\

ON

B, TeamO8 - Simulanti

Behavioral states

Our behavioral model is based on state machine with 4 states - Calm, Path finding, Following path and Evacuated state. At the beginning of the simulation, all
agents are in the Calm state, in which they just randomly move around the map. As soon as they discover fire, or they are passed the information about fire, their state
changes to Path finding state. In this state, every agent tries to compute his own evacuation path to avoid fire and get to safety. If there is such a path, his state
changes to Following path state and agents starts to run towards his goal - exit door. If there is no such path (agent is blocked by fire), agent does not change state,
but he tries to get as far from fire as possible. When agent reaches the exit door, he enters the Evacuated state, which means he escaped from building.

Graph algorithms

140100101

S 1 110010

Searching the most efficient path for the agent is calculated by customized Q-learning algorithm which precalculates distances among particular meshes in map.
If agent cannot find the path because of the fire emeregancy, additional computation of the save path is performed by A* algorithm. If such path does not exist, agent
just run away as distant from the fire as possible.

- 2Y SR\ 24 .
Fear factor

b e AN, | -\

In our solution, every agent has his own level of fear. At the beginning, he is calm and his fear factor is low. As soon as he discovers fire, level of fear rises up. This
sudden increase ends in change of state of the agent. Calm state is replaced by Path finding state and agent tries to find the nearest exit. While escaping from
building, this agent spreads the information about fire. Therefore, if he enters the room, where there is no information about fire yet, level of fear of every agent within
room raises as well. Moreover, fear factor affects the speed of movement of the agents. It also decreases over time, which brings another aspect of realism in our
simulation. As agents move away from fire, their level of fear decreases and they slow down as well.

ks ey
- -

Ie
>

Flow field

We take a certain area around agent, compute the vector which is
resultant movement vector » -

of all agents in this area at Y&
given moment. After steering ‘8
vector of movement is computed, g
we let this area movement vector 9§

Steering vectors

In our work we use two types of steering behaviours. One that ensures that
the agent won't walk into wall is called obstacle avoidance. Our implementation of
avoidance basically checks distance length between agent and nearest walls. In case
that length is under specific threshold, the avoidance vector pointing away from the
wall is applied to agent’s movement. The other steering behaviour we incorporated
is called separation and is taking care of preventing collisions between
agents themselves. Basic principle is the same as with avoidance, but in this case
the distance is computed between two agents. Similarly, separation vector is
pointing away from the adjacent agent.

N AT fTIYYTrMITITOYTYTIY RO

ah

"aapeay

- .

Resultant agent movement is computed as weighted sum of path following, obstacle
avoidance, separation and flow field vectors.

rest of the crowd.

— _

Distributed computing

Realistic crowd simulation brings many difficulties - main ledge is computing complexity. Our solution needs a lot of computing power. Having this fact in mind from very beginning, we designed the
application architecture, so that it can be used on more than one computer simultaneously. Usage of distributed computing makes development much more difficult, but it also gives us brand new
\ possibilities in crowd simulation. Distributed computing is realized by MPI, particularly MPICH2.

o S r

Visualisation Map representation

The simulation environment is based on maps data which are defined in DXF file format.
DXF is interchangeable file format which can be converted from internal formats of
various programs (e.g. 3Ds, DWG, OSM,
C4D). Map contains several layers which
represent its properties. Low-level layers
describe constraints, obstacles,
starting and target locations of
agents. High-level layers contain navi-
gation mesh which is used to aid in
path-finding through large spaces. This
way we have extensive capabilities of cre-
ating and simulating real situations.

010011010010 { FU

"

(VIR Yo Rika
“i\l ua’."&\ i‘&f ! x
&5—\\‘\& !&R\‘
CaRTAt e
\} ‘-""\ \
LS S
PR

L8

Wy
s

3

a S

4

Institute of Informatics and Software Engineering | / . Teamo: r : / ASry e, TR -
Faculty of Informatics and Information Technologies *' hal Forr 4‘: Lukas Pavlech, Ada hﬂi‘ ;’I“?"';.h"-"' ﬁ etrdd, Marek Hlavat
iversity of Technology in Bratislava, Slovakia - im08@ go 'i"' e =R S AN | Jp— | |

IR MLt .
. .4__,_#1-;;; .‘h_ :T. b A F 5.3 -ﬁn.: i B
e BT e RSN g e S - | ~e g VoMY RN
IIIII ’ Tl - . T LR T r. g - . 5 e v '

20 {

