settings occurred, but they were quickly resolved.

Following repositories were created where source control of java, bash and python

projects are managed:

 FIIT TP 2015 - VirtNET / netcell-nodeclient-core

 FIIT TP 2015 - VirtNET / netcell-management-portal

 FIIT TP 2015 - VirtNET / netcell-management-server

 FIIT TP 2015 - VirtNET / netcell-management-server-testbed

 FIIT TP 2015 - VirtNET / netcell-design

 FIIT TP 2015 - VirtNET / netcell-nodeconfig-core

 FIIT TP 2015 - VirtNET / netcell-nodeclient-webserver

 FIIT TP 2015 - VirtNET / netcell-nodeclient-openvpnserver

 FIIT TP 2015 - VirtNET / netcell-nodeclient-databaseserver

 FIIT TP 2015 - VirtNET / netcell-nodeclient-applicationserver

 FIIT TP 2015 - VirtNET / netcell-nodeclient-nameserver

 FIIT TP 2015 - VirtNET / netcell-nodeconfig-tools

 FIIT TP 2015 – VirtNET / sndb

https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-core
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-core
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-management-server
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-management-server-testbed
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-design
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeconfig-core
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-webserver
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-openvpnserver
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-databaseserver
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-applicationserver
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeclient-nameserver
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/netcell-nodeconfig-tools
https://gitlab.ctrdn.net/fiit-tp2015-virtnet/sndb

13

 Code Review

Code review standards are documented in 4.4 Communication Standards. To realize

successful code review, status “In Review” was created in our custom JIRA scrum

board. Every task which was transitioned to this status, had to be reviewed.

Statistically, every task was reviewed in less than 24 hours after task was moved to

status In Review. No problems were occurred with communication and distribution of

tasks that needed to be reviewed. If some code corrections were requested from

person who reviewed a task, corrections were made successfully before end of a

sprint.

 Issue Tracker

 For issue tracking and task managing, JIRA system is used. Most of the team

members already had basic experience with this system, so no problems were

encountered with using JIRA. Every team member was able to follow issue tracking

methodic described in chapter 4.7 Issue Tracker Standards. There were only some

technical difficulties when we were not able to access JIRA, because of the issue with

LDAP (Lightweight Directory Access Protocol) service. For minor tasks and issues

Confluence is used. Typically, they are assigned during team meetings and

subsequently documented into Confluence. After being resolved or fulfilled they are

also marked so. List of all tasks from Confluence is available in chapter Task Export.

 Backlog

Issues and tasks were created into backlog in our JIRA VNET scrum board. Most of

the tasks were created to backlog during team meetings. Every team member has

permission to create tasks to backlog. Issues which were not created during meeting

were discussed and then approved or rejected during next meeting. Before first

documentation submission there were 106 tasks and subtasks created in backlog,

most of them were resolved in first 4 sprints. Before final winter semester document

submission there were 166 tasks and subtasks created in backlog of which 150 were

resolved.

14

4 Used Standards

List of used standards:

 4.1 Backlog Standards,

 4.2 Code Review Standards,

 4.3 Coding Standards,

 4.4 Communication Standards,

 4.5 Documentation and Manual Standards,

 4.6 External Document Storage Standards,

 4.7 Issue Tracker Standards,

 4.8 Linking Task and Issues Standards ,

 4.9 Risk Management Standards,

 4.10 Story Point Standards,

 4.11 Team Meeting Standards,

 4.12 Testing Standards,

 4.13 Version Control Standards.

 Backlog Standards

Backlog is one the most important things in entire development process. Backlog

contains all tasks, which have to be done. From these tasks each sprint is defined.

 Creating Backlog

Each team member has access to create issue in JIRA. This issue is added to backlog

automatically. Our team uses four types of issues, from which everyone has specific

characteristics:

 story – basic issue type for creating new part of system or new features etc.

This issue type is mostly discussed by whole team on team meeting and then

is created in backlog.

 epic – epic is used as group of more stories, which have common topic. Epic is

used when story is too complex and is necessary to split him. This issue type is

created same way as story.

15

 bug – bug is created when some team member (or user) finds functional defect

in system behavior of created system. Each team member must create bug

when he finds some misbehavior in application functionality.

 task – task is created when there is request to do something which is not

included in development of software project (change in environment, change or

setup of web page, etc.).

Each issue can be created on team meeting, where each team member can present

his idea for work.

 Backlog Issues Approving

As described in previous chapter, most backlog issues are created on team meetings,

where we discuss problems of our product. Each backlog issue is then approved or

rejected by team members. Whole team has to decide which issue is placed to the

next sprint. After this whole sprint backlog is created, story point evaluation follows -

this is described in chapter 4.10 Story Point Standards in more details.

 Code Review Standards

Every submitted task needs to be reviewed. Code is always tied to a specific task. First

reviewer should be the author of the code himself. After this, when the code is

submitted, related task is moved to “In Review” status. Process and quality manager

is responsible for informing another team member, that submitted task needs to be

reviewed.

Team member is then responsible to provide a code review. In case he finds an issue

in the submitted code, he needs to inform the original author of the code. It is necessary

to mark the specific occurrence of the bug by line number or numbers and to write a

short description of the error. Given team member should also provide a steps on how

to reproduce the discovered error. After that the task is moved back to “In Progress”

status and to the original author.

This process repeats until the task passes the review. One task is not limited for only

one reviewer and it is advised to use more people for reviewing, especially if the

submitted code is large.

16

 Coding Standards

These standards are set of guidelines for programming languages that recommend

programming style, methods and practices. Compliance with them allows us to create

scalable and easy understandable code.

In our project, we use programming languages such as Java and Python. In both

languages, different standards are used. Python uses PEP 8 convention.

 Class and Interface Names

In Java – class and interface names begin with an uppercase letter and should not be

pluralized unless it is a collection class. If it is multi-word name, camel-case style must

be used.

class NetworkNode { }

In Python – class names should use the CapWords (similar to camel-case)

conventions. Python do not use interfaces.

class NetworkNode():

 Variable and Function Names

In Java – variable and function names starts with lower-case letter. Again, if it is multi-

word name, camel-case style is used.

 int currentNodeCount = 10;

In Python – lowercase with words separated by underscores are used (Snake-case).

 current_node_count = 10

 File Names

In Java - class and interface files use same name as class or interface inside them.

Other files uses words separated by dashes.

 nb-configuration.xml

In Python – file names consists from words separated by underscores.

 netcell_nodeclient_core.py

 Source Code Formatting

In our project, we are using four spaces as tabulator size. This standard is same for

Java and Python.

17

In Java – opening curl braces starts at end of last command. End curl braces indented

as well as block indentation. For further information about formatting, please read

Oracle documentation.

In Python – curl braces is not used. Code block is determined by indentation. For

further information about formatting, please read Oracle documentation.

 Source Code Commenting

Java uses 4 styles of comments.

 Block Comments – they are used to provide descriptions of files, methods,

algorithms and data structures.

 /*

 * Block comment example

 */

 Single-Line Comments – it appears on single line intented to the level of code

that follows.

 /* Single-Line comment example */

 Trailing Comments – short comment at same line as code.

 return true; /* description of this case */

 End-Of-Line Comments – comment begins a comment that continues to the

newline.

 return true; // Explanation begins here

 // something

 // interesting

 // here

Python uses 3 styles of comments:

 Block Comments - block comments apply to some code that follows them, and

are indented to the same level as that code.

 '''

 Block comment example

 '''

 Inline Comments – it is on the same line as a statement.

 return True # Explanation

 Documentation Strings – they are used in docstring.

 “””

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
https://www.python.org/dev/peps/pep-0008/#introduction

18

 Doc string example

 “””

 Communication Standards

Multiple systems are used for communication within the team. As a primary language

was chosen English language. This language is used in every official communication

channel. In the informal channels the language is not important, but Slovak language

is preferred. Based on the importance of the topic and formality you should use one of

the following systems for communication.

 Social Media Communication

Social media communication represents the informal part of communication between

the team members. If there is a topic not tied to any specific task or the topic needs to

be communicated quickly than this is the preferred communication channel. This

channel should be also used in case email or personal communication is not possible.

 Email Communication

Any topic that requires attention of the team leader should be communicated through

emails. Besides team communication, emails communication is used for distribution of

login credentials to various systems that the team members will have access to. This

communication channel is also preferred in case the communication needs to be

stored for longer period of time. If writing an email, it is necessary to include all the

team members and also team leader.

 JIRA Communication

JIRA is used to track all the issues and tasks regarding the project. Because of this,

communication regarding specific tasks should be discussed right below the issues in

the comments. This includes all the problems like mistakes in the attached documents

and bugs in related code sections. Comments need to be short and to the point.

Comments also enable a short discussion for the related task. If more information is

needed to be posted, then it is preferred to store it in Confluence and link it with the

specific issue or task.

19

 Confluence Communication

Confluence is the team wiki system. All the information regarding our project should

be stored here. This information include all the documents related to project like

specifications, documentation and meeting write ups.

 Personal Communication

Personal communication is used during team meetings. These need to be organized

regularly. Team meetings, as a part of formal communication, do not need to be held

in English language. Every meeting needs to be documented and this document needs

to be stored in the Confluence. This document has to be written in English. Personal

communication also includes informal communication outside of the team meetings.

 Documentation and Manual Standards

 Documentation Building Process

Every part of documentation will be created on local computer of team member. Each

document has to be created according to documentation template which is included in

confluence “Documentation for Team Project course” page.

Parts of documentation are defined by following source:

http://www2.fiit.stuba.sk/~bielik/courses/tp-slov/materialy/dokumentacia2015-16.pdf

Each part has its own JIRA ticket. This ticket is used for versioning and correction in

"review process". Each created document is attached to his issue and sent to review

by other team member. Versions of documents in review will be attached to JIRA issue

in each review iteration. Final version of document will be uploaded into confluence

page of checkpoint documentation (child page od “Documentation for Team Project

course”).

 Documentation Styling

Don’t use "Heading 1" when writing part of documentation, this will be used only in final

version of checkpoint document.

Heading 1:

 font: Arial,

http://www2.fiit.stuba.sk/~bielik/courses/tp-slov/materialy/dokumentacia2015-16.pdf

20

 size: 20,

 alignment: justify,

 line spacing: 1,5 line,

 used heading numbering.

Example: 1 Heading 1

Heading 2:

 font: Arial,

 size: 18,

 alignment: justify,

 line spacing: 1,5 line,

 used heading numbering.

Example: 1.1 Heading 2

Heading 3:

 font: Arial,

 size: 16,

 alignment: justify,

 line spacing: 1,5 line,

 used heading numbering.

Example: 1.1.1 Heading 3

Heading 4:

 font: Arial,

 size: 14,

 alignment: justify,

 line spacing: 1,5 line,

 used heading numbering.

Example: 1.1.1.1 Heading 4

Heading 5:

21

 font: Arial,

 size: 12,

 alignment: justify,

 line spacing: 1,5 line,

 used heading numbering,

 used bold highlight.

Example: 1.1.1.1.1 Heading 5

Paragraph:

 font: arial,

 size: 12,

 alignment: justify,

 line spacing: 1,5 line,

Example:

This is example text: Lorem ipsum dolor sit amet., consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua.

Pictures and tables:
 alignment: center,

 title:

 position: under picture,

 alignment: center,

 font: Arial,

 size: 9,

 picture number: bold,

 picture description: without highlighting.

Example:

22

Figure 1 Test Picture

Indentation:

 first level: solid dot,

 second level: indent,

 third level: blank dot.

Example:

 first example,

 second example,

 second sub-example,

 second sub-example,

 very deep example.

 User Manual Building Process

User manuals are divided into two different types of documents, which each have some

specific rules and that is:

 user manuals,

 development and testing tools manuals.

Each type of manuals is described below in more details. Styling of each manual is the

as styling of documentation and is described in chapter 4.5.2 Documentation Styling.

4.5.3.1 User Manuals

User manuals need to be included in final version of documentation, because these

manuals are very important for users of our system. They cover whole system

functionality with user guidelines. Before user manual is created, there have to be

23

raised JIRA ticket, which contain request for creating of manual (for more information

see chapter 4.1 Backlog Standards). Manuals will be created in confluence in “NetCell

Documentation” space. User manual must contain following information:

 prerequisites,

 step-by-step instruction for desired result,

 screenshots with description (when about GUI is writing).

4.5.3.2 Development and Testing Tools Manuals

This type of manuals doesn’t needs to be included in final version of documentation,

or presented on web page. These manuals are created for development and test

purposes, so they are addressed for team members only. Every development manual

has to be present in confluence page of concrete tool or specific software for

developers. These manuals writing when new tool or methodology is created or

changed.

Development and testing manual must contain information about tool purpose and all

information which are necessary to correct using of tool:

 prerequisites – OS, platform, compiler, etc.,

 instruction to run tool,

 tool options,

 tool results.

 External Document Storage Standards

As external documentation storage we use team collaboration system Confluence.

Confluence consists of two main document spaces.

Main space is called NetCell Development. This space has to be visible only for team

members.

NetCell Development. Internal document space. Every important information about

development needs to be stored into this document space. Every team member has

permission to create additional web page into this space. Content needs to be

categorized based on system module hierarchy, components and development

branches.

24

NetCell Documentation. Public document space. Space needs to contain product

public documentation, which can significantly help NetCell product users understand

basic concepts of our system.

Before storing new document to external storage, proper place must be chosen. If

document topic is not qualify for any part of the main page, new one can be created.

Creation of new space needs to be approved by majority of team members.

 Issue Tracker Standards

Our team use JIRA system software as our primary issue tracker system. Our team

JIRA is available on web page www.jira.fiit.stuba.sk. Each member has access rights

to JIRA which permits to create an issue. Lukáš Kleščinec, Andrej Mlynčár and

Ľubomír Kaplán has also administrators rights. Our team use own JIRA project named

VirtNet (VNET), which have custom workflow with following states:

 TODO – first state of created issue. Issue in this state is without assignment or

the work has not started yet.

 IN PROGRESS – some team member is working on issue, when issue is in this

state.

 IN REVIEW – issue in this state is solved, but another team member must check

work progress and he can return issue to IN PROGRESS state.

 DONE – all work on issue was done correctly.

This workflow is used in combination with Agile Scrum Board which is plugin for agile

software development method. Agile Scrum Board allows creation of sprints from

created issues. Each issue in sprint is estimated by story point which is described in

chapter 4.10 Story Point Standards in more details. Agile Scrum board also creates

burndown charts of each sprint (see more in chapter 5.2 Sprint summary).

Each Jira issue is created with specific priority. This priority can be changed and it

helps to effectively work on issues. We used following priorities:

 Trivial – these kinds of issues are usually added to sprint at last,

 Minor – this problem does not need a quick resolution,

 Major – major level of importance,

 Critical – very high level of importance,

http://www.jira.fiit.stuba.sk/

25

 Blocker – blocks further development of project, should be resolved as quickly

as possible.

Each issue can be assigned to specific component of our software product. We used

our custom components described in following table:

Table 12 JIRA Components

Component Component Lead

Management Server Ľubomír Kaplán

NT Application Server Tomáš Mikuška

NT Database Server Tomáš Mikuška

NT Nameserver Lukáš Kleščinec

NT Node Client Core Lukáš Kleščinec

NT OpenVPN Server Tomáš Hermánek

NT Web Server Martin Janočko

Others Andrej Mlynčár

In case system development will contain new area of interest, new component can be

created. Every component needs to have component leader.

Issue created with specific component will be assigned to component leader. Based

on team meeting discussion and sprint specification this issue can be later assigned

to another team member. Issues which do not have component are assigned on team

meeting after proper discussion.

Work on issue must be logged into JIRA. Each team member must log his work with

date when he starts work on issue.

Sometimes, we create some minor, unimportant tasks in team meeting report. These

tasks cannot be reviewed because output is not documented. For instance, study of

documents can be topic of this kind of task.

 Linking Task and Issues Standards

Every sprint contains issues, which are picked up from backlog. Process of creating

tasks is very important for successful project completion. Each task has assigned story

26

points, which are voted by team members. As scale, we are using Fibonacci sequence.

Manager of quality is responsible for linking tasks.

 Issue Types

JIRA allows us to create some basic issue types.

 Bug - problem which impairs or prevents the functions of the product,

 Task – task of unspecified type, which must be done,

 Story – issue type for user story,

 Epic – issue type that needs to be broken down to multiple stories and usually

takes longer than one sprint to get resolved.

 Linking

Linking allows creation of associations between two existing issues. Also, it is possible

to make many-to-many association between tasks, but between two specific issues

only one link can be created. For example, basic link types are listed below:

 Relate – an issue may relate to another,

 Duplicate - an issue may duplicate another,

 Block – an issue may block another (is task is blocked by other issues, it cannot

be resolved before issues which are blocking it!).

Also, it is possible to create association link between JIRA issue and Confluence page.

We are using this option in our project.

Tasks, Bugs and Stories can be part of an Epic. This is called Epic link.

We are linking issues anytime, when it is appropriate. If task is closed, it should not be

linked with another task, because if issues are linked, we expect that some work will

be done on both of them.

 Task Status

When sprint starts, each issue has a “To Do” status. After that, team member picks up

the task and tries to solve it. Issue can be in one of the following states:

 “To Do” – not started task,

 “In Progress” – task, which is currently being resolved,

 “In Review” – resolved task, which waits for review by other team members,

 “Done” – resolved and closed task.

27

 Task Priorities

Priority issue level indicates its importance. We are using these priorities in the project:

 Blocker – blocks further development of project, should be resolved as quickly

as possible,

 Critical – very high level of importance,

 Major – major level of importance,

 Minor - this problem does not need a quick resolution,

 Trivial – these kinds of issues are usually added to sprint at last.

 Risk Management Standards

The main role of risk management is to reveal potential risks, which can arise during

creation of software product. After, that it is good practice to propose steps, which can

reduce potential risks. These steps are essential to successful project completion.

 Unrealistic Plans

Probability of this risk is high in a newly established team or after acceptance of a new

team member. This risk is one of the most frequent risks. Our team members have

different schedules. This causes that tasks are usually solved at the last moment.

To minimize risk, tasks are selected from backlog to sprint for participation by all team

members. Issues are evaluated by story points. As scale we are using Fibonacci

sequence. Once we have agreed on an assessment tasks, two-week sprint is created.

Risk is also minimized by fact, that the team has the same lineup.

 Absence of a Team Member on a Meetings

Probability of this risk is medium but still possible. Our team members have different

schedules. This causes that the team member can absence on team meeting.

To prevent this, team members private schedule is shared between other members

and through communication canals (especially chat), we are able to plan meeting

together.

Member, who missed meeting, must read team meeting reports and discuss with other

members about it.

28

 Team Member is not able to Finish Task

The team consists of people, which has different knowledge. Therefore some tasks

are hard to evaluate correctly by all team members. Also, task can be assigned to

member who doesn't have enough knowledge.

On team meetings is crucial that, the all members selects tasks according to their

expertise.

In our team, members help each other with the definition of the problems. Task is also

possible to be distributed between other members.

 Unavailability of Team Member for Long Time Period

Team members works on different modules. This causes that some of us are

insufficiently aware of all the components. If team member which has a unique

understanding of the implementation of specific component becomes ill, there is

possibility that the task can't be done.

To remove this risk, we must on each team meeting discuss in detail all the tasks.

Then, team is able to distribute task between other members.

 Conflicts in Resolving Tasks

This risk occurs when there are some tasks, which overlaps to each other. There may

be various problems such as conflicts in linking code or unnecessary duplication work.

To minimize this risk, is important good communication between team members. We

are using many communication channels, which helps us to solve conflicts correctly.

 Not Possible to Setup Development Environment

Team product, will be installed on OpenStack environment. At this time, we have no

access to this environment, but we are still developing software product.

We are not possible to minimize this kind of risk, but as backup plan, software product

will be set up on virtual environment.

29

 Long Term of Outage of a Management System

There is possibility that, Gitlab, Counfluence or Jira will be disabled for long time period.

Working process will be significantly restricted, because we will be forced to use

nonconventional ways – email, social networks, etc.

To prevent this, it is good practice to use many different systems, which can substitute

others.

 Impossible to Finish Working Prototype or Documentation

As students, we are mandatory to submit working prototype or create documentation

up to date. After that, team project courses will not be successfully finished with good

grades.

Solution is to set up realistic plans.

 Story Point Standards

Agile development is based on a repeating events called sprints. Prior to each sprint it

is necessary to create tasks that are going to be completed during the upcoming sprint.

These tasks are also evaluated based on their difficulty. Unit of a difficulty is called

Story Point.

 Story Point Scale

There are multiple methods of evaluation. Our team has decided, that we will use an

evaluation with slight modification of numbers from Fibonacci’s sequence. Particularly

1, 2, 3, 5, 8, 13, 21, 40, 100. Number 1 represents easily completed task, 13 difficult

task and number 100 represents currently impossible task. In case task Story point

value is higher than 13, e.g. 21 and more, this task is split into multiple subtasks.

Before the evaluation starts, one of the tasks is chosen as a reference task. Team

agrees on how much Story Points it is worth. Optimal value should be in the lower half

of the Story Point scale. This task will then become a reference task based on which

the others will be evaluated. Every other task should be compared against this one.

 Task Evaluation

Tasks are evaluated one by one. Each member of the team can decide on his own

how many Story Points worth of work belong to each task.

30

Story Points assignment goes as following:

1. Team decides on a reference task.

2. Reference task is assigned Story Points value.

3. Scrum Master chooses next task being evaluated from project backlog.

4. Team members show their evaluation of the task, all at the same time.

5. If everyone agrees on a common amount of Story Points, these are then

assigned to the task.

6. If there are differences, team members explain their reasoning.

7. Voting repeats until there’s an agreement.

8. Process from step 3 repeats until there are no tasks or the Story Point limit for

sprint has been reached.

 Team Meeting Standards

Team meetings are divided into two types of meetings (as is mentioned in document

Application of Management Processes):

 regular team meetings,

 minor team meetings.

 Regular Team Meetings

This type of meetings is for each team member main and attendance of each team

member is mandatory. Time of this meeting is set on Tuesday at 11:00 AM and this

meeting is organized every week. Each team member can request to change team

meeting time via social media communication. If all other team members agree on

changed team meeting time, following meeting is in this time.

This meeting is used to discuss most important things in and major tasks. During this

meeting sprint backlog is created (for more details see chapter 4.1 Backlog Standards)

and tasks in backlog are estimated (for more information see chapter 4.10 Story Point

Standards).

This meeting must be documented (see chapter 4.11 Team Meeting Standards).

 Minor Team Meetings

This type of team meetings is not mandatory for each team member. Attendance is

required from members who are responsible for tasks discussed on meeting. Other

31

team members can be present on this meetings too. Minor meetings are organized for

discussion of some tasks in backlog with members who are responsible for these tasks.

After resolution, other team member will be informed about changes or updates in

particular system part.

There is no obligation to create documentation from these meetings, but it is

recommended in case some important issue is discussed or being resolved.

 Team Meeting Documentation Standards

As shown in previous chapter mostly regular meetings are documented. On each

meeting inception one team member is chosen, who is responsible for meeting

reporting. Team meeting report is written into Confluence using our custom template

for meeting reports. Each meeting report contains the following information:

 Attendance review – names of present team members,

 Primary topic – just short description of main meeting topic,

 Goals – goals are most important points of each team meeting. Whole team

must discuss each goal (sprint summary, new sprint, important decisions and

etc.) and agree on common solution.

 Notes – important notes. They are found when team discusses some goal.

 Tasks – created tasks are based on notes and goals finds on meeting. Each

task must be assigned to one or more team members.

 Testing Standards

The main role of test management is to reveal potential bugs, which can arise during

creation of software product. After that, it is good practice to propose steps, which can

cover the biggest amount of possible bugs. These steps are essential to successful

project completion.

 Test Creation

Every team member must analyze the desired functionality and design individual tests,

which needs to cover the most important parts of system module.

Developer of system module or system part must implement the required tests based

on the design. These steps can be executed before or after the tested functionality is

implemented.

32

 Unit and Integration Testing

Unit and integration tests are designed, created and executed by system module

developer, but not necessarily after part of source code is written. Tests must be

focused on possible error arising during runtime. Most often the white-box testing has

to be used for unit test creation, except the test lead recommends other testing type.

 System Testing

System tests must be designed to verify non-functional requirements of as

functionality, reliability, security, robustness, maintainability and performance. This

kind of tests are not necessary for our kind of development. Tests can be created after

ending of system development.

 Acceptance Testing

Testing should be executed after a total system tuning and correction of all errors from

previous tests. All the required tests and all functional requirements must be included

in acceptance tests.

 Version Control Standards

This methodic document describes rules and procedures, how to work with version

control system Git, repository management GitLab and collaboration software

Confluence.

 Keywords

Git – version control system.

Repository – storage of specific files.

Branch – developing line.

Commit – record of changes in repository.

API – application programming interface.

Pull – fetch from integration with another repository or a local branch.

GitLab – Git repository server.

Confluence – documents and sources organization system.

33

 Repositories

Whole project is divided into separate repositories, which are under administration of

different team members. They are stored on GitLab repository server. At the same

time, there is only one member, who is working on selected repository. Therefore, it is

not necessary to create branches and deal with merging. All of them can be also

divided into two groups. These repositories are described below.

4.13.2.1 Core Group

This group is under administration of Ľubomír Kaplán and Andrej Mlynčár. It covers

creation of network topology management web-based interface for OpenStack cloud

computing system. In present, there are repositories listed below.

 netcell-nodeconfig-core – collaborates with netcel-nodeclient-core for purpose

of configuration of virtual machines,

 netcell-nodeconfig-tools – tools for verification of configurations,

 netcell-management-server – system core application,

 netcell-management-server-testbed – testbed for management server,

 netcell-design – design files related to project and user interfaces.

4.13.2.2 Node Client Group

This group is under the administration of Martin Janočko, Tomáš Hermánek, Tomáš

Mikuška and Lukáš Kleščinec.

 netcell-nodeclient-core – API server for processing HTTP requests, every

server which is listed below, uses it as sub-module,

 netcell-nodeclient-webserver – implementation of configuration for webserver

service,

 netcell-nodeclient-openvpnserver - implementation of configuration for VPN

service,

 netcell-nodeclient-databaseserver - implementation of configuration for

database service,

 netcell-nodeclient-applicationserver - implementation of configuration for

application server service,

 netcell-nodeclient-nameserver - implementation of configuration for name

server service.

34

 Development of New Functions

This section describes how to work with repositories, make commits, pull changes and

push changes. For further information, please check Git documentation.

4.13.3.1 Update of Current Working Repository

Developer, who resolves the tasks from Jira, must download the latest version from

the repository server. To achieve this, use Git command pull.

Example:

 git pull origin master

4.13.3.2 Making Changes

Each meaningful change should be committed. One JIRA task can contain multiple

changes. Commit should contain message in specific format, which includes JIRA

issue ID and some description text message. Providing JIRA issue ID is mandatory in

case the commit is resolving a bug.

Example:

 git commit <file> -m 'VNET-777: login bug fixed'

4.13.3.3 Storing Changes

Developers must store changes to the GitLab server on regular basis, always after

finishing work. To achieve this, use push command.

Example:

 git push origin master

 Documentation of New Functions

Each one of the new functionality must be documented and described in Confluence

server. It allows the team to keep track of versions. For further information refer to

Confluence website.

4.13.4.1 Document Organization

Document is organized into spaces. Currently using three spaces:

 NetCell Documentation – technical documentation of project,

 NetCell Development – technical information for developers.

https://git-scm.com/documentation
https://www.atlassian.com/collaboration/confluence-organize-work-in-spaces

35

Content of spaces is hierarchically organized into pages. Each repository has its own

page, which contains:

 Overview – basic functionality overview,

 Downloads – some downloads links,

 Change Log – documents changes,

 Usage – information how to use sources,

 Examples – examples of usage.

4.13.4.2 Change Log

After resolution of an issue from JIRA, new version is created. If more than one task is

part of scrum sprint, version can resolve more than one issue. Change log table

contains four columns:

 Date – date of version creation,

 Version – version number,

 Build Number – implementation build number,

 Changes – description of changes in specific version, also contains Jira issue

ID.

 Version, also contains Jira issue ID.

36

5 Task Export

Below is a task export from team meetings in a chronological order from the beginning

of winter semester. JIRA tasks are located in chapter 5.2 Sprint summary.

 Project Team Meetings

Tasks assigned during team meetings are supposed to supplement tasks assigned to

sprints. Usually, these tasks and issues are not severe enough to be included into

active sprint tasks or general tasks to be done.

 Project Team Meeting on 22.9.2015

 Andrej Mlynčár, Martin Janočko - Study of bachelor project created by Dušan

Matejka, which is focused on Virtualization and development of API for software

Load Balancer - HAProxy.

 Lukáš Kleščinec, Tomáš Hermánek, Tomáš Mikuška - Review of their bachelor

thesis which were also focused on Virtualization and development of API for

software - Squid, IpFilter, OpenVPN.

 Project Team Meeting on 29.9.2015

 Tomáš Halagan - Provide hardware for development.

 Andrej Mlynčár, Ľubomír Kaplán - Start work on concept of management server.

 Lukáš Kleščinec - Study for development of DNS server (bind9).

 Lukáš Kleščinec - Ensure access to JIRA (communication with Michal Barla).

 Tomáš Hermánek - Study for development of OpenVPN Server.

 Tomáš Mikuška - Study for development of database server (mysql).

 Tomáš Mikuška - Study for development of application server (glassfish).

 Martin Janočko - Study for development of web server (apache2 / nginx).

 Project Team Meeting on 7.10.2015

 Create specification for node configuration and node configuration definition.

 Start development of node client core, which will load node client module

(specific to node type).

 Project Team Meeting on 8.10.2015

 Start first sprint named "Dub Phizix" on 12.10.2015 with duration of 1 week.

37

 Lukáš Kleščinec, Martin Janočko, Tomáš Mikuška, Tomáš Hermánek -

Develop Node Client Core (API, API calls, module loading).

 Andrej Mlynčár, Ľubomír Kaplán - Develop Node Configuration Core library

(entities, parser, validator, serializer, deserializer, navigator).

 Lukáš Kleščinec - Develop team website.

 Project Team Meeting on 19.10.2015

 Tomáš Hermánek - Create basic configuration of OpenVPN Server

 Tomáš Mikuška - Create basic configuration of Database Server and

Application Server

 Lukáš Kleščinec - Create basic configuration of Name Server

 Martin Janočko - Create basic configuration of Web Server

 Ľubomír Kaplán, Andrej Mlynčár - Specification and brainstorming of

management server core

 Project Team Meeting on 21.10.2015

 Tomáš Mikuška - Rework tests for netcell-nodeclient-core module.

 Andrej Mlynčár, Ľubomír Kaplán - OSGi study.

 Ľubomír Kaplán - Draw diagram for NetCell management server.

 Project Team Meeting on 28.10.2015

 Andrej Mlynčár - Contact prof. Bieliková regarding the language of web page

and documentation

 Project Team Meeting on 3.11.2015

 Ľubomír Kaplán - Migrate ngnlab.eu machines and setup OpenStack.

 Martin Janočko - Translate webpage.

 Tomáš Hermánek - Create node client core automatic startup.

 Lukáš Kleščinec - Create Debian 8 Jessie image for OpenStack.

 Andrej Mlynčár - Modify node configuration core.

 Tomáš Mikuška - Complete node client API method.

 Project Team Meeting on 9.11.2015

 Lukáš Kleščinec- Redistribute tasks for 1st checkpoint documentation.

 Andrej Mlynčár, Ľubomír Kaplán - Develop MS Core Foundation.

38

 Andrej Mlynčár, Ľubomír Kaplán, Lukáš Kleščinec, Tomáš Mikuška, Martin

Janočko, Tomáš Hermánek - Discuss configuration bundle structure.

 Project Team Meeting on 18.11.2015

 Andrej Mlynčár - Submit documentation into academic information system.

 Project Team Meeting on 23.11.2015

No additional tasks were assigned during this meeting.

 Project Team Meeting on 7.12.2015

 Tomáš Mikuška - Create Testing Standards.

 Tomáš Mikuška - Create presentation for Testing Management.

 Ľubomír Kaplan - Create presentation for Development Management.

 Lukáš Kleščinec - Create presentation for Documentation Management.

 Andrej Mlynčár - Create presentation for Quality Management.

 Martin Janočko - Create presentation for Communication Management.

 Tomáš Hermánek - Create presentation for Risk Management.

 Project Team Meeting on 10.12.2015

No additional tasks were assigned during this team meeting.

 Project Team Meeting on 22.2.2016

First team meeting in the summer semester. Team meeting was focused on creation

of plan for the upcoming semester. Sprint duration was set for 2 weeks. There will be

3 sprints during summer semester.

 Project Team Meeting on 29.2.2016

New sprint, named “Five Finger Death Punch”, started. Sprint will last from 1.3.2016

to 16.3.2016. Sprint contains 26 tasks evaluated at 95 story points. Main tasks

assigned for this sprint:

 Tomáš Hermánek – VPN Basic Config,

 Martin Janočko – Webserver Basic Config,

 Ľubomír Kaplán – OpenStack Manager Service Implementation,

 Lukáš Kleščinec – NameServer Basic Config,

39

 Tomáš Mikuška – Application Server Basic Config,

 Tomáš Mikuška – Database Server Basic Config,

 Andrej Mlynčár – Identity Service Implementation.

 Project Team Meeting on 7.3.2016

This team meeting was held in the middle of the sprint. Main reason for the meeting

was, that there was too many tasks assigned. We went over unfinished tasks and

prioritized those, who had to be finished.

 Project Team Meeting on 16.3.2016

Sprint “Five Finger Death Punch” was finished. 17 tasks out of 26 were finished

successfully. This means that 58 out of 96 projected story points were obtained. Tasks

that were not completed during the last sprint will be transferred to the next sprint.

Team managed to complete all important tasks.

 Project Team Meeting on 21.3.2016

New sprint, named “DMS”, started. This sprint was running from 22.3.2016 to

11.4.2016. Unfinished tasks from previous sprint were also added. Sprint contains 20

issues evaluated at 53 story points. Following are the main tasks:

 Tomáš Hermánek – Create VPN Server post-install script and create basic

functional tests for it,

 Martin Janočko – Create Webserver post-install script and create basic

functional tests for it,

 Ľubomír Kaplán – OpenStack Manager Service Implementation, Netcell Task

Manager implementation,

 Lukáš Kleščinec – Create Nameserver Server post-install script and create

basic functional tests for it,

 Tomáš Mikuška – Create Application and Database Server post-install script

and create basic functional tests for it,

 Andrej Mlynčár – Identity Service Implementation, Logging improvements.

40

 Project Team Meeting on 4.4.2016

This team meeting was organized to review the ongoing sprint. All previously

unfinished tasks were completed. The rest of the team meeting was dedicated to work

on the tasks.

 Project Team Meeting on 11.4.2016

Sprint “DMS” finished successfully. All of the tasks were completed. Team managed

to get 53 out of 53 story points for 20 tasks assigned to this sprint.

New sprint, named “Arctic Monkeys” was started. There were 9 tasks assigned to this

sprint. These tasks were evaluated at 49 story points. Following were the main tasks

assigned during this sprint:

 Tomáš Hermánek – Create basic test cases for VPN Server,

 Martin Janočko – Create basic test cases for Webserver,

 Ľubomír Kaplán – Netcell nodetype manager development, OSGi refactoring,

 Lukáš Kleščinec – Create basic test cases for Nameserver,

 Tomáš Mikuška – Create basic test cases for Application and Database server,

 Andrej Mlynčár – Create testing environment.

 Project Team Meeting on 18.4.2016

Evaluation of the ongoing sprint. There were 6 tasks out of 9 finished at this point.

Development continued during the team meeting.

 Project Team Meeting on 26.4.2016

Sprint “Arctic Monkeys” finished. All 9 tasks were finished. In total 49 story points were

obtained.

 Project Team Meeting on 5.5.2016

Team meeting dedicated to evaluate current state of the project. Final development

continued during this meeting.

 Project Team Meeting on 16.5.2016

Documentation of the team project was being created at this team meeting. Tasks were

assigned as follow:

41

 Tomáš Hermánek – Create documentation for VNP server implementation,

 Martin Janočko – Create documentation for Webserver implementation,

 Ľubomír Kaplán – Create documentation for core services implementation,

 Lukáš Kleščinec – Create documentation for Nameserver implementation,

 Tomáš Mikuška – Create documentation for Application and Database server

implementation,

 Andrej Mlynčár – Create static form of team webpage.

 Project Team Meeting on 17.5.2016

Finalizing documentation.

 Project Team Meeting on 18.5.2016

Finalizing documentation. Merging all documents.

 Sprint summary

 Dub Phizix

Number of sprint: 1

Name of sprint: Dub Phizix

Sprint date: 12/Oct/15 6:30 PM - 19/Oct/15 12:45 AM

Number of issues: 12

Number of story points: 30

The first sprint named Dub Phizix was primarily aimed at creation of node configuration

core and node client core. Within the node configuration core module were

implemented methods for creating, parsing, serialization and loading of configuration.

Also were specified node configuration format and node configuration definition. Within

the node client was created core module at which the server is run. Methods for getting

node type information and providing node configuration definition were created.

During the first sprint was built webpage on which will be placed all the documents

related to the work on team project. The webpage also contains basic information

about project and team members.

Bad practices in issue solving were used during the first sprint as it is shown in Figure

2. Solved issue was moved to state “Done” even if not solved correctly. On the basis

42

of this problem new column “In review” which will be used for checking of solution

correctness was added. Entire list of issues solved during the sprint is shown in Figure

3.

Figure 2 Dub Phizix burndown chart

Figure 3 Dub Phizix issue list

 Pink Floyd

Number of sprint: 2

Name of sprint: Pink Floyd

Sprint date: 19/Oct/15 5:50 PM - 02/Nov/15 5:09 PM

Number of issues: 17

Number of story points: 46

43

The second sprint named Pink Floyd was primarily aimed at creation of the first client

configuration definitions and their verification by definition testing tools. Also new

configuration types such as group, list, password, options and byte size were defined.

By the adding of new "In Review" column to improve the issue solving, the red line of

remaining values took excepted downward shape, as it is shown in Figure 4. Column

is used for solution correctness checking, so it cannot happen that the issue is closed

without its review. On the other side, significant part of issues were solved at the end

of the second sprint. The main reasons of this problem were bad team communication

and sprint length. During the sprint every issue was solved, as it is shown in

Figure 4

Figure 4 Pink Floyd burndown chart

44

Figure 5 Pink Floyd issue list

 Nazov Stavby

Number of sprint: 3

Name of sprint: Nazov Stavby

Sprint date: 03/Nov/15 4:16 PM - 09/Nov/15 2:58 PM

Number of issues: 12

Number of non-completed issues: 2

Number of story points: 44

Number of non-completed story points: 12

The third sprint named Nazov Stavby was primarily aimed at creation and setup of

development environment, which is OpenStack platform. Also Debian Jessie image for

OpenStack was created, on which the node client services will be run. Created was

XML builder, which will be used for communication between core and clients.

Within the node client core script for automatic startup was created. Node client

methods for pushing configuration and controlling service were created. Also tests for

45

node client core were corrected. Documentation and webpage changes based on

review from team leader were performed.

As is shown in Figure 6, the sprint was planned on less than week and amount of story

points was larger than how it was in the second sprint Pink Floyd. This resulted in a

failure to complete two of planned issues. Migration of ngnlab.eu machines was not

done due to extensive differences between source and destination environment and

lack of time. The issue has been revised and will be planned to the next sprint. In

addition, decision was made to create epics for more challenging issues. In other

words, the issue will be distributed into more manageable issues. Entire list of

completed and not completed issues is shown in Figure 7.

Figure 6 Nazov Stavby burndown chart

46

Figure 7 Nazov Stavby issue list

 Kratky Proces

Number of sprint: 4

Name of sprint: Kratky proces

Sprint date: 09/Nov/15 4:45 PM - 18/Nov/15 7:33 PM

Number of issues: 25

Number of story points: 88

The fourth sprint named Kratky Proces was primarily aimed at creation of

documentation for 1st checkpoint. The documentation was divided into two main parts:

 Management documentation

 Technical documentation

47

Management documentation contains big picture, standards used in team, goals for

winter semester, winter semester retrospective, project team meeting reports and

sprint summaries.

Technical documentation contains system overview, project proposal, goals for winter

semester and system modules. System modules part is divided into analysis, design,

implementation and testing.

Management system bundles were designed in the concrete configuration and

database bundle. Also the configuration bundle were implemented and reviewed.

Environment and networking for NetCell development and testing was setup and VPN

remote access to network was granted. Node configuration tools were upgraded.

As is shown in

Figure 8, the sprint was planned on two weeks and amount of story points was

significantly higher than in previous sprint, which resulted into a bad time management

of team members. So main part of issues was resolved at the end of the sprint. Entire

list of completed issues is shown in

48

Figure 9Figure 7.

Figure 8 Kratky proces burndown chart

49

Figure 9 Kratky proces issue list

 Deladap

Number of sprint: 5

Name of sprint: Deladap

Sprint date: 23/Nov/15 3:49 PM - 08/Dec/15 10:54 PM

Number of issues: 24

Number of story points: 82

The fifth sprint named Deladap was primarily aimed at setup of virtual machines for

node modules. Also development environment for all of the node modules was setup.

Basic methods for getting basic node type information, node configuration definition

and controlling node module services was implemented.

50

Bundle design continued in event logger and web server SPI. Also web server and

database bundles were implemented. Test for configuration bundle were created. PAX

Exam framework for testing in MS project was setup. Node configuration tools were

design for OS windows.

As is shown in

Figure 10Figure 6, the sprint was planned on less than week and amount of story points

was 82, which resulted into a sprint extending for two more days. The sprint extending

cause issue review inconsistency. Some of issue were accepted although they were

incorrectly implemented. Also some issue were added after sprint started. Entire list of

completed and not completed issues is shown in

51

Figure 11Figure 7.

Figure 10 Deladap burndown chart

52

Figure 11 Deladap issue list

 Five Finger Death Punch

Number of sprint: 7

Name of sprint: Five Finger Death Punch

Sprint date: 01/Mar/16 10:00 AM - 16/Mar/16 4:45 PM

Number of issues: 29

Number of story points: 74

Number of non-completed issues: 28

Number of non-completed story points: 37

53

First sprint in summer semester was started in second week of the semester. First

week of semester was used for discussion and analysis other opportunities. The whole

team decided about two weeks sprint duration. This sprint contains main part of

functionality of Netcell Node-Client Core, which is network service configuration.

Parser for XML configurations were created in this sprint except of Database Server

configuration and Web Server configuration. Web server configuration was already

created but not reviewed, so we weren’t able to close this issue.

Because of the illness of two team members, not all tasks were fully completed during

sprint duration. Figure 14 displays all not-completed tasks and also removed issues

from sprint.

As is shown in Figure 12, most tasks were completed in last days of sprint. This was

caused by long code review. Most of the issues were done successfully which is shown

in Figure 13.

Figure 12: Five Finger Death Punch Burndown Chart.

54

Figure 13: Five Finger Death Punch completed issue list

Figure 14: Five Finger Death Punch not-completed issue list

 DMS

Number of sprint: 8

Name of sprint: DMS

Sprint date: 22/Mar/16 10:00 PM - 11/Apr/16 5:37 PM

Number of issues: 15

Number of story points: 53

Second sprint of summer semester was mainly focused on functional test creation of

Node Types Configuration developed in previous sprint. Uncompleted tasks from

previous sprint were also added to this sprint and they were successfully completed in

this sprint. Sprint also contained tasks focused on development of management core

55

which is responsible for management of developed Node Types Configurations. New

services for provision of OpenStack functionality was added to management core in

this sprint. As you can see on burndown chart shown in Figure 15, most of the tasks

were completed right before the end of the sprint. Main reason of this issue was

because task were hard to review because of the complexity of each task.

Figure 15: DMS burndown chart

Figure 16: DMS completed issue list

 Arctic Monkeys

Number of sprint: 9

Name of sprint: Arctic Monkeys

Sprint date: 11/Apr/16 6:02 PM - 26/Apr/16 12:44 AM

56

Number of issues: 9

Number of story points: 49

This sprint was the last sprint of summer semester. Sprint was focused on refactoring

management server because of the OpenStack java OSGi libraries mismatch and

Node Type Management Development. Based on product functionality final tests were

created. User acceptance testing environment was created in OpenStack network and

fist version of final product was deployed into this infrastructure. All tasks were

successfully completed and as you can see on the burndown chart shown in Figure

17, tasks were finished and reviewed on regular basis.

Figure 17: Arctic Monkeys burndown chart

Figure 18: Arctic Monkeys issue list

57

6 Winter Semester Global Retrospective

This chapter is focused on how we fill goals from beginning of the semester. Our team

created some goals for winter semester which are described in document Global Goals

for Winter Semester, which is part of technical documentation.

As first decision made by team was choosing cloud platform for our product. We

decided to use OpenStack. This decision was based on good knowledge of OpenStack

modules and fact that OpenStack have very good documentation, which includes API

calls for VNFs and network operations (create, delete, modify). Next completed task

was design of our system. We decided to split system into two part nodeclient-core

(which is serving VNFs) and nodeconfig-core (which is serving as management core).

Virtual network functions (services) were chosen on first team meeting and agreed by

each team member. Basic functionalities of network services were specified in second

sprint and will be updated continuously. Common virtual image of operating system

was created and tested in OpenStack.

One of the hardest goals is setup development and test environment and migrate

ngnlab which is located on university servers we used. Migration is technically difficult

and time-consuming so we decided migrate this lab later, after more migration options

will be found.

In addition to defined goals we made some other things which were not defined as

main project objective. This includes whole methodic and technical documentation,

web page of our team, logos and Git repositories. Also JIRA as issue tracker and

Confluence as document storage setup was necessary for team work. All this

mentioned things were done successfully, most of them in the beginning of the

semester.

In the second half of semester we setup new development and test environment

running on OpenStack and we successfully built VPN access to this environment.

Unfortunately, migration of ngnlab was not yet done and probably will be not done at

all because of the operating system versions incompatibility.

We also created development virtual machines for VNF services and uploaded

nodeclient-core and implementation of service configuration to these instances. This

consists of API, which allows user to configure network services stored in VM.

58

Compared to the original plan configuration of services is not completed yet.

Implemented functionality allow user to start/stop network service, get status of

network service or get configuration information about network service.

Second part was creation of database configuration, custom event logger setup, web

server and web interface of Management core server. All mentioned functionalities

were created except of web interface. All created functionalities do not cover whole

functionality, other functions (like handling etc.) will be added in future development.

59

7 Summer Semester Global Retrospective

This chapter is mainly focused on how we continue in filling team project goals. Firstly,

we summarized the done work in winter semester and we created plan for the summer

semester. The plan describes goals, which we wanted to accomplish and work

redistribution for each team member during the summer semester.

We also continue on developing VNF services, especially on implementation of

uploading configuration to instances running these services. Functions which allows

user to update configuration for network services stored in VM were created.

Development of services providing defined virtual network functions was completed as

it was scheduled. Also post install script and tests were created for every service.

One of the hardest goals was development of NetCell management core, where

technical issues stopped us from successful finishing. As reaction to these issues we

refactored code of management core, which cost us a lot of time. In addition the

webportal service was not developed as we planned. We agreed on giving up the

developing the webportal in java language, instead we have chosen php and javascript

languages. This portal provides communication with all stable and fully developed

management core API endpoints.

These problems led to protraction of sprint and overall work on team project. Also we

were forced to cancel one sprint due to lack of time. Technical and time management

issues culminated into delaying of product development and releasing.

From the perspective of organization, we regularly met at team meeting at least once

a week. On team meeting we were discussing work progress and occurred issues, and

preparing requirements for sprints. In addition to official meetings we organized extra

sessions dedicated to important bugs and blocker tasks.

Overall development functionality provides fully functional VNF clients, which are ready

for implementation into operable OpenStack network. Developed management core

system contains most of the core components like identity service, database service,

OpenStack service or task management service, which are needed for fully operable

virtual topology management system.

