
IIT.SRC 2012, Bratislava, April 25, 2012, pp. 1–2.

TrollEdit – different approach in editing of
source code using graphic elements

Lukáš TURSKÝ, Jozef KRAJČOVIČ, Maroš JENDREJ, Marek BRATH,
Ľuboš STARÁČEK, Adrián FEJEŠ*

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

Ilkovičova 3, 842 16 Bratislava, Slovakia
tp-team-10@googlegroups.com

1 Introduction
Today programmers use editors and IDEs that usually use simple color highlighting without any
sign of graphic enrichment features. However enriching the source code with graphic elements can
be beneficial for the understanding of the structure of given code and thus lead to better
understanding of its structure and meaning for the programmer. This basic observation is the
driving idea behind TrollEdit.

TrollEdit is an experimental editor that tries to enrich source code with graphical elements
for easier manipulation. Source code editing can sometimes be very problematic especially when
reviewing unknown code that the programmer is not familiar with. Most of the time programmers
are trying to familiarize themselves with the syntax of the source and only then follow to analyze
its semantic meaning. TrollEdit tries to address both of these steps by enriching the text editor with
graphical elements instead of relying on colorized text.

TrollEdit is a running project, which started as a research idea by team Ufopak. The team
explored the possibility of using abstract syntactic trees instead of simple coloring rules to enrich
the presentation of source code and its manipulation. Our goal is to further improve upon the
existing core functionalities so TrollEdit can be deployed for real development tasks.

2 Motivation and current achievements
The core functionality of TrollEdit is based on the use of LPeg pattern matching library. Using this
library we are able to parse source code according to its grammar into an abstract syntactic tree
(AST). This data is then used to enhance the text visualization using the Qt framework, which
provides the needed graphic functionalities. The proper combination of these two technologies
made this editor possible by utilizing the Lua programming language and an interface between the
two technologies. For performance reasons the current project relies on the much faster LuaJIT2
implementation.

Using a scripting language and the LPeg [1] library we are able to parse the content on any
open file into abstract syntactic three (AST) assuming that we have a matching language grammar.

* Master degree study programme in field: Software Engineering

Supervisor: Dr.Peter Drahoš, Institute of Applied Informatics, Faculty of Informatics and Information
Technologies STU in Bratislava

2 Researching Solutions in Information Systems, Computer Graphics and Multimedia

Created hierarchical order is then used to visualize and interactively manipulate the structure of the
program. Users can than easily control and shift whole blocks just as they are displayed without
any usual problems from conventional text editors (text indent, selection etc.).

On top of that, the idea of literate programming by Donald E. Knuth [2] is explored as we
can easily document parts of source code with comments that can contain rich text content for
documentation purposes.

Based on the work done by Ufopak we aim to optimize the generation of the AST by
utilizing parallel processing and a more efficient way to access the generated data. Among other
prominent changes we are introducing, is the ability to switch between graphically enhanced and
legacy visualization of the source code. In text-mode the editor works as any other common editor
and does not interfere with the editing process so productivity of programmers is not affected
when writing code. However in second mode user gets the full potential of enhanced editor, where
edited text is represented in graphic blocks as we can see on Figure 1. This can be interactively
manipulated, printed, exported as PDF or saved for documentation.

Figure 1.Visualization of two files opened in editor, one in graphic-mode and other one in text-mode.

3 Conclusion
All our contributions are aimed to ensure that TrollEdit will be a practical editor designated with
extensibility, efficiency and flexibility in mind. New grammar can always be added for support of
new languages without any invasion to editor. For example we can use the editor features to create
a grammar for simple ToDo list management as part of the evaluation process. The visual
presentation of the editor is also extensible as it relies on style sheets defined using the CSS
format.

References
[1] Roberto Ierusalimschy: A text pattern-matching tool based on Parsing Expression

Grammars, 2009, PUC-Rio, Rio de Janeiro, Brazil
[2] Knuth, D.E.: Literate Programming, 1992, Stanford University Center for the Study of

Language and Information, Stanford, CA, USA, 1992.

	Introduction
	Motivation and current achievements
	Conclusion
	References

