
Robocup 2D Soccer Simulation

Holger Endert, Robert Wetzker, Thomas Karbe
Axel Heßler, Philippe Büttner, Felix Brossmann

DAI-Labor, TU Berlin
Faculty of Electrical Engineering

and Computer Science

The Dainamite Agent Framework

Team-Description

November 23, 2006

Contents

1 Introduction 3
1.1 Introduction - The Robot World Cup Initiative (RoboCup) 3

1.1.1 The Robocup Simulated Soccer Environment 3
1.1.2 Release Notes . 4
1.1.3 Structure of this Document . 5

2 Getting Started 6
2.1 Introduction . 6

2.1.1 Requirements . 6
2.2 Project Structure . 6
2.3 Starting the Team From Command-Line . 7
2.4 Embedding Dainamite in Eclipse . 8
2.5 The Agent Configuration Files . 10

3 The Dainamite Agent Architecture 12
3.1 Introduction . 12
3.2 Agents of the Dainamite Team . 12

3.2.1 The AbstractAgent . 12
3.2.2 The RobocupAgent . 15
3.2.3 The CoachAgent . 18
3.2.4 The TrainerAgent . 18

4 Parser 21
4.1 Introduction to the Parser Component . 21
4.2 The Different Parts of the Parser . 21

4.2.1 The Player Parser . 22
4.2.2 The Coach/Trainer Parser . 23
4.2.3 The Hear Parser . 23
4.2.4 The See Parser . 23
4.2.5 The SenseBody Parser . 24
4.2.6 The Parameter Parser . 24
4.2.7 The Other Information Parser . 25

4.3 The Different Messagetypes Explained . 25
4.3.1 General Message Layout . 25
4.3.2 The Hear Message . 25
4.3.3 The See Message . 26
4.3.4 The Sense Body Message . 27

ii

4.3.5 The Server Param Message . 28
4.3.6 The Player Param Message . 28
4.3.7 The Player Type Message . 28
4.3.8 Overview About Generated Info-Types 29

5 Synchronisation 31
5.1 Overview . 31
5.2 Communication . 31
5.3 Problem . 32

5.3.1 Holes and Clashes . 32
5.3.2 Waiting for a VI . 32

5.4 Synchronization Concept . 32
5.4.1 Emergency sending . 34

6 WorldModel 35
6.1 Overview . 35
6.2 Global vs. Agent Perspective on the Environment 35

6.2.1 Geometry Classes and their Usage . 38
6.3 World Model Content . 41

6.3.1 Class Descriptions . 41
6.4 Structure of the WorldModel . 51

6.4.1 PlayersModel . 51
6.4.2 MeModel . 51
6.4.3 BallModel . 52
6.4.4 ShortTermMemory . 52
6.4.5 LongTermMemory . 52
6.4.6 PConf and SConf . 52

6.5 Updates of the WorldModel . 53
6.5.1 The update methods for information types 53
6.5.2 The body sense update methods . 53
6.5.3 The visual update methods . 54
6.5.4 The aural update methods . 55
6.5.5 NeckRotator (robocup.component.NeckRotator) 55

6.6 Particle Filter . 58
6.6.1 Overview . 58
6.6.2 The particle filter in theory . 58
6.6.3 Important Classes . 62
6.6.4 Outlook . 66

6.7 ReachableArea . 67
6.7.1 What is the Reachable Area? . 67
6.7.2 Usage of ReachableArea . 67
6.7.3 Internal work of ReachableArea . 71
6.7.4 What parts need to be improved? . 72

iii

7 Action 73
7.1 Action classes . 73

7.1.1 Action . 73
7.1.2 DashAction . 74
7.1.3 TurnAction . 74
7.1.4 KickAction . 74
7.1.5 CatchAction . 74
7.1.6 MoveAction . 75
7.1.7 TackleAction . 75
7.1.8 AttentionToAction . 75
7.1.9 PointToAction . 76
7.1.10 TurnNeckAction . 76
7.1.11 ChangeViewModeAction . 76
7.1.12 SayAction . 76

7.2 Action factories . 77
7.2.1 AttentionToActionFactory . 77
7.2.2 BasicActionFactory . 77
7.2.3 PointToActionFactory . 80
7.2.4 SayActionFactory . 81
7.2.5 TurnNeckActionFactory . 81
7.2.6 ViewModeActionFactory . 82

7.3 NeckRotator . 83
7.3.1 Overview . 83
7.3.2 The NeckRotator in detail . 83
7.3.3 The special state “SEARCHBALL” . 87
7.3.4 Many advantages - Any disadvantages? 87
7.3.5 Outlook . 87

8 Prophet 89
8.1 Overview . 89
8.2 The structure of the Prophet and Situation class 89
8.3 Situations Used by the Prophet . 90

8.3.1 The abstract Situation . 90
8.3.2 InterceptBallSituation . 91
8.3.3 PassSituation . 92
8.3.4 ScoreSituation . 93
8.3.5 GoalkeeperSituation . 94
8.3.6 DribbleSituation . 94

9 Message-Factory 95
9.1 Introduction . 95
9.2 Message Format . 95

9.2.1 Definition of Messages . 96
9.2.2 Receiving a Message . 96

9.3 Encoding and Decoding Numerical Values . 97

iv

9.3.1 Converting Small Positive Integer Values 97
9.3.2 Converting Other Integer Values . 98
9.3.3 Converting Floating Point Values . 99

9.4 En- and Decoding Processes . 99
9.4.1 Encoding Messages . 100
9.4.2 Decoding Messages . 100

9.5 Conclusion . 100

10 Tactic 101
10.1 Introduction . 101
10.2 States and StateEvaluation . 101
10.3 Implemented States . 104
10.4 Conclusion and Outlook . 105

11 Coach 107
11.1 Overview . 107
11.2 Structure . 107
11.3 Coach Language . 108

11.3.1 CLang Grammar . 108
11.3.2 The CLangModel . 109
11.3.3 Freeform Message . 109
11.3.4 Broadcasting Messages . 109

11.4 Heterogeneous Player Types . 110
11.4.1 Change Player Type . 111

12 SoccerScope and Tools 112
12.1 Introduction . 112
12.2 Monitor . 113

12.2.1 Overview . 113
12.2.2 Using Soccerscope . 113

12.3 The Training scenario editor . 118
12.3.1 Prerequisite . 118
12.3.2 Introduction . 118
12.3.3 How to create a training scenario with Soccerscope 118
12.3.4 How to configure a training scenario 119
12.3.5 Running the scenario . 126
12.3.6 Outlook . 127

12.4 Database . 128
12.4.1 Introduction . 128
12.4.2 Setup . 128
12.4.3 Usage . 130
12.4.4 Structure and Implementation . 133
12.4.5 Remarks . 133

13 Acknowledgement 137

v

14 Appendix 138
14.1 The CLang Grammar . 138

1

”The ultimate goal of the RoboCup project is By 2050, develop a

team of fully autonomous humanoid robots that can win against the

human world champion team in soccer.”

2

1 Introduction

1.1 Introduction - The Robot World Cup Initiative
(RoboCup)

Robocup [10] is described best by stating the goal of the project, which is ’by the Year 2050,
develop a team of fully autonomous humanoid robots that can win against the human world
champion team in soccer’. Developing a team of robots for such a task includes dealing
with fields of research like artificial intelligence, multi-agent collaboration, robotics, image
recognition and much more. In order to make contributions to some or at least one of the
related topics the robocup initiative holds different kinds of competitions, whereas each of them
emphasises only parts of the complete robocup problem. That is, there are some competitions
for real robots of varying size playing against each other as well as for simulated environments,
where software agents are used instead of real robots, ignoring the details of hardware design.

1.1.1 The Robocup Simulated Soccer Environment

When developing a robocup team for simulated soccer, one has to deal with the Robocup
Soccer Simulator 1 (short: soccer server). This is a program that can simulate the environment
and the players of a soccer game, using some degree of abstraction. A detailed description
of the soccer server, its behaviour and protocols can be found in the programs manual [7]
or in this master thesis [8]. This subsection gives only a brief overview about the general
architecture.

A simulation of a soccer game is usually done by executing several programs distributed
in a client-server style. The soccer server is responsible for simulating the environment, the
players, the ball, the time and the soccer rules. Since it is a server, it provides an interface for
agents and monitors to connect for different purposes via the UDP protocol. Each software-
agent connects to the server in order to take control of a single player, e.g. the goalie or a
forward. Controlling is done by sending action commands to the server within discrete time-
steps (cycles), whereas the server responds with perceptions, that are available to the agent
(visual, acustic and sense). The latter are used to orientate and are the basis for further
decisions of the agent. A monitor is a program, which is able to display the state of a current
or past simulation, and hence can connect to the server as well. It receives the actual game

1The actual version is 10.0.7, which is the official tournament release in the year 2006. See at
http://sserver.sourceforge.net for details.

3

Figure 1.1: Overview about the Client-Server-Based Simulation

state every cycle such that it can update its view. An overview of the general architecture is
given in figure 1.1.

1.1.2 Release Notes

The following documentation refers to the agent framework developed at the DAI-Labor 2,
which participated on the robocup in the year 2006 in Bremen and placed ninth out of sixteen
teams. The team is called Dainamite, and as far as the author knows, it was the first team,
which was written in Java, that qualified for and participated in an official tournament. In
its first game, this team was able to beat the champion of the previous year (Brainstormers),
and won the group ranking of the first round. However, the second round was disillusion-

2www.dai-labor.de

4

ing, and we missed the quarter finals by a narrow margin. The given release includes the
complete framework as well as the most basic skills like passing and ball-interception, so that
new developers can begin immediately extending tactic and specialized higher-level tasks, e.g.
machine learning. Other tactic relevant skills like attacking and the back-four were removed to
enforce new developers to think about other solutions. With this release we hope to open the
Robocup-World for other Java Developers and especially for educational institutions. There-
fore, this documentation and all code contained in the dainamite framework is published under
the terms of the GNU GPL (GNU General Public License) 3. Feel free to use, extend and
redistribute all parts as granted in [2]. We do not provide any warranty for the code or its
functionality. We also have to note, that the contained libraries are property of the corre-
sponding owning institution and or developers, and we therefore are not responsible for their
correct functionality. A listing of these libraries is given in 2.2.

1.1.3 Structure of this Document

This document is organized as follows: The next chapter gives an overview about the agent
classes like the RobocupAgent itself, or the Coach. After that, the building blocks of the
agents are presented, each in a separate chapter. These are the parser, the synchronization,
the world-model and the particle filter, the prophet, the action plus neckrotator and message-
factory and the tactic. Then, there are some issues concerning the coach, the goalie and the
Monitor, whereas the latter is an extension of SoccerScope2003 [11], developed by the YowAI
Team 4. Finally, this document closes with a general assessment of this framework and gives
rise to some extensions and improvements that can be done.

3http://www.fsf.org/licensing/licenses/gpl.txt
4Special thanks to Shuhei Shiota for allowing us to release our SoccerScope variant.

5

2 Getting Started

2.1 Introduction

This chapter deals with starting the team and explains some of the related basic mechanisms
like the configutation files. The source-code release already contains some basic skills, which
provides the means for a simple kick-and-run tactic, and these can and should be tested to get
a feeling for what is going on in Robocup. The development of Dainamite was primarily done
using Eclipse [1], a very powerful Java IDE, and therefore its usage is explained as well. On
the other hand, starting the team independant from eclipse saves resources such as memory
and cpu-time, what may be necessary on older machines in order to obtain better simulations.
Hence, starting the team from command-line is explained too.

2.1.1 Requirements

The first requirement for executing simulations is an executable version of the soccer server.
This can be downloaded from http://sserver.sourceforge.net/. Each version above 9.4.5 should
be compatible to our team. The version used in Bremen was 10.0.7 with 10.0.11 as base-version.
A description of how to compile and run the soccer server can be found at
http://www.cs.utexas.edu/ AustinVilla/sim/keepaway/tutorial.html. For training scenarios
described in section 12.3, an adapted version of the server has to be used, which is also
available on our website. The one and only real requirement for the team itself is Java in
version 1.5 or higher. You can get it from http://java.sun.com/j2se/1.5.0/download.jsp. If
you want to use Eclipse, you have to use at least the version 3.1 for Java 1.5 compatibilty,
available at http://www.eclipse.org/downloads/.

2.2 Project Structure

The Dainamite Framework was created as an Eclipse Project, and therefore a project structure
was used to organize the contained resources. The project is distributed as zip-file, which after
unpacking has the structure as presented next. All resources are located in a project folder
called Robocup. In this, the source code, configuration files, libraries, scripts and release
notes are contained. The source code is splitted into two parts, one contains the code for
the team, and the other the extended SoccerScope version. The former is located in the

6

http://sserver.sourceforge.net/
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/tutorial.html
http://java.sun.com/j2se/1.5.0/download.jsp
http://www.eclipse.org/downloads/

robocup module, whereas the source code root is in robocup/src/main/java1. The SoccerScope
code is located in a similar module (called soccerscope), and the source root is therefore in
soccerscope/src/main/java. Additionally, there are configuration files for the agents, which
have to be passed to them on startup. These are located in the sub-folder etc/agents. Also
located in the etc/ folder are configuration files for database functionality of the monitor
(database.config and robocup.sql), and start- and build-scripts for the team (etc/jar/). Finally,
the framework requires some extra Java libraries, which are located in the lib/ sub-directory
of the project. Currently, these libraries are required:

• ssj.jar - a library for stochastic calculations [5].

• jcommon-1.0.0-pre2.jar - dependency for jfreechart (GNU LGPL).

• jfreechart-0.9.4.jar - a library for creating charts with Java [9] (GNU LGPL).

• xpp3 min-1.1.3.4.O.jar - dependency for xstream (used for Training-Scenario creation)
(BSD Free Software License, copyright 2003-2006 by Joe Walnes).

• xstream-1.1.2.jar - a library for XML serialization of Java Objects (used for Training-
Scenario serialisation), (BSD Free Software License, copyright 2003-2006 by Joe Walnes)
[6].

• mysql-connector-java-3.0.10-stable-bin.jar - a library for adding database connectivity
to the monitor (published under GPL by MySQL [4])

2.3 Starting the Team From Command-Line

In order to start the team from command-line, the project contains start-scripts for Windows
(bat-files) and Unix (shell-scripts). There are different ways to start the team, e.g. out of a
created jar-file or directly from classes. It is also possible to start the team on more than one
machine, which is sometimes required for robocup competitions. In this years competition,
we had to start the complete team on one machine, but we had to use 12 JVM instances, one
for each agent, in order to forbid inter-process communication between them. For testing and
usage with the monitor, we recommend to start the complete team in a single JVM, hence the
given start-scripts are fitted to that use. Simply adapt the files StartTeamIn1JVM.* on the
/etc/jar/ subdirectory. You probably have to change the JAVA HOME envrionment variable,
the servers hostname and the teamname. There exists also a manifest file for creating a jar
archive (manifest). Only starting the team requires only one library (ssj.jar). For using the
monitor with charts, database and training scenarios, additional jars have to be added (directly
after the given lib, leaving a space between them).

1This corresponds to a Maven2 module.

7

2.4 Embedding Dainamite in Eclipse

The subsequent sections detail how to setup the working environment in order to start de-
veloping and testing on the Dainamite Agent Team. Generally, there are more than one way
to do that - every Java based Development Tool will work, but this description refers to the
recommended way using Eclipse as IDE and/or Maven as Build-System. If the developer is
trained on other IDE‘s (e.g. Netbeans), he might want to use them instead. The most basic
steps for including the project into a workspace might be similar there.

Include Project into the Workspace:

• Download the project (zip) and save it to your local file system.

• Open Eclipse, and import the project via File → Import → Existing Projects into
Workspace.

• Click Next, choose Select from Archive File and browse the project.

• Click Finish, and the project will be extracted and copied into your workspace.

Set properties:

• Select the Robocup Project

• Go to Eclipse menue → Project → Properties

A Window as seen in figure 2.1 should appear.

Figure 2.1: Properties

8

• Select on the left tree Java Build Path

• Click on Source-Tab → Add Folder...

• Select [Project Name]/robocup/src/main/java and [Project Name]/soccersope/src/main/java

• Click Ok and Apply

This should now look like figure 2.2.

Figure 2.2: Properties

• Now switch to Libraries-Tab → Add JARs...

• Open the Robocup/lib directory and select all Jar-Files and apply.

This should now look like figure 2.3

Set Run-dialog:

• Close the Properties dialog and click in eclipse menue Run → Run...

A Window named Run should appear.

• Click on Java Application

• Now create a new Application by clicking the New button

• The Main-Tab should contain following values:
Project: Robocup or the name you called it

Main class: robocup.component.RobocupAgent

9

Figure 2.3: Properties

• The Arguments-Tab should contain following values:
Program arguments: [TEAMNAME] [HOST] goalie.conf defender.conf defender.conf

defender.conf defender.conf player.conf player.conf player.conf player.conf

player.conf player.conf coach.conf

e.g.: DAINAMITE localhost goalie.conf defender.conf defender.conf defender.conf

defender.conf player.conf player.conf player.conf player.conf player.conf

player.conf coach.conf

VM arguments: -Xmx512M

Working directory: ${workspace loc:Robocup}/etc/agents
Now the Dainamite Project should run by clicking the run button.

2.5 The Agent Configuration Files

When starting the team, each agent needs a configuration file containing required informa-
tion, such as the teamname or the servers location (hostname, portname). Therefore, the
configuration files are simple property-value pairs, which can be read using a Java-Properties
object. For each configuration file, which is given as program argument, an agent instance is
created, whereas the order is relevant: First, the goalie has to be started, since he should have
the tricot number 1. Thereafter the defenders, followed by all other player agents should be
instantiated. Finally, the coach should be started, because his work requires that all agents
are in place (i.e. for substituting the heterogeneous player types). Since the teamname and
the hostname are also given as program argument, the values of the configuration files are
overwritten, such that each agent uses the same values. In the following, the properties are

10

listed and explained briefly:

• teamname - The name of team, with which the agents connect to the server. Note, that
each agent of a team must use the same teamname, else the server would’t recognize
the members correctly. Therefore, the first program argument is used to specify a global
teamname.

• hostname - The address of the server, either in text (e.g. localhost) or as ip-address.
This value must be set via the second program argument, which is also global.

• port - The port on which the server is listening for connections. The default pots are
already set here.

• mode - An ID for the agent type: 0 - FieldPlayer, 1 - Goalie, 2 - Coach and 4 - Trainer
(defined in AbstractAgent).

• gui-connect - Defines, if the agent connects to the gui (for debugging purposes) or not.
A global value can be set optionally using the VM argument -Dgui-connect=true—false.

• statelist - The states (tactical classes), which should be instantiated by the agent, to-
gether with the corresponding playmodes, in which that state should be active. Note,
that the names are the class-names of the states (subclasses of AbstractState) located in
package robocup.component.tactics, and the playmodes are the constants defined in the
enum ControllerNumbers.PLAY MODE.

Changing the configuration files is especially neccessary, if new states should be added to the
agents. Therefore use the same syntax as already given in the files. Note, that there shouldn’t
be an empty line between the states, and each new line should be closed by a ’\’, which
indicates, that the next character (a newline) is ignored, and the property value continues.

11

3 The Dainamite Agent Architecture

3.1 Introduction

The core elements of this framework are the agent classes, which are topic of this chapter. In
the following, their structure is given by presenting the corresponding class hierarchy, and the
general control flow within them is shown using sequence diagrams. This should help to gain
a better understanding, how the framework as a whole works, before going into details of the
specific components of the agents.

3.2 Agents of the Dainamite Team

The agents that take part in a robocup simulation are the player-agents, the coach and some-
times a trainer. However, the trainer does not belong to the team (at least conceptual), hence
its usage is explained in section 12.3. The following section gives an overview about the basic
structure and capabilities of these agent types.

3.2.1 The AbstractAgent

The basic class for each agent is called AbstractAgent. It contains all type independent data
and functionality, that a robocup agent must implement. Generally, this class provides the
means for four tasks, which have to be solved within each agent type. These are initializing
correctly, staying alive, maintaining a bi-directional connection to the server (send and receive)
and understanding the servers messages. Each of them are important in different lifetimes of
the agent, which are explained next.

In order to instantiate and use an agent-object, one has to follow three basic steps. Each
of them is responsible for different sub-tasks. Generally, the following order must hold, else
instantiation may fail because of connection problems to the server.

1. Create an instance of the corresponding agent class.

2. Call the initialize() method of the agent object.

3. Call the start() method (inherited from the Thread-class) to activate the agent directly
after initialization.

12

Figure 3.1: Creation of an Instance of the RobocupAgent class

On creation, the agent-object needs all necessary data, which is used to instantiate its
components correctly. For instance, in order to connect to the soccer server, the agent must
become aware of the hostname and the port, on which the server is listening for requests.
All this information is given as a propery-object 1 to the constructor. In the current imple-
mentation, these objects are loaded from configuration files (one file for each agent), whose
paths are given as command line arguments to the JVM. Additionally, there are some global
command line arguments, which may overwrite properties of the specific property files (e.g.
the teamname or the server hostname). The process of creating an instance of an agent with
the new -operator (here for the class RobocupAgent) is given in 3.1.

Initialization of the agent contains reading all necessary information from the properties,
which were given on instantiation, creating all components, e.g. the world-model, the parser,
and so on, and establishing a connection to the server. The involved steps can be seen in 3.2,
where at first in initBaseConfig() and initConfig() the basic and specific information from the
properties are read. In initComponents(), all components are instantiated (the dots indicate
their creation), and in initConnection(), the agent-type specific initProtocol() is called, which
creates the RCSSConnection, sends an init-command to the server, and uses the responses
to finish initialization of the agent and its components (e.g. the unum, the server-settings
and the heterogeneous player-types are provided there, so that they can be set only after
receiving them). Some of these methods are equal for different agents, others not, hence the
AbstractAgent can only provide abstract methods for some tasks, which were overwritten in
the specific sub-classes.

The run-method of the agent is responsible for keeping him alive, i.e. maintaining an active
state. It also determines the order in which specific tasks are executed, which are in general
receiving data from the server, process these data into readable objects and finally decide how
to act after receiving them. Each of these tasks are delegated to the main components, which
are triggered there. These are for the AbstractAgent :

1. RCSSConnection: This class contains simple methods for sending and receiving strings

1java.util.Properties

13

Figure 3.2: Initialize the RobocupAgent object

14

Figure 3.3: Overview about the class AbstractAgent

from and to the soccer server.

2. RobocupParser: This class can transform strings into objects, which are needed to
extract and process their content later on.

Finally, the objects created by the parser are further processed by the components of each
specific agent type (see for example RobocupAgent therefore), hence here the abstract method
processInfo is called, which is overridden in the subclasses respectively. In Figure 3.3, the class
AbstractAgent and its two components are displayed in UML notation.

3.2.2 The RobocupAgent

This class is the main class for all player controlling agents, and it also contains the main
method for all agent types, which is used to start the entire team. It extends the AbstractAgent
and implements the methods that have to be overridden. It also incorporates some more
components additionally to those mentioned in its super class, which are explained in this
work more detailed in the following chapters. Here, the general structure of this class is
presented briefly.

As an extension of the AbstractAgent, this class provides some additional attributes. These
can be seen in Figure 3.4, as well as its components and methods. The number is the tricot
number (corresponds to the unum received from the server after initialization), which is unique
for his team and hence can be used to identify an agent. The attributes useGui and useTactic
can be used to switch certain functionalities on and off, and the list of states captures the agents
capabilities, which were passed within his config-file, and constitutes his tactical decisions.

The RobocupAgent works by delegating specific tasks in a certain order to its components
in the processInfo()-method. Within those, the main logic for maintaining a worldmodel and
deciding how to act is implemented. The components are:

• Synchro: This component is responsible for deciding, on which percepts to react in order
to stay synchronized to the server. Its main purpose is to avoid holes (cycles, in which
no actions are send) and clashes (cycles, in which two competing actions are send).

15

Figure 3.4: Overview about the class RobocupAgent

• WorldModel: This class contains the knowledge of the agent about the state of the world,
and is updated using the percepts received from the server.

• Prophet: The Prophet is used to predict possible future states of the world, using the
current knowledge and possible actions available to the agent. This knowledge is also
used to decide, which actions are more preferable than others by examining their ex-
pected outcomes.

• StateTactic: This is where the agent decides, how to behave in a current situation.
Therefore, it uses the WorldModel and the Prophet and produces a set of actions, which
were given to the synchro (which forwards them to the server in an appropriate moment).

In 3.5, the control-flow of the RobocupAgent during simulation is given as sequence diagram.
It shows, how and when the different components are used to handle certain tasks. First of
all, the RCSSConnection.receive()-method waits for data from the server, and after that, the
reveiced string is parsed into machine-usable objects within the RobocupClientParser. This
is implemented inside the run()-method of AbstractAgent. The Info-Objects is forwarded to
the processInfo()-method, which is defined abstract in AbstractAgent, but overridden in the
RobocupAgent. There, these objects are used to update the WorldModel (informWorld()) and
to calculate the Tactic (informTactic()). The Synchro handles the sending times, and hence is
informed each time, a message was received (informSynchro()). If for certain time (configured
in RCSSConnection) no message was received, the agent exits the main-loop and terminates,
assuming that the server is not running anymore. This is evaluated in alt 1. In alt 2, it is
evaluated, if the data should be used to update the WorldModel, which in some cases is not
meaningful, e.g. if the second visual information arrived in the same cycle. alt 3 checks, if an
action should be computed by evaluating the Tactic, which should be done almost always after
receiving actual visual information. However, sometimes it is needed to compute an action
after a body-sense information as well, because it might happen, that the visual information
is received very late, so that time is too short here.

16

Figure 3.5: The Control-Flow of the RobocupAgents main thread, after starting.

17

Figure 3.6: Overview about the class CoachAgent

3.2.3 The CoachAgent

The CoachAgent is the agent class for the coach, and therefore extends the abstract agent
as well. Because it has unrestricted and noise-free perception, which already is synchronized
with the server, its structure is little less complicated than that of the RobocupAgent. There
are no extra attributes (like tricot-number), and only two additional components with regard
to the AbstractAgent. These are the following:

• CoachWorld: The knowledge of the coach about the state of the world. It contains more
precise data than those of the player agents, and its maintainance is easy due to better
information from the server.

• OLCoachTactic: This class calculates the actions of a coach, which usually are speech-
acts in freeform or clang format.

The CoachAgent also implements the abstract methods inherited from AbstractAgent, which
are the initConfig, initComponents, initProtocol and the processInfo methods. They serve for
the same purposes as within the RobocupAgent, but are less complicated, because no explicit
synchronization is needed. The tactics for the coach are given in chapter 11. In the following
Figure 3.6, its structure in UML notation is given.

3.2.4 The TrainerAgent

The TrainerAgent has very few functionality within the Dainamite-Framework, but is extended
in the SoccerScope (Monitor) section 12.3. Here, it provides a shell for a trainer, which can
connect to the server and interact through UDP communication in order to execute training
scenarios. Hence it has to implement the abstract methods (see AbstractAgent therefore) in
order to connect and stay active.

The following Figure 3.7 shows a complete view about the agent classes and their compo-
nents.

18

Figure 3.7: Overview about all Agent Classes

19

The next chapters cover the components of the agents in more detail. The order corresponds
to the order of workflow within the agents. First, received messages have to be translated into
usable objects by the parser. Then synchronisation assures the correct activity thereafter.
The worldmodel is updated, and after that, tactical decisions are computed using different
mechanisms.

20

4 Parser

4.1 Introduction to the Parser Component

The Parser is responsible for converting the text based messages received from the SoccerServer
into information that can be handled by the various components of the framework. Therefore
its general purpose is to translate strings into objects (of type Info), using a method with the
following signature:

public Info parseCommand(String message);

The message (parameter) for this method is provided by the RCSSConnection (see Ab-
stractAgent in section 3.2), and the resulting Info-object is processed by other components
(WorldModel) of the corresponding agent. The parser is written using JavaCC [3], a parser
generator for java, which provides the possibility to create a set of parser-classes out of a
grammar specification1. Important for the parser, however, is the initialization of the agent,
because the server version, or more precisely, the protocol that corresponds to a certain server
version, that should be used, can be defined there. This implementation connects with version
9.4.52, and hence the parser is written to understand all message-types that belongs to that
protocol version. As far as we know, the protocols didn’t change in later releases of the server3,
so that this parser should be compatible to later versions as well.

4.2 The Different Parts of the Parser

There are multiple different parts of the parser, some of which correspond to the type of
information processed (see figure 4.1 below). The complete parser is actually a set of different
sub-parsers, each of them for different messages, so that it is possible to combine these parts
for the different agent-types. For instance, some messages received by the coach and the player
have the same form, like the player-type messages, such that here the same sub-parser could
be used. Other messages are quite different, like the visual information, because these are
global and precise for the coach, but noisy with a relative perspective for the players. Here,

1Note that the sources for the parser-classes are all files ending with .jj, because the Java-Files are generated
out of these.

2See therefore the toString()-method of the class robocup.component.actions.InitAction
3The version 10.0.7 was used in Bremen 2006

21

different parsers have to be implemented. Some messages are unique for certain agent-types,
e.g. the sense-body information, which is only sent to the player-agents. In the following, the
parser-aggregation out of sub-parsers is explained for the specific agent-types.

Figure 4.1: The structure of the Parser Parts

4.2.1 The Player Parser

RobocupClientParser :
The main parser for all player-agents, which decides what type of information is to be
processed and which sub-parser will do this.

• Type of information processed

– All

• Other parsers used

– HearParser

– OtherParser

– ParamParser

– SeeParser

– SenseBodyParser

22

4.2.2 The Coach/Trainer Parser

CoachParser :
The main parser for the Coach (and Trainer) messages which uses some of the specific
player parsers.

• Type of information processed

– All except SenseBody

• Other parsers used

– HearParser

– OtherParser

– ParamParser

4.2.3 The Hear Parser

HearParser :
Parses received messages heard from other teammates, the referee or the coach (and
maybe sometimes in the future messages of the other team too). Messages from the
coach are sent via CLang (coach-language), and hence parsed inside the CLangParser,
which is part of the HearParser. This parser generates all types of AuralInfo’s, .i.e.
CoachSayInfo, CoachPlayerSayInfo, PlayerSayInfo, PlayModeInfo and RefereeInfo.

• Type of information processed

– Messages sent by other players

• Example

– (hear 2 135 our 2 ”t0218 -30”)

4.2.4 The See Parser

SeeParser :
Parses visual information like Flags, Lines, Players and the Ball. The resulting info-
object is a collection containing all these objects, i.e. a VisualInfo consists of the seen
LineInfo’s, FlagInfo’ s, a BallInfo and PlayerInfo’s. Note, that these classes have an
inheritance structure similar to that of the corresponding classes of the WorldModel.

• Type of information processed

– Visual information

• Example

– (see 61 ((f t l 10) 37.3 9) ((f t l 20) 37.7 -6 0 0) ((f t l 30) 40.4 -20) ((p ”a4ty”
10) 16.4 -1 0 0 153 154) ((l t) 32.1 -86))

23

4.2.5 The SenseBody Parser

SenseBodyParser :
Parses information provided by sensebody messages. These messages are only received
by the player-agents, which need to know for example about their stamina, recovery,
etc. The resulting info-object is called SenseBodyInfo, which provides the nessessary
attributes for all values.

• Type of information processed

– SenseBody messages

• Example

– (sense body 61 (view mode high narrow) (stamina 3548.34 0.864) (speed 0 111)
(head angle 0) (kick 0) (dash 17) (turn 126) (say 88) (turn neck 77) (catch 0)
...

4.2.6 The Parameter Parser

ParamParser :
Parses the information regarding server parameters and player types. These messages
are sent to the agents initially, and are all the same for each agent type. The result-
ing info-objects are either PlayerTypesInfo, which contains the heterogeneous player-
variants, PlayerParamInfo, containing the general players physics, and the ServerParam-
Info, which contains all other server-related constants. Note that the PlayerParamInfo
and the ServerParamInfo are configurable in the files player.conf and server.conf re-
spectively, which are located in the .rcssserver -folder of the users home-directory. These
files are generated by the soccer-server on first startup, and should be edited for example
when a training-scenario should be used.

• Type of information processed

– Server parameter

∗ Example:
(server param (audio cut dist 50) (auto mode 0) (back passes 1) (ball accel
max 2.7) (ball decay 0.94) (ball rand 0.05) (ball size 0.085) (ball speed
max 2.7)

– Player parameter

∗ Example:
(player param (dash power rate delta max 0) (dash power rate delta min
0) (effort max delta factor -0.002) (effort min delta factor -0.002)

– Player types

∗ Example:
(player type (id 0)(player speed max 1.2)(stamina inc max 45)(player de-
cay 0.4) (inertia moment 5)(dash power rate 0.006)(player size 0.3)

24

4.2.7 The Other Information Parser

OtherParser :
Parses everything not belonging into one of the above categories. This includes error-
messages received from the server and confirmation messages. Errors are not trans-
lated into info-objects, hence the resulting infos are either ChangePlayerTypeInfo or
ChangeOpponentTypeInfo, which are received from the server after player-exchange.

• Type of information processed

– Errors

∗ Example:
(error only init allowed on init port)

– Playertype changes

∗ Example:
(change player type 3 4)

4.3 The Different Messagetypes Explained

Each message has a certain content and format, and is mapped by the parser to specific Info-
objects, containing the corresponding data. In the following section, the message-types are
explained, closing with the resulting objects in a class-diagramm. A more sophisticated, but
not really actual description of the message formats can be found in [7].

4.3.1 General Message Layout

Most of the messages the player receives have a common structure:

• they start and end with brackets (....)

• the first entry after the bracket is the type of the message (see/hear/ ...)

• the second entry is the cycle the message was sent (see 0 ...)

• for more complicated message they’ll be also bracketed inside (see 0 (...) (...) ...)

4.3.2 The Hear Message

The structure of the hear message
(hear [cycle] [source] [message])
There are four sources for something the player hears:

25

• The Referee
The source would be referee

• The Coach
The source would be ol coach left or ol coach left.

• Own Player
The source would be [direction] our [no of player]

• Other Player
The source would be [direction] opp

If the source is the online coach, message is one of the different clang message types. For a
further description of them, have a look at chapter 11. Examples of received hear messages:

• (hear 0 referee drop ball)

• (hear 2 135 our 2 ”t0218 -30”)

• (hear 2 59 opp ”b52342727”)

4.3.3 The See Message

The structure of the see message
(see [cycle] [object]+)
There are five objects a player might see

• flag
object would look like ((f [flag identifier])[position&movement information])

• line
object would look like ((l [line identifier])[position&movement information])

• goal
object would look like ((g [side of goal])[position&movement information])

• ball
object would look like ((b)[position&movement information])

• player
object would look like ((p ”[teamname]” [player no] goalie)[position&movement
information] t)
Where goalie would only appear if the player seen is a goalie and t if the player tackles.
The teamname and number are also not visible every time because the player may be
too far away to see this information.

26

Example parts of received see messages:

• ((f c) 13.7 18 0 -0)

• ((l l) 72.2 -66))

• ((g l) 67.4 -18)

• ((b) 10 7 0.2 -0.1)

• ((p ”a4ty” 6) 9 -2 0.18 1.8 41 5)

Position and movement information may be any of the combinations below (what we actually
see depends on the distance of the object, if it’s father away we get less information)

• [direction]

• [distance] [direction]

• [distance] [direction] [point direction] (player only)

• [distance] [direction] [distance change] [direction change]

• [distance] [direction] [distance change] [direction change] [point direction] (player only)

• [distance] [direction] [distance change] [direction change] [body facing direction] [head
facing direction] (player only)

• [distance] [direction] [distance change] [direction change] [body facing direction] [head
facing direction] [point direction] (player only)

4.3.4 The Sense Body Message

• The structure of the sense body message:

– (sense body [cycle] [info]+)

• Example:

– (sense body 0 (view mode high normal) (stamina 4000 1) (speed 0 0) (head angle
0) (kick 0) (dash 0) (turn 0) (say 0) (turn neck 0) (catch 0) (move 0) (change view
0) (arm (movable 0) (expires 0) (target 0 0) (count 0)) (focus (target none) (count
0)) (tackle (expires 0) (count 0)))

27

4.3.5 The Server Param Message

• The structure of the server param message:

– (server param [parameter]+)

• Example:

– (server param (audio cut dist 50) (auto mode 0) (back passes 1) (ball accel max
2.7) (ball decay 0.94) (ball rand 0.05) (ball size 0.085) (ball speed max 2.7) (ball
weight 0.2) (catch ban cycle 5) (catch probability 1) (catchable area l 2) (catch-
able area w 1) (ckick margin 1) (clang advice win 1) (clang define win 1) (clang del
win 1) (clang info win 1) (clang mess delay 50) (clang mess per cycle 1) (clang
meta win 1) (clang rule win 1) (clang win size 300) (coach 0) (coach port 6001)
(coach w referee 0) (connect wait 300) (control radius 2) (dash power rate 0.006)
(drop ball time 200) (effort dec 0.005) (effort dec thr 0.3) (effort inc 0.01) (effort
inc thr 0.6) (effort init 1) (effort min 0.6) (forbid kick off offside 1) (free kick faults
1) (freeform send period 20) (freeform wait period 600) (fullstate l 0) (fullstate r 0)
(game log compression 0) (game log dated 1) (game log dir ”./”) (game log fixed
0) (game log fixed name ”rcssserver”) (game log version 3) (game logging 1) (game
over wait 100) (goal width 14.02) (goalie max moves 2) (half time 100)

4.3.6 The Player Param Message

• The structure of the player param message:

– (player param [parameter]+)

• Example:

– (player param (dash power rate delta max 0) (dash power rate delta min 0) (ef-
fort max delta factor -0.002) (effort min delta factor -0.002) (extra stamina delta
max 100) (extra stamina delta min 0) (inertia moment delta factor 25) (kick rand
delta factor 0.5) (kickable margin delta max 0.2) (kickable margin delta min 0) (new
dash power rate delta max 0.002) (new dash power rate delta min 0) (new stamina
inc max delta factor -10000) (player decay delta max 0.2) (player decay delta min
0) (player size delta factor -100) (player speed max delta max 0) (player speed
max delta min 0) (player types 7) (pt max 3) (random seed -1) (stamina inc max
delta factor 0) (subs max 3))

4.3.7 The Player Type Message

• The structure of the player type message:

– (player tpye [id] [parameter]+)

28

• Examples:

– (player type (id 0) (player speed max 1.2) (stamina inc max 45) (player decay 0.4)
(inertia moment 5) (dash power rate 0.006) (player size 0.3) (kickable margin 0.7)
(kick rand 0) (extra stamina 0) (effort max 1) (effort min 0.6))

– (player type (id 1) (player speed max 1.2) (stamina inc max 34.18) (player decay
0.595) (inertia moment 9.875) (dash power rate 0.007082) (player size 0.3) (kick-
able margin 0.822) (kick rand 0.061) (extra stamina 10) (effort max 0.98) (ef-
fort min 0.58))

4.3.8 Overview About Generated Info-Types

In this subsection, an overview about the Info-objects generated by the parser is presented.
Therefore, figure 4.2 provides a class diagram, which contains those important for the player
agent (some more actually exists, especially for the coach language). Within this, frequently
received messages are those inside the blue box, whereas initially received are inside of the
orange one. Frequently received messages represent the perceptions of the agents by either
hearing, seeing or sensing. Initially received messages contain information which will not
change during simulation (e.g. the field-size within the ServerParamInfo or the tricot number
of the agent). The attributes of these types were omitted here in order to obtain a better
overview. For getting an insight about their content, either refer to the messages aforemen-
tioned or to the code of the objects within the project itself.

29

Figure 4.2: UML Class Diagramm for Info-Types, which are generated by the Parser (focusing
on those for the Player-Agents)

30

5 Synchronisation

5.1 Overview

Like in almost every other client/server-environment it is necessary to synchronize calls to
the other party. In robocup the amount of time available to calculate an action is limited
because actions have to arrive at the server before the end of each cycle. On the other side we
would like to spend as much time as possible for the calculation of an action to get a better
action quality. The synchronisation tries to resolve this conflict by sending the action as late
as possible based on the expected cycle length and network latency.

A second task accomplished by our Synchronisation is the regulation of the VI arrivals.
This is needed as we would like to base our decisions on visual data instead of an estimation.
Using different Viewmode sequences the Synchro manages the arrival times in a way that we
have one VI each cycle.

This chapter takes a deeper look into the ongoing communication between an agent and the
soccer server in order to get an overview about the message-flow. Then the problems that the
Synchro should solve are introduced, and after that, this document will give an idea about
the logic used by our synchro implementation.1

5.2 Communication

A player (client) is informed about what is going on in his environment by three types of
messages sent from the soccer server. He is informed about what he is feeling by a sensebody
info (SBI) that arrives at the beginning of each cycle, about what he is seeing by a visual info
(VI) and about what he heard from teammates, the referee or the coach by an aural info (AI).
The SBI is sent by the server in steps of (by default) 100ms. However, due to network latency
and/or a slow running server this value may be above 100ms.

The VI arrival frequency depends on the current view angle and view quality (the values
for view angle and quality also arrive as part of the previous SBI) and can be influenced by
the client sending ChangeViewModeActions. The interval between 2 VIs can be derived
by the following formula:

Interval = send step ∗ view angle factor ∗ view quality factor

1This section mainly describes our solution of the synchronisation problem giving only a limited overview of
the problem itself. For a more detailed problem discussion refer to [8].

31

The send step is set in the server configuration (default 150ms). The view angle can be set
to narrow (45◦), normal (90◦) and wide (180◦). The factors for these angles are 0.5, 1.0 and
2.0 in the same order. The view quality is set to low (factor 0.5) or high (factor 1.0).

The client communicates to the server by sending action messages. The challenge of the
Synchro is to determine the sending time of these action messages to the server, such that the
conditions discussed in the next section hold.

5.3 Problem

The Synchro is responsible for two main tasks. To avoid holes and/or clashes and to optimize
the VI arrival times.

5.3.1 Holes and Clashes

Cycles with an action sent to late to the server for beeing processed are called holes. Cycles
with more than one action beeing sent are called clashes2. Both cases should be strictly
avoided as they miss a chance to act or lead to non predictable results.

5.3.2 Waiting for a VI

A VI is an important source of information that we would like to base our decisions on. In
the default setting, only 2 VI’s arrive every 3 cycles, due to the cycle length of 100ms and
the VI arrival interval of 150ms (normal view angle and high view quality), thus leading to a
very high percentage (33%) of actions that were calculated based only on a BSI. Furthermore
we have to make sure that all VIs arrive early enough to allow the calculation of an action
without risking a hole. How this is achieved is described in the next section.

5.4 Synchronization Concept

As mentioned above, it isn’t a good idea to determine the send time by a constant value. It
has to be established a basis to choose the send time in a dynamic manner. For this purpose
the master thesis [8] was used as a repository of ideas and tried to find a method of resolution
in it. The following solution was inspired by the ”Flexible External Windowing” concept:

”The arrival times of visual informations form a pattern that repeats itself every three cycles.
Due to the repetitive nature of this pattern it is possible to predict in each cycle whether a
VI will arrive or not”

2Note that these denotations are adopted from [8] - were an extensive analysis of the synchronisation-problem
is given.

32

In the following, it is described now how this pattern was used to build up a dynamic syn-
chronization mechanism.
For the Synchro, every cycle consists of four quarters as visualized in figure 5.1. The Synchro-
nisation problem therefore can be solved by arranging that a VI arrives each cycle in one of
the first three quarters. An arrival in the fourth quarter should be avoided as we would risk
not to have enough time for further calculations.

Figure 5.1: Interpretation of a cycle

Combining this with the VI interval formula, it is possible to derive an algorithm, that
produces a pattern, which always lets a VI arrive in one of the three former quarters.

Figure 5.2: Cycle (t) with a VI in the 3rd quarter

As it can bee seen in figure 5.2 a VI arrives in the third quarter. Assume the send step has
it’s default value of 150ms and was set by the server. Now let the view angle factor for the
next VI be 0.5, i.e. set it to the narrow mode and the view quality factor 1.0, that means the
view quality is set to ”high”. The result for the next interval is 75ms. Since the length of the
cycle is ideally 100ms, using one with 75ms leads to a new VI arriving in 3 quarters in the
future. (The orange pointer in the figures shows the VI arrival quarter of the next cycle)

Figure 5.3 shows the next VI that arrived 3 quarters later in the second quarter of the
following cycle. If this interval isn’t changed, the next VI will arrive again in 75ms (3 quarters),
and the arrival time in the next cycle is now in the first quarter.

Now we switch the view mode from ”narrow” to ”normal” leading to a view angle factor of
1.0. This will result in a VI interval of 150ms, thus six quarters and that is the third quarter
of the next cycle. The next VI will be received on the same position as it has been three cycles
earlier. The player will always see twice 1

8
(45◦) and once 1

4
(90◦) of the world. Thus during

three cycles he sees the same amount of the world as when using only the standard view mode

33

Figure 5.3: Cycle (t+1) with a VI in the 2nd quarter

Figure 5.4: Cycle (t+2) with a VI in the first quarter

of twice 1
4

(90◦) and once empty. However, now he may see important objects like the ball or
near opponents every cycle and he is more flexible of where to look to.

5.4.1 Emergency sending

The solution mentioned above assumes that we are always capable of calculating an action in
the time left after a VI arrival. Unfortunately, as by now our action calculation blocks till an
action was calculated instead of continously improving a preliminary action, this fact cannot
always be assured. Especially situations where the player has ball control and has to decide
between passing and dribbling etc. are expensive to calculate. Therefore for some cycles we
additionaly calculate an action based only on the BSI. This action is deleted whenever a better
action based on a VI could be calculated in time. Otherwise it is send to the server some ms
before the end of the cycle. This currently happens only in less than 1% of all cycles.

For a more detailed description of the synchro functionality see our source code documen-
tation.

34

6 WorldModel

6.1 Overview

The world model is a representation of the current knowledge about the world of a single
player. He perceives the environment using visual, aural and body sense information which he
receives from the soccer server. The function of the world model is to sum up the information
of these three info types and provide methods to easily access the state of the world out of
other components like the different situations and the tactic components. Gaining accurate
information out of the info-objects is not always trivial, hence some aspects are explained in
a separate chapter (see chapter 6.6 for a deeper look into estimation of position and speed
of dynamic objects). Additionally, deriving knowledge out of given data is also excluded
from the world model. This is the topic of the prophet, where relevant information (e.g. the
interception point of the ball) is calculated. See in chapter 8 for further details on that.

This chapter is organized as follows: First of all, the differences between the world model
of the soccer server and that of the agents are compared against each other. These concern
mainly the coordinate space and the corresponding geometry. After that, the building blocks
of the world model are presented, e.g. the basic classes such as the ball or the player together
with some of their important attributes and methods. After that, the modularized concept of
the world model itself is presented, and this chapter closes with a discussion on improvements
and future work.

6.2 Global vs. Agent Perspective on the Environment

In order to understand, how an agents world model works, the distinction between the global
and the agent perspective on the environment (i.e. the soccer-field) must be clarified. When
looking at the soccer field from above, e.g. as shown in figure 6.1, lines or flags can said to
be on the left, right, top or bottom side. This perspective is referred to as global, because
it doesn’t care about information, which is relevant to the player agents. The corresponding
coordinate system is given in figure 6.2, where the X- and Y-axis and the angles are annotated.
This system is a common left-hand coordinate system.

For the player agents on the other hand, it is not so helpful to know whether a goal is
located on the left or on the right side, but to know if it is the own goal or belongs to the
other team. Hence the world model of the agents is translated into the agents perspective.
All objects (flags, lines) in the agents world model are named with suffixes own, other, left or

35

Figure 6.1: Layout of the static objects in the robocup environment (token from [7]).

Figure 6.2: The coordinate space of the servers internal world model.

right, indicating to which side of the field relative to the playing direction of the agent they
belong. With own the side the agent is playing from is referred to, whereas with other the
opponents side is meant. Left or right are relative from the agents playing direction, i.e. when
looking to the opponents goal. In figure 6.3, the corresponding coordinate system is presented.
As it can be seen, not only the coordinate system layout is different, also the angle-metric has
changed.

The angles within the agents perspective might appear confusing, because they increase or
decrease into the opposite direction as usual, and the null-angle lies on the Y-axis. The idea

36

Figure 6.3: The coordinate system of a robocup agent.

behind this is, that the developers found it intuitive to let the null-angle point towards the
opponents goal, and to have increasing angles to the right side. However, since developers
have to care only for the agents perspective, there shouldn’t be too much confusion at all, at
least if the developer uses the classes and methods for geometric calculations that are part of
this framework.

Another problem for the agents perspective is, that it depends on whether a team plays
from left to right or the other way round, because flags and lines are fixed within the servers
internal world model. For instance (flag l t 20) refers to the a flag on the own side, 20 meters
left from the goal, when playing from left to right, but to a flag on the on the other side,
20 meters right to the opponents goal otherwise 1. Therefore a mapping from the global to
the agents perspective is necessary, which in this framework is located already in the parser.
Each information, which is forwarded to the world model is already represented in the agent
perspective, and the developer of all other components must only use the agents perspective.
The same counts for actions, which have to be sent to the server. For instance, the Move-
Action has absolute coordinates as parameters. Here, coordinates from the agents perspective
have to be mapped to global coordinates. This happens in the BasicActionFactory, which
can be called using the agents perspective, but creates actions, which are translated to the
servers global perspective. The following subsection now presents the classes for geometric

1All flags are instantiated within the class SConf, where all server-specific parameters and values are stored.

37

calculations of the dainamite framework, which ease the use of the agents perspective.

6.2.1 Geometry Classes and their Usage

The Dainamite Framework provides some basic classes for geometric calculations, such as a
vector, line or circle. These can be used by the developer to calculate positions and areas for
certain purposes. They are located in the package robocup.component.geometry, and all these
classes are wideliy used within the whole framework. Thus changes have to be made carefully,
otherwise strange behaviour of the agents might result.

Vektor

The most basic class is Vektor 2, which is used to represent positions and speeds of mobile
objects as well. It incoorporates a large set of methods making calculations very easy. Since
this class is used very widely, it provides the possibilty to reuse previously instantiated objects
comfortably 3. Further information can be found in the JavaDoc comment of this class.

Class

Name robocup.component.geometry.Vektor

Description This class represents a position or a velocity in the 2D
space. It can be instantiated using polar or cartesian
coordinates. The default is polar (i.e. when only two
values, the length and the angle were given to the con-
structor). Angles should always be given in degree.

Attributes

x The x-coordinate of that vector.

y The y-coordinate of that vector.

length The length of that vector, which is its distance from the
coordinate origin (0,0).

angle The angle from the coordinate origin to the vector.

Methods

add(Vektor) Adds the given vector and retrieves the result as a new
instance.

addToThis (Vektor) Adds the given vector to this instance.

cloned() Clones this vector and retrieves it.

compareWithVariation
(Vektor, double)

Checks, if the given vector is as near as the variation to
this vector.

2The strange spelling was used in order to avoid conflicts with many other equally named classes, that are
inherent in Java.

3Object instantiation is one of the performance killers in Java.

38

copy(Vektor) Overwrites this vector with the values of the given one.

cross(Vektor) Calculates the cross-product of the two vectors.

div(double) Divides the vector by a constant value (and changes it).

getAngleBetween (Vek-
tor)

Returns the global angle between the angle of this vector
and the angle of the specified vektor.

getAngleBetween (Vek-
tor, Vektor)

Returns the angle between two positions seen from this
vektor.

getAngleTo(Vektor) Returns the global angle to the specified vector relative
from the position denoted by this vector.

getDistance(Vektor) Returns the distance to a given vector.

getVektorBetween
(Vektor)

This method returns a vector that is interjacent to the
vector and the given vector.

getVektorTo(Vektor) Returns a Vektor from this Vektor to the global vector.
Note that this method is equal to v.sub(this).

mult(double) Multiplies the vector with a constant factor.

pointAt (double, dou-
ble)

Is a setter for the coordinates x and y.

pointAtPolar (double,
double)

Sets the Vektor by polar data.

reset() Sets the Vektor to (0,0).

rotate(double) Rotates the vector by the given angle.

scalar(Vektor) Scalar product of the two vectors. Changes the instance.

sub(Vektor) Subtracts the given vector from this and retrieves the
result as a new instance.

subFromThis(Vektor) Subtracts the given vector from this. Changes the in-
stance.

static normalize (dou-
ble)

Converts an angle such that it lies between [180,-180)
degree.

StraigtLine

This class models a straight line in <2. A straight line is represented by an equation of the
form: y = mx + n.

Class

Name robocup.component.geometry.StraightLine

39

Description This class represents a line in the 2D space. It can be
instantiated using a gradient plus constant (m and n),
a position (Vektor) and an angle, or two positions.

Attributes

m The gradient of the straight line.

n The intersction height with the y-axis.

Methods

getDistanceToPoint
(Vektor)

This method calculates this line’s distance to a given
point.

getIntersectionPoint
(StraightLine)

This method calculates the intersection of this line and
another given line. Returns null, if lines are parallel.

getSlope() returns the slope of a line in degree.

getVektorToLine (Vek-
tor)

This method calculates the shortest Vektor from a given
point to a line.

isOnLine (Vektor) This method checks if the given Vektor is on line.

Circle

This class represents a circle, which is defined in terms of a center vector and its radius.

Class

Name robocup.component.geometry.Circle

Description This class represents a 2D circle. It can be instantiated
using either a vector and the radius, or by three vectors
whereas all of them have to be placed on a line.

Attributes

center The circles center (Vektor).

radius The circles radius.

Methods

getArea() Retrieves the area of this circle.

getCircumference() Retrieves the circumference by 2Π ∗ radius

getDiameter() returns the circles diameter..

getIntersectionPoints
(Circle)

Returns the intersection points of these two circles. If
none exist, the returned list is empty.

getIntersectionPoints
(StraightLine)

Returns the intersection points of this circle with a
StraightLine. If none exist, the returned list is empty.

40

liesWithinCircle (Vek-
tor)

returns true, if a position is inside the circle.

Remarks

Some improvements of the geometry package may be the implementation of a meaningful
class hierarchy and of composite objects, where intersection and union can be defined. On the
other hand, calculating with areas of any shape might be not very performant, hence it was
not included at the moment.

6.3 World Model Content

The simplified world of a Robocup soccer game consists of a few elements, whereas some of
them can be known with a different level of detail. Beside some other data, the robocup
world has players, a ball and a field on which two goals are located. In the simulator, the
field is sourrounded with Flags, which have a fixed known position. These can be used by the
players to orientate. Goals are also modelled as flags. As shown in figure 6.4, a flag extends
a StaticObject, which generally is a thing with a fixed position. The Flags id can be used to
distinguish them. Ball and Player have the additional property of being mobile, hence they
have a speed as common attribute, which they both inherit from the class DynamicObject.
Players on the other hand have some more attributes, e.g. the body- or neck-direction,
stamina, etc. Note, that this class diagram is very similar to that presented in [7].

6.3.1 Class Descriptions

This section summarizes the main classes together with some their important attributes and
methods. Some of them are dependent on the geometry mentioned in the previous section,
others implement the behaviour of DynamicObjects from the soccer server (see in [7] for the
dynamics of these objects). These can be used to forecast certain situations, e.g. where the
ball is in n cycles, assuming it has a certain speed and will not be kicked in the mean time.
Before changing any of these objects during a running simulation, make sure they are copies
of the corresponding objects of the world model. For instance, if the position of an object is
changed by a calculation, this change will not reflect the actual perceived environment any
more, and other classes using this information later on might produce strange results. As with
the class Vektor, use the methods cloned() and copy() and work with copies instead.

41

Figure 6.4: Class hierarchy of the important objects.

StaticObject

This class is an abstract representation for each things, which has a certain position.

Class

Name robocup.component.worldobjects.StaticObject

Description This is an abstract class, which is extended directly by
DynamicObject and Flag.

Attributes

cycle The game cycle, in which this object was last noticed.

bodyCycle The body cycle (corresponds to the amount of sense
body infos received), in which this object was last no-
ticed.

position The position of the object (Vektor). Note, that usually
this is the thought position, derived from visual and
acustic information. Only the coach agent knows exact
positions.

Methods

getAngleTo (StaticOb-
ject)

Angle from the position of this StaticObject to the
global position of the specified StaticObject.

42

getAngleTo (Vektor) Angle from the position of this StaticObject to the
global position of the specified Vektor.

getDistance (StaticOb-
ject)

Distance from the position of this StaticObject to the
global position of the specified StaticObject.

getDistance (Vektor) Distance from the position of this StaticObject to the
global position of the specified Vektor.

getVektorTo (StaticOb-
ject)

Returns the Vektor which points from this StaticObject
to the position of the specified StaticObject.

getVektorTo (Vektor) Returns the Vektor which points from this StaticObject
to the position of the specified Vektor.

Flag

This class represents a marker on the soccer field, which is visible by the agent. For the
occurrence of the flags, see figure 6.1. The global positions of all flags are known by the
agents, and the goals are implemented within the soccer server as flags as well. It is a direct
extension of the class StaticObject.

Class

Name robocup.component.worldobjects.Flag

Description Instantiation of this object is done by giving a cycle, an
id and a position to the constructor. Note, that usually
no further instances are needed, because all known flags
are implemented within the SConf class.

Attributes

id The flags id, which is used to distinguish them.

Line

This class represents a field line, but also has some methods for geometric calculations. 4

Since this class is not an extension of StaticObject (because it has no unique position), there
are some attributes with the same meaning as there.

4Perhaps an inheritance relation is adequate here.

43

Class

Name robocup.component.worldobjects.Line

Description This is a field line. The server knows five lines: The
center line and four field border lines. A line is instan-
tiated by giving two vectors, or a cycle, and id plus two
vectors.

Attributes

cycle The game cycle, in which this object was last noticed.

id The line id, which is used to identify its position.

point1 The first point, which defines the line.

point2 The second point, which defines the line.

Methods

changeDirection() Swaps the two points of the line, such that the direction
is changed.

getAngle() Returns the angle from point1 to point2.

getDistanceToPoint
(Vektor)

The shortest distance from the line to the vector.

getGradient() Returns the gradient of this line.

getIntersectionPoints
(Circle)

Returns a list of intersection points of this line and and
the given circle. If none exist, the list is empty.

getIntersectionPoint
WithLine(Line)

Returns a list of intersection points of this line and and
the given one. If the lines are parallel, the list is empty.

getPerpendicularBisector
()

Returns the perpendicular bisector of the side.

isOnLine(Vektor) Returns true, if the given point lies on the line.

DynamicObject

This class is an abstract representation for any mobile objects, i.e. for Players and the Ball.
Hence it contains an attribute for their speed.

Class

Name robocup.component.worldobjects.DynamicObject

Description This classe extends the StaticObject by adding velocity
attributes and others. It is also abstract, and involves
all common aspects of a Player and the Ball.

44

Attributes

exists Is true, if the object exists. E.g. in training scenarios
only a few players may participate. Hence some of them
are marked as non-existant in the world model.

isReliable Is true, if the agent beliefs, the corresponding knowledge
about a player or ball is to some degree accurate. This
will not be the case, if the object wasn’t seen for longer
time, or wasn’t seen at an expected position.

lastSeenPosition Stores the last seen position of this object. The ac-
tual position may be actualized due to acustic messages,
which may not be accurate in some cases.

lastSeenBodyCycle The time, when the object was seen latest.

speed The objects speed.

speedReliable Is true, if the speed was perceived, and could’t change
in the meantime.

Methods

extrapolate (int, dou-
ble)

Extrapolates Dynamic Objects based on their speed and
their decay. This can be used to see, what an object may
look like in n cycles, if it isn’t affected by any actions (i.e.
if the ball isn’t kicked, or a player doesn’t dash). This
and the corresponding methods of Player and Ball are
used extensively in the most Situations of the Prophet.

getFinalPosition (dou-
ble)

Returns the final position (Vektor) of an object, as-
suming no acceleration accurs. The parameter (decay)
stands for the speed decreasing factor in each cycle,
which depends on the player type (default 0.4) or the
ball (default 0.94).

getFuturePos (int, dou-
ble)

Returns the position of the object in n cycles, if no ac-
celeration occurs.

getFutureVelocity (int,
double)

Returns the speed of the object in n cycles, if no accel-
eration occurs.

Ball

This class is a representation of a ball. Note that there is always one ball in a simulation, no
more, no less.

45

Class

Name robocup.component.worldobjects.Ball

Description This class extends the DynamicObject, and has a few
new attributes and methods for the balls state. Since its
constructor requires some parameters (cycle, bodyCycle,
position, speed), there exists a static method to create
a default instance, called getDummyInstance().

Attributes

isCatched Is true, if the ball was catched by the goalie. This might
not not always be known by the agent.

Methods

cloned() Returns an exact copy of the given ball.

copy(Ball) Writes all values of the given ball (e.g. speed, position,
etc.) into this ball-object.

predictBallAfterAction
(Player, Action)

This method predicts the next ball state, assuming the
given player executes the given action. It returns a new
ball object, i.e. this ball is not changed.

predictThisAfterAction
(Player, Action)

This method predicts the next ball state, assuming
the given player executes the given action. It directly
changes this ball-object, and is hence more performant.

Player

This class is the representation of a player. Here, the detail of knowledge is quite different. An
agent knows quite much about himself, i.e. his stamina or neckangle, which he could’t really
know about any other player. Additionally, the available information about his teammates
might be somewhat higher than that about opponents, because of communication and the
robocup rules (e.g., if the coach changes the player type of an agent, every teammate is
informed about that, which doesn’t count for opponents). Information on position and speed
vary by distance and visual perception quality as explained in [7].

Class

Name robocup.component.worldobjects.Player

Description This class extends the DynamicObject. Since its con-
structor requires many parameters , there exists a static
method to create a default instance, called getDummyIn-
stance().

Attributes

46

armDirection The direction the arm was set with the point-to action.

armDistance The distance the agents arm is pointing to. This is only
known by the agent himself, because visual information
only contain the pointing direction.

armExpires The amount of cycles the arm stays pointing to a certain
direction.

armMovable Is true, if the arm is movable. After setting a point-
to direction, the arm has to point at least for 5 cycles
(default) there.

attention The player, an agent sets his attention to using the at-
tentionto action.

bodyDir The absolute body direction.

effort The effort factor refers to how effective dash actions may
be executed. This can only be known for oneself.

isFriend Is true, if an agent belongs to the same team.

isGoalie Is true, if the agent is a goalie. This is not always player
with number 1, but can be perceived via visual informa-
tion.

isMe Is true, if the player is the one controlled by the agent
himself.

number The tricot number of the agent. This is given by the
server after initializing a connection, Numbers are al-
ways from 1 to 11.

pConf The heterogeneous configuration for each player is stored
in this class (PConf). For instance, the dash-power or
the extra stamina is stored here. The default type (type
0) is set initially, and after the coach changed them, they
were updated by the players.

recovery This is a factor, which determines, how effective stamina
regeneration is. This is only an estimated value for one-
self, since it is not communicated by the server.

stamina Stamina is the energy source of an agent, which is con-
sumed by dash-actions and can be regenerated each cy-
cle to the maximum value (default 4000). If stamina is
low, the agent can’t run with full speed.

tackleDeadCountdown The amount of cycles, an agent is unable to move after
a tackle-action was executed. The default value after
tackling is 10 cycles. Note, that tackling doesn’t always
succeed, which increases these costs additionally.

Methods

47

canCatch (Ball, World-
Model)

Returns true, if the player is a goalie, and the ball is
inside the catchable area (ca. 2m distance).

canKick(Ball) Returns true, if the ball is within the kickable margin of
the player (ca 1m).

canKick (Ball, double) Returns true, if the ball is within the kickable margin of
the player minus a security.

cloned() Creates and returns an exact copy of that player object.

copy(Player) Sets the values of the given player to this one, such that
it is an exact copy.

correctDashPower
(Action,
STAMINA LEVEL)

If the action is a dash-action, the dash-power will be
reduced such that the given stamina level is not under-
run. This depends on the heterogeneity of the player.

equals(Object) Players are equal here, if they have the same number
and belong to the same team.

getActualKickPowerRate
(Ball)

This method calculates the actual power rate for a kick
command considering the ball’s location relative to the
player. This is lower, if the ball is behind him or when
its distance is higher.

getAngleAbs (double,
RELATIVE)

Returns the absolute angle from the specified relative
angle, which is either relative to the head or relative to
the body, defined within the second parameter.

getAngleAbs (StaticOb-
ject, RELATIVE)

Returns the absolute angle to the relative position of the
specified StaticObject. If the position of the StaticObjct
is relative to the head the enum (second param) should
be RELATIVE.TO HEAD, else is should be RELA-
TIVE.TO BODY.

getAngleAbs (Vektor,
RELATIVE)

Returns the absolute angle to the relative Vektor. If
the Vektor is relative to the head the second parame-
ter should be RELATIVE.TO HEAD, else it should be
RELATIVE.TO BODY.

getAngleForTurn (dou-
ble)

This method calculates the angle that has to be given
to a turn command in order to turn the body by a given
angle. This depends on the agents speed and his hetero-
geneity.

getAngleRel (double,
RELATIVE)

Returns the relative angle from the specified ab-
solute angle. If the returned angle should be
relative to the head the second parameter should
be RELATIVE.TO HEAD, else it should be RELA-
TIVE.TO BODY.

48

getAngleRel (StaticOb-
ject, RELATIVE)

Returns the relative angle from the absolute position
of the StaticObject. If the returned angle should
be relative to the head second parameter should
be RELATIVE.TO HEAD, else it should be RELA-
TIVE.TO BODY.

getAngleRel (Vektor,
RELATIVE)

Returns the relative angle to the absolute Vektor. If the
returned Vektor should be relative to the head the sec-
ond parameter should be RELATIVE.TO HEAD, else
is should be RELATIVE.TO BODY.

getKickDistance() Returns the maximum distance a ball may habe to the
player, if this should be able to kick it. This is kd =
(player-size + kickalble-margin + ball-size).

getMaxBalAccelVektor
(Ball, Vektor)

Returns a vector containing the maximum acceleration,
which can be set on the given ball, when trying to kick
to the given position.

getMaxBallAccelOptimi-
zed (Ball, Vektor)

Same as above, but this method is more efficient.

getMaxTurningAngle1() The maximum angle, a player can turn using a singe
turn action in a certain situation (depends on his speed
and his heterogeneity).

getMaxTurningAngle2() The maximum angle, a player can turn using two turn
actions in a certain situation (depends on his speed and
his heterogeneity). It is assumed, that a player can turn
into any direction with three turn-actions.

getPosAbs (StaticOb-
ject, RELATIVE)

Returns an absolute position denoted by the relative
position of the specified StaticObject. The second pa-
rameter specifies if the position of the StaticObject is
relative to the head or relative to the body.

getPosAbs (Vektor,
RELATIVE)

Returns an absolute position denoted by the specified
relative Vektor. The second parameter specifies if the
Vektor is relative to the head or relative to the body.

getPosRel (StaticOb-
ject, RELATIVE)

Returns a relative position from the absolute position of
the StaticObject either relative to the head or relative
to the body. This is specified by the second parameter.

getPosRel (Vektor,
RELATIVE)

Returns a relative position denoted by the specified ab-
solute Vektor. The second parameterspecifies if the re-
turned Vektor should be relative to the head or relative
to the body.

getPowerForDash (Vek-
tor)

This method calculates the power that should be given
to a dash command in order to come as close to the
position as possible.

49

getPowerForDash (Vek-
tor, int)

This method calculates the power that should be given
to a dash command in order to come as close to the
position as possible. it differs from the simple version of
this method in that the drift is considered. (i.e.: if you
wan’t to be at a position in 2 cycles it doesn’t make sense
to dash full first and stop afterwards (looses 1 action)
instead the speed resulting from dashing + the drift in
the next cycle should bring you to the position).

predictPlayerAfterAction
(Action)

Extrapolates the player assuming he will execute the
given action. The result is a new instance, which will be
returned by this method.

predictThisAfterAction
(Action)

Extrapolates the player assuming he will execute the
given action. Here, the actual object is modified.

predictThisAfterDash-
Action (DashAction)

Extrapolates the player assuming he will execute the
given dash-action. Here, the actual object is modified.

predictThisAfterPointTo-
Action (PointToAction)

Extrapolates the player assuming he will execute the
given pointto-action. Here, the actual object is modi-
fied.

predictThisAfterState
(AbstractState)

Extrapolates the player assuming he will execute the
given state, which might result in different actions.
Here, the actual object is modified.

predictThisAfterTurn-
Action (TurnAction)

Extrapolates the player assuming he will execute the
given turn-action. Here, the actual object is modified.

tackleFailureProbability
(Vektor)

Returns the probability of failure when trying to tackle
the ball, whereas the given vektor is the ball-position.

tackleSuccessProbability
(Vektor)

Returns the success-probability when trying to tackle
the ball, whereas the given vektor is the ball-position.
This simply is sp = 1 - tackleFailureProbability.

Remarks

In the tables of classes above, some things were omitted, because only the most important
attributes and methods should be presented here. For instance, most attributes have setter-
and getter-methods, which weren’t listed here. Others have a very special meaning and their
effects are observable not very often, such that these were omitted as well.

50

6.4 Structure of the WorldModel

The WorldModel contains data of different types and precision. In order to achieve some
kind of structure, certain categories of knowledge are grouped and added to subparts of the
WorldModel, sharing a common interface. This interface is called IModel, and provides ab-
stract methods for updating the corresponding model due to the receivement of info-objects.
In detail, the following models exist:

• MeModel - All data concerning the self-agent.

• PlayersModel - All data concerning all players, including the self-agent.

• BallModel - All data concerning the ball.

• PlayModeModel - All knowledge about the current playmode.

• CLangModel - Storage for all received CLang statements.

• CollisionModel - Model to detect collisions and to update the WorldModel correspond-
ingly.

• NeckRotator - Stores seen parts of the field in order to determine next looking directions
(see therefore 7.3).

An overview about the models and their content is given in Figure 6.5. Generally they can
be seen as the link between the objects and the WorldModel. The most important ones are
the PlayersModel, the MeModel and the BallModel, which are briefly described next:

6.4.1 PlayersModel

PlayersModel can be found in robocup.component.worldmodel.PlayersModel.
The PlayersModel represents the part of the world that affects other players. All the players
are stored in one of two Vectors ”‘teammates”’ and ”‘opponents”’. An array containing all
players is named ”‘allPlayers”’. It is possible to calculate relations between players like ”‘who
is the closest player to player X”’ etc. As a result you will extract a single player for further
evaluations or iterate on an array of players which fulfill the requested criteria (like ”‘get my
teammates / opponents”’).

6.4.2 MeModel

MeModel can be found in robocup.component.worldmodel.MeModel.
The MeModel references the class Player. In addition to the basic methods gained from Player
there are methods which refer to the actual player thread (according to every player having

51

its own thread). There are several methods which refer to the players position, body and neck
direction, stamina, player type, number, team membership etc. Obviously the PlayersModel
behaves comparably to the MeModel. But there is one major difference between them. Every
player only receives a part of the whole information of the current game e.g. he can only see
or hear other players who are in range and so on. Unfortunately the information is distorted
by noise which leads into increased expenditure for calculations. This behaviour may lead
into an unclear state of information which means that there may be no reliable data in the
PlayersModel. However the MeModel will supply the player (itself) with the required data at
any cycle.

6.4.3 BallModel

BallModel can be found in robocup.component.worldmodel.BallModel.
The BallModel references Ball. Besides some basic methods gained from Ball it implements
methods for updating the ball after some kind of incoming information. Most methods of the
WorldModel that affect the ball are forwarded to this class.

Finally there are some classes in figure 6.5 which were not explained yet. These are
ShortTermMemory, LongTermMemory, PConf and SConf.

6.4.4 ShortTermMemory

ShortTermMemory can be found in robocup.component.worldmodel.ShortTermMemory. This
class represents the short term memory of a player and is used for optimization purposes. All
the information stored here only lasts for one cycle. The purpose of the ShortTermMemory is
to save computational power by storing a value, which is called very frequently from various
methods and providing access to this value for further calls. E.g. the next position of the
player as it is predicted is first computed and then stored in the ShortTermMemory only for
the first call in every cycle. For further calls in the same cycle the position just has to be read
out of the ShortTermMemory.

6.4.5 LongTermMemory

LongTermMemory can be found in robocup.component.worldmodel.LongTermMemory. The
LongTermMemory is currently nearly deactivated because the situations used by the class
Prophet do its job now. It only stores the arrival times of the three different message types.

6.4.6 PConf and SConf

The classes PConf and SConf contain player and server related constants. The former holds
all data referring to the heterogeneous player types, containing the values of e.g. KICK-

52

ABLE MARGIN, MAXPOWER or STAMINA MAX. These values are set dynamically after
connecting to the soccer server, and have a big impact upon the abilities of the agents. See
chapter 11 for details about the assignment of heterogeneous player types.
The class robocup.component.SConf contains simulation related constants. These are the same
for all players.

6.5 Updates of the WorldModel

The update of the WorldModel is done for each info object, which is produced by the parser
after a message was received from the server. These objects contain different information, as
shown in Figure 4.2 of the parser chapter. In the following, the update methods are explained.

6.5.1 The update methods for information types

The WorldModel component represents the current world of an agent as it is perceived through
different infotypes. There are tree different infotypes like mentioned before:

• aural info (robocup.component.infotypes.AuralInfo),

• body sense info (robocup.component.infotypes.SenseBodyInfo) and

• visual info (robocup.component.infotypes.VisualInfo).

Every time a new info is perceived by the RobocupAgent, it is passed on to the WorldModel,
which updates itself according to the new infomation. The WorldModel then forwards the
information to MeModel, BallModel and PlayersModel. At first the MeModel computes the
position, speed, body- and neckangle, stamina and other playerspecific values of the player
according to the incoming info and the last performed action. The precision of the player’s
position and its speed is very important, because the calculation of position and speed of other
objects are based on them. After this is done, the BallModel computes the position and speed
of the ball. Finally the position and speed of other players are updated.

Figure 6.6 shows the information flow if a new information arrives at the WorldModel.

The following subsections give an overview of the methods called by WorldModel.update(Info).
For detailed information on how to update the world model see [8].

6.5.2 The body sense update methods

MeModel.updateSense(SenseBodyInfo, int)

This method is called by the WorldModel.update(Info). It updates the player according to the
player’s position and speed of the last cycle and the last executed actions. The last executed

53

actions can be accessed by SenseBodyInfo.getLastSentActions(). An estimation of the player’s
current speed relativ to the player’s head angle (= body angle + neck angle) is included in
the parameter of type SenseBodyInfo.

BallModel.updateSense(SenseBodyInfo, int)

This method updates the ball according to the position and speed of the ball of the last cycle.
If the player sent a kick action in the last cycle, the resulting acceleration vektor is added
to the speed vektor of the ball in the last cycle previously. Kick actions of other players are
not included in the calculation, because the player doesn’t know anything about actions sent
by other players. He only ”sees” (by receiving a visual info) the position of the ball in every
cycle.

PlayersModel.updateSense(SenseBodyInfo, int)

This method updates the positions and speeds of all other players, according to their positions
and speeds in the last cycle. Therefore actions other players executed are disregarded.

6.5.3 The visual update methods

The visual update methods form probably the most important part of the WorldModel. All
activities of the player depend mostly on the visual input he receives from the environment.

MeModel.updateVisual(VisualInfo, int)

This method’s objective is to calculate the position of the player. The VisualInfo object holds
arrays of information objects about the field flags and lines the player sees. Based on this
information the position calculation algorithm is invoked.

BallModel.updateVisual(VisualInfo, int)

The goal of this method is to update all information about the ball every time a VisualInfo
arrives. The position of the ball is calculated and all attributes concerning the reliability are
reset. Furthermore, the method is supposed to calculate the speed of the ball, if needed. The
server does not send the velocity of the ball, if the player is too far away from the ball. In
such case the speed vector needs to be predicted. This has not yet been implemented. If
the ball has not been seen, i.e. there is no BallInfo object in the received VisualInfo, this
method handles all reliability issues. For example, if the ball has not been seen more than
WM V AGE CONFIDENCE number of cycles, the isReliable attribute is set to false.

54

PlayersModel.updateVisual(VisualInfo, int)

Here the information about other players on the field is being updated. The PlayersModel
possesses three Vectors with players:

• teammates - holds players of the player’s team

• opponents - holds the opponents of the player

• unknown - holds players whose team can not be determined

These Vectors are initially filled due to the amount of received information within the Visual-
Info. After this, the identity of unknown players have to be guessed, which is a complicated
task at all.

6.5.4 The aural update methods

Some aural information arrives as PlayerSayInfo which will be handled in
robocup.component.speechacts.MessageFactory. The MessageFactory evaluates the content of
the information for the different models.

MeModel.updateAural(AuralInfo)

Currently this method only computes an InitInfo, which is sent once during the initializing
process.

BallModel.updateAural(AuralInfo)

The intention of this method is to use information regarding the play modes and referee
messages for predicting the position and speed of the ball.

PlayersModel.updateAural(AuralInfo)

The PlayersModel uses the MessageFactory like mentioned above. Received messages contain
for example the position of one of the other players, which are updated here.

6.5.5 NeckRotator (robocup.component.NeckRotator)

This class computes the best visual angle for a player in a certain state of game. There is a
seperate chapter discussing the Neckrotator.

55

Figure 6.5: Part of the class model including most important references of the WorldModel.

56

Figure 6.6: Information flow of WorldModel Update()

57

6.6 Particle Filter

6.6.1 Overview

The particle filter is another step towards an optimised solution to the position estimation
problems that occur in the robocup project such as estimating the players own position or
the balls position. This chapter first sketches the idea behind the particle filter and gives an
overview over the current implementation. After the theoretical part there will be an overview
over the involved classes an their public methods. Finally I will provide some outlook on how
the usage of the particle filter may be improved in the future.

6.6.2 The particle filter in theory

In the previous chapters we learned what kind of Information we get from the server. The
particle filter is an approach to use as much of the information we get as possible to narrow
down the player’s position. The information as we learned is quantised so every bit of infor-
mation gives us a range of possible positions. As we only have to deal with quantisation noise
we can assume that our actual position must be inside all ranges we can determine with the
information we got from the server. As we combine all the information the remaining ranges
get quite complicated and that is where the particle filter comes into play. By simulating the
two dimensional shape that is given by all the determined ranges, using discrete particles, the
particle filter gives a good estimate for the actual shape. Now we can take the barycentre of
our shape as position estimate.
During the following paragraphs I will explain how different types of information are processed
in the current particle filter implementation. However if you want to know more about the
theory behind the particle filter see Chapter 6 of [8] and follow the corresponding bibliography.

Particle filter for player’s position

Visual Info

A visual-info gives us a lot of information about the players own position. Most important to
narrow down his position are the seen flags. Every flag gives us a region of possible positions
in the shape of a ring-sector. The region can be described as follows. The flags position which
is known to the player is the centre point of the ring (xflag, yflag). The ring has got an inner
and an outer radius dmin and dmax that can be derived from the quantised seen distance dquant

included in the visual-info. Further it has got a starting and ending angle φmin and φmax that
can be derived from the seen direction included in the visual-info plus the payers head-angle.
To obtain this head-angle I use a method that already was implemented, so I will only mention
that it is computed with an error of ±0.5 degrees.
As we now intersect all of the obtained regions the remaining region gets smaller and smaller
so that our position estimate gets better and better. Figure 6.7 shows two of the described

58

region intersecting one another and thus narrowing down the possible position of our player.
I will now list all relevant equations that are necessary to compute all the values that describe

Figure 6.7: Overlapping ring sections derived from two seen flags.

our region. Most of them are already mentioned in the UVA master-thesis [8], but some I
added to make this document a complete reference. The seen distance of the flag is quantised
depending on the actual distance like this:

dquant = Quantize(eQuantize(ln(d),StepV alue), 0.1) (6.1)

with

Quantize(x, step) = rint

(
x

step

)
· step (6.2)

59

and StepV alue = 0.01 in the case of seen flags. Transforming equation 6.1 with

rint−1 = rint(x)± 0.5 (6.3)

we get our inverse quantisation formula

dmax/min = e

24rint

0@ ln

„„
rint

„
dquant

0.1

«
±0.5

«
·0.1

«
0.01

1A±0.5

35·0.01

(6.4)

which is much more readable like this

dummy = ln

((
rint

(
dquant

0.1

)
± 0.5

)
· 0.1

)
dmax/min = exp

((
rint

(
dummy

0.01

)
± 0.5

)
· 0.01

)
.

Now we take care of the the angles. As I mentioned before the quantised angle φquant is a
combination of the seen direction φseen and the player’s head-angle φhead. φseen is quantised
using 6.2 with a step-value of step = 0.1. As φhead has an error of ±0.5 the overall error of
φquant is ±1.0 degrees. Now we have to take into account that the flags position is the centre
of our polar system and not the player’s position, so we add 180◦ to our seen direction. All
this leads to

φmax/min = 180◦ + φseen + φhead ± 1.0. (6.5)

Sensbody Info

The relevant information of the sensbody-info is the felt speed of the player. From this speed
we can tell where all of our particles have to move in the next cycle. In fact the particles are
translated in the beginning of a cycle using the speed that was determined in the last cycle. As
the speed information again is quantised we get a region where the player could have moved
during the last cycle. This region again is a ring-sector with the players old position as the
centre, the minimum and maximum possible amount of speed (dmin/max) as inner and outer
radius and the minimum and maximum possible direction of the speed (φmin/max) as angle
boundaries. To translate the particle set now every valid particle is taken as the centre of
such a region and a new random particle is chosen from the resulting region. Luckily direction
and amount of the felt speed are quantised in a less complicated manner then the seen flag’s
visual-info. Namely:

QuantizedAmountOfSpeed = Quantize(AmountOfSpeed, 0.01) (6.6)

and
QuantizedDirection = Quantize(Direction, 1.0◦) (6.7)

which leads to
dmax/min = QuantizedAmountOfSpeed± 0.005 (6.8)

and
φmax/min = QuantizedDirection± 0.5◦. (6.9)

60

Particle filter for ball position

The particle filter for the ball position works in a different way. We get much less information
compared to the particle filter for the player’s position. That is why we will have to take more
past information into account. As soon as the the ball is seen by the player we initialise a set
of particle with random values of position and speed from ranges that can be derived from
the quantised visual-info. Yes the particles are four-dimensional now, two for the position
coordinates and two for the speed. Every cycle the particles are translated according to the
known server dynamics. If a new visual-info is received all particles are checked whether they
still fit into the derived region and are dropped if the don’t. If the particle filter runs empty a
new set of particles is initialised. This should only occur if the ball was kicked and thus does
not move according to the server dynamics. Unfortunately this is not the case.

Visual Info

The region for the ball’s position is very similar to the region derived from a seen flag in the
particle filter for player’s position because the seen distance is quantised using equation 6.1 and
the seen direction using 6.2 with a step-value step = 0.1. The differences are that StepV alue
in 6.1 is equal to 0.1 this time and the players position is the centre of our ring-sector so that
we can also omit the 180◦ in 6.5.

dmax/min = e

24rint

0@ ln

„„
rint

„
dquant

0.1

«
±0.5

«
·0.1

«
0.1

1A±0.5

35·0.1

(6.10)

φmax/min = φseen + φhead ± 1.0 (6.11)

The region that describes possible speed values is quite different. Although the values we get
are called ”distance changed” and ”direction changed” they are not to be understood as polar
but as Cartesian values. As both again are quantised the resulting region is a rectangle which
unfortunately is rotated. I will now list all the equations that are needed to do the reverse
quantisation and the transformations necessary to obtain a speed vector that conforms with
coordinate system used in the dainamite robocup project. (If you compare them to the ones
in the UVS Master Thesis [8] you might notice that some signs are different, this is due to the
fact that someone liked the idea of confusing us a little by switching the names of the X- and
Y-axis. But never mind the following equations use the dainamist system.)
First of all the reverse quantisation formulas:

∆dmax/min = dmax/min · 0.02 ·
(

rint

(
∆dquant

0.02 · dquant

)
± 0.5

)
(6.12)

∆φmax/min = rint (∆φquant)± 0.5◦ (6.13)

61

with

∆dmax/min : maximum/minimum possible distance change

∆φmax/min : maximum/minimum possible direction change

dquant : Quantised seen distance as received from the Server

∆dquant : Quantised distance change as received from the Server

∆φquant : Quantised direction change as received from the Server

Now we have to transform distance change and direction-change values into into Cartesian
coordinates conforming the dainamite coordinate system:

vy = ∆d · edy − ∆φ · π

180
· d · erx (6.14)

vx = ∆d · edx + ∆φ · π

180
· d · ery (6.15)

with

edx = sin (φquant) (6.16)

edy = cos (φquant) (6.17)

Now we have a speed-vector relative to the player’s headangle and speed. Rotate the speed-
vector by the current headangle and add the player’s to obtain a global speed-vector.

Sensebody Info

From the sensbody-info there is no actual information drawn. But as in the particlefilter for
player position all particles are translated when a sensbody-info is received. This is done by
applying the known server’s movement model to every valid particle in the particle set. Please
consult [8] page 27 and following for detailed information on the movement model.

6.6.3 Important Classes

ParticleFilter

Package: robocup.component.worldmodel.particlefilter.ParticleFilter

The ParticleFilter-class is the main class for estimating the players own position. It provides
public methods to add information such as visual or sense infos and methods to retrieve the
result of the current position estimation. Further there is a method to reset the position if
there is a better source from which the position may be determined.

62

Methods

addFlag With this method the visual-info of a seen flag is added to the particle filter. A
region is initialised which helps to check whether particles are valid or out of range. Before the
remaining particles are checked they will be re sampled. In the case that no particle remains
valid after checking a new set of particles will be initialised.

translatePosition This method is called every time a new cycle starts on a received bodysens-
info. It is handed the ”felt” speed so that every particle can be translated to a new position.

getPosition With this method one can retrieve the current position estimate. It computes
the mean of all currently valid particles every time it is called. So beware.

resetPosition May be used to set the particle filter to a specified position. Exactly one
particle is created and set to the specified position. The number of valid particles is set to
one.

Region

Package: robocup.component.worldmodel.particlefilter.Region

The Region-class is used to check particles validity. It gets initialised by the particle filter
when ever quantized information is put in. The Region-class computes a region from this
quantised data which can then be used to verify whether the position of a particle is inside the
region or not. It can also be used to generate particles that are inside the represented region.

Methods

reinitRegionFlag This method is used to initialise the Region-object whenever a flag is seen.
The origin is set to the flags position and a minimum and maximum value for the distance
and angle in which the flag was seen is derived from the visual-info.

reinitRegionSpeed This method is used to initialise the Region-object on particle transla-
tion. A minimum and maximum value for the distance and angle the player could have moved
is derived from the given ”felt” speed. As origin one can set the position of the particle that
is to be translated.

makeRandomInsideRegion This method can be used to obtain a position that is inside the
represented region. e.g. when a set of particles is to be initialised.

63

setOrigin Sets the origin of the represented region.

insideRegion This method is used to check whether a particle is inside the represented region.
It returns 1.0 if that is the case and -1.0 if otherwise. The fact that a double is returned may
be considered legacy and may be changed into a boolean value in the future.

BallParticleFilter

Package: robocup.component.worldmodel.particlefilter.BallParticleFiler

The BallParticleFilter-class is the main class for the estimation of the balls position and
speed. The public interface is roughly the same as the one of the ParticleFilter. Visual info
can be supplied and estimations retrieved. Particles may be translated at the beginning of
every cycle. The particle filter can be reset to a certain position and speed.

Methods

resetPosition This method resets the particle filter to a certain speed and position.

addVI This method is called when a visual info of the ball was received. Like in addFlag
a region is initialised and remaining particles are validated or the set is reinitialised. In the
case that no speed has been seen yet but a position was seen in the previous cycle the speed
is initialised using the difference between the last and the current position.

getPosition With this method one can retrieve the current position estimate. It computes
the mean of all currently valid particles every time it is called. So beware.

getSpeed With this method one can retrieve the current speed estimate. It computes the
mean of all currently valid particles every time it is called. So beware.

isBallKicked This method returns true if the particle filter ran out of particles during the
last addVI-call and thus ad to be reinitialised. This occurs if the ball ”appears”, in a VI,
where it is not expected due to the translation model. This happens when the ball was kicked.
Unfortunately it happens even more often so this is not a reliable source for information.

translatePosition This method is called every time a new cycle starts on a received bodysens-
info. Every particle is translated to a new speed and position according to the known server
dynamics.

64

BallRegion

Package: robocup.component.worldmodel.particlefilter.BallRegion

The BallRegion-class similar to the Region-class represents a region of possible positions.
In fact this class represents the position region only speed-regions are represented by the
BallSpeedRegion-class.

Methods

reinitRegionPos This Method is used to initialise a BallRegion-object whenever a visual-info
of the ball is received. The origin of the region is set to the players position and a minimum
and maximum value for the distance and angle in which the ball was seen is derived from the
visual-info.

makeRandomInsideRegion Is used to obtain a random particle inside the represented re-
gion. This is done by choosing a random distance and a random angle from the possible
ranges.

setOrigin Sets the origin of the region to the given position.

insideRegion This method is used to check whether a particle is inside the represented region.
It returns 1.0 if that is the case and -1.0 if otherwise. The fact that a double is returned may
be considered legacy and may be changed into a boolean value in the future.

BallSpeedRegion

Package: robocup.component.worldmodel.particlefilter.BallSpeedRegion

The BallSpeedRegion-class represents a region of possible speeds. Opposite to all other
regions so far, speed regions are represented as two ranges of Cartesian coordinates relative
to the players own speed and headangle which must be stored in the Region as well.

Methods

reinitRegion Is called by the BallParticleFilter when a visual-info is added and the speed of
the ball was seen.

65

makeRandomInsideRegion Is used to obtain a random particle that is inside of the desig-
nated region.

insideRegion This method is used to check whether a particle is inside the represented region.
It returns 1.0 if that is the case and -1.0 if otherwise. The fact that a double is returned may
be considered legacy and may be changed into a boolean value in the future.

6.6.4 Outlook

The particle filter for player position estimation has worked out quite well after some problems
in the beginning. We were able to reach the marks set in the UVA master thesis [8]. The
particle filter for ball position estimation however is not as mature as the first one. This might
be due to the fact that it is hard to verify the results for it is not very well in intergrated into
the existing BallModel. There are some sideffects e.g. aural comunication that manipulate the
player’s ball-model the particle filter is not aware of yet. There is still some potential with the
ball-particle-filter but as one can see from [8] it is not as prommissing as the particle-filter for
player position estimation. Of cause every reader is welcome to contribute even better ideas
for solving the position estimation problem as so to push the dainamite team further beyond
the milestones set by the well known [8].

66

6.7 ReachableArea

6.7.1 What is the Reachable Area?

The ReachableArea-class represents the area that can be reached by a player in a given number
of cycles. So, when the area is initialized with an player and a number of cycles, it provides
some useful informations. The class can answer simple questions like: “Is a given point
reachable by this player?” but also much more complicated questions like “What sequence of
actions makes my player to reach point x under the condition that my player dashes at most
5 times backwards or under the condition that my player can watch the given point all the
time?”

6.7.2 Usage of ReachableArea

To use the ReachableArea-class to obtain informations about the player is very easy. First
step is to create an object of the ReachableArea. Next step is, to initialize the created object
with values (sometimes done directly by a constructor). And last step is, to obtain the needed
values.

Construction

For construction there are given some different types of constructors for the use in different
situations.

• public ReachableArea()

This constructor builds a ReachableArea without any information. Since the informa-
tions can be given to the area later, this constructor is used very often. The normal
steps to work are than the same for each calculation of another player or situaion:

1. Set new informations to area if needed

2. obtain the needed informations for this setup

This kind of usage is recommanded, if the informations for this Reachable Area change
very often, because of less object-creation.

• public ReachableArea(int cycles, int reactCycles, Player p,

double reachDist)

By using this constructor, the ReachableArea is initialized directly. Here the arguments
have the following meaning:

– cycles

Gives the time for the player to move. Of corse in a bigger time, the player can
reach a bigger area.

67

– reactCycles

Means how long the player needs to realize, where he wants to go. So this value
can be used to increase the security of the calculation, but a high value means also
that the area gets smaller.

– p

This is the used player. By giving this player, our class gets informations about
the decay, turn fact, max speed and speed of the player.

– reachDist

Gives a buffer distance, since in many situations it is needed only to come near a
given point and not directly onto the point. Here the kick dist of a player is a
useful candidate.

In general this constructor shouldn’t be used very often, since it isn’t performant to
create a new ReachableArea-object for each calculation.

• public ReachableArea(int cycles, Player p, double reachDist)

By using this constructor, the ReachableArea is initialized directly.The arguments are
the same like in the constructor before, but the argument reachDist misses. It is set to
zero by default here.

In general this constructor shouldn’t be used very often, since it isn’t performant to
create a new ReachableArea-object for each calculation.

Setting the area

As already said before, the general way of using the ReachableArea is, first to give informa-
tions to the object, and then to calculate new informations, based on the given ones. After
this calculation is done, new informations (for other situations) can be calculated by setting
other base informations. That’s why in general there is no need of having more than one
ReachableArea-object. It can be reused as as often as needed.

Corresponding to the 2 constructors with arguments there are 2 setArea-functions to set
the same arguments.

Calculating informations

After setting some informations to the ReachableArea, one can obtain many useful informa-
tions about it.

Overview

Here is a complete list of what information can be calculated:

• Is a given point inside the area?

68

• What sequence of actions does the player need to do, to reach a given point under several
conditions?

• What actions does the player need to do, to reach a given point under several conditions
without calculating the following actions?

• Where are the intersection-points of a given line and the border of the area?

Is a point reachable?

By using public boolean inArea(Vektor p, int backcycles) can be calculated, if or if
not the point p can be reached by the player in the given time. The argument backcycles

is optional and limits the number of allowed cycles to dash backwards. If there is given only
the point p, backcycles is zero as a default. If backward-dashing should be allowed in general,
backcycles should be set to −1.

What actions are optimal to reach a given point as fast as possible?

There is an optimal way to reach a point as fast as possible. This way is first to turn the body
in direction of the point, second, to dash to this point. This sequence of actions is calculate-
able by public LinkedList<Action> getMovesToPos(Vektor pos, double reachedDist,

double turnBuffer, boolean backwards, int backCycles, Vektor watchPos, Vektor turnToPos).
The function is usable in many other variants with less arguments. Here we just discuss this
variant, since it is the most general.

• pos

This is the position to reach.

• reachedDist

How close does the player need to come to the point?

• turnBuffer

If the needed turn-angle is smaller than turnBuffer the turn will be ignored. It is useful
to have the turnbuffer, since a turn with a very small angle has almost no effect and the
dash would be the better alternative here.

• backwards

If this is true the player is allowed to dash backwards, otherwise he cannot do any
backward dashes and backCycles and watchPos will be ignored.

• backCycles

It has an effect only, if backwards is true. This value limits the number of allowed
back-dashes. −1 means that there is no limitation.

69

• watchPos

This is a position that should stay watchable in the full movement. If such an position
is given and backCycles allows to dash backwards, then this position determines if to
dash forward or backward.

Attention: In a sequence of moves it can happen, that the player passes the watchPos.
In this case the player will move in that way, that allows him to watch the position at
the beginning of the movement.

This argument is important for the goalie. Using this ball-position here makes him, to
not turn his back to the ball. The argument can be null if it is not needed.

• turnToPos

This position is used, when the player has reached his position successfully. It makes
the player to turn to this position afterwards.

What is the next best action to reach a given point?

This calculation is the same like the calculation of a sequence of actions, but after calculating
the first action, this function finishes and saves performance.

What are the intersection-points of a line and the ReachableArea of a player?

These insersection-points become interesting, if one needs to find out, what positions on
a line are reachable in general. Herefore use the function public LinkedList<Vektor>

getIntersectionPointsWithLine(Line l).

Attention: The resulting list of points is not sorted.

Example of usage

To show the usage of ReachableArea, here is shown a little piece of code to calculate if a given
player p can kick the (also given) ball b in at most x cycles, and if he can reach it, give the
optimal sequence of actions to reach it.

First we need to create a global object of the ReachableArea that can be used afterwards:

ReachableArea ra= new ReachableArea()

Now let us assume that b is a copy of the actual ball and p is the actual player.

boolean found= false;

LinkedList<Action> actionList= null;

70

for (int cycle= 0; (cycle <= x) && !found; cycle++) {
ra.setArea(cycle, 1, p, kickDist);

found= ra.inArea(b.getPosition(), true);

if (!found) b.extrapolate(1, sConf.BALL DECAY);

}
if (found) {

actionList= ra.getMovesToPos(b.getPosition(), kickDist, 10, true,

-1, b.getPosition(), sConf.GOAL POS OTHER=;

}

Here the program stays in the loop as long as the number of used cycles is smaller than x
and there is no way found to reach the ball. The reactCycles-argument in setArea is set to
1 here to gain some security. Next there is checked if the ball is reachable when backward-
dashing is allowed. When the loop is calculated and there is a way to reach the ball, then the
action-list will be calculated. These actions in the list fulfill the following conditions:

• the player reaches the ball (or a position with a distance of maximal kickdist to the
ball)

• there is no turn under 10 degree

• the player is allowed to dash backwards and has no limitation on how often he dashes
backwards

• the player doesn’t turn his back to the interception-point

• after reaching the desired position the player turns towards the opponent goal

6.7.3 Internal work of ReachableArea

Setting Informations

When informations are set to the reachable area, it divides these informations into some
subinformations:

• The central point of the area is calculated by the actual position of the given player and
his actual speed.

• Depending on the actual speed there is a change in the maximum turn that the player
could do. So the fields turn1, turn2 and turn3 give how far a player could turn in one,
two or three cycles. A value for turn4 doesn’t exist since in 4 cycles every player can
turn the full 360 degree, even when he was on full speed before.

71

• Each turn that is done by the player means that he cannot dash. So depending on the
number of turns, there are different distances to dash. So the fields dash0 to dash4 give
the distance that the player can dash after zero to four dashes. These dash-distances
become reduced by reactDist

Attention: a= ReachableArea(5,1,p,0) and b= ReachableArea(4,0,p,0) are not the
same, since they have the same dash-distances, but the central point of a was extrapo-
lated one cycle more than the central point of b.

Is a point inside the area?

To calculate if an point is inside the area, first is calculated if the player is allowed to dash
backwards, and what distance he could run backwards in maximum case. If this distance is
smaller than the distance from the central point to the desired point, then it makes no sense
to check backwards-dashing.

Now for each possible number of turns x is checked if the desired point has a distance smaller
than dashx and is inside turnx and -turnx. If backwards-dashing should be checked too, the
same calculation is repeated, but the desired angle is turned around 180 degree.

What actions make the player reach the desired point?

First step is to decide, if to dash forward or backwards to the point. This decision is made
like it s described before, but if a special point should stay watchable all the time, the decision
must not be the fastest way to reach the point.

Next step is to calculate the needed turnAngle and from this angle to create the first turn-
actions. Afterwards dashes are created as long as the player is near the point or passed the
point and at last there are some turns, if wished.

Where are the intersection-points between the area and a line?

To calculate all intersection-points the border of the ReachableArea is divided into its subparts
(lines and parts of circles) and for each subparts is done a separate calculation of intersection.

6.7.4 What parts need to be improved?

• Since the functionality of this class is very similar to the Movements-class, they could
be merged together.

• The argument reachDist in setArea and in the constructor is very similar to reachedDist
in inArea. One of them could be replaced with the other one.

72

7 Action

The Robocup agents can perform actions, by sending special messages to the SoccerServer.
These actions are divided in main-actions like turn, kick and dash and secondary actions like
turning the neck. In Each cycle it is only possible to send one of the main actions, but as
many of the secondary actions as needed. Most of these actions need some extra parameters
to be given, like for example angle and power of a kick. Since these actions are at a very basic
level, we combined them to more complex actions, which are easier to handle. To be able
to save actions and to handle them easier, we created classes for each type of action. In the
first part of this chapter we’ll introduce these action classes. The second part of this chapter
explains the combined actions, which are collected in so called action factories.

7.1 Action classes

The Action classes were made to handle actions. By creating objects for each action, we are
able to collect actions and to decide for the best of them. We can change parameters of an
action and at least form the string that must be send to the server to perform the action.

In the following, we’ll explain each of the action classes for the player.

7.1.1 Action

class: robocup.component.actions.Action

This is the superclass of all actions. It contains an enum TYPE to mark the type of the action.
On can avoid the slow instanceof-command by checking the TYPE. Next one can check if this
action is a main-action by TYPE.isMain. Another feature is the isWorthSending-method
which gives information about useless parameters like a dash with speed zero or a turn with
turn-angle zero.

73

7.1.2 DashAction

class: robocup.component.actions.DashAction

constructor: DashAction(int power)

The DashAction is a main action that makes the player to dash into the direction of his
body. The power argument can be a value between -100 and 100 where negative values mean
backwards dashing. If power is 0, the action isn’t sent.

7.1.3 TurnAction

class: robocup.component.actions.TurnAction

constructor: TurnAction(double angle)

The TurnAction is a main action that makes the player to turn his body aound angle

degrees. The angle argument can be a value between -180 and 180. If angle is 0, the action
isn’t sent. The players real turn angle depends on his current speed. If he has no speed, the
real turn angle is near angle (changes occur only by a small random effect). If the player
has a high speed, the turn angle is reduced, what makes it harder to turn while the player is
running fast.

7.1.4 KickAction

class: robocup.component.actions.KickAction

constructor: KickAction(double power, double direction)

The KickAction is a main action that makes the player to kick the ball, if it is in a small
distance to the player. The ball is kicked into the given direction with the given power. The
power is reduced by a factor depending on the position of the ball. Note that the resulting ball
speed is combined from the kick of the player AND from the speed that the ball had before.
The power argument can be a value between 0 and 100 and the direction argument can be an
value between -180 and 180. The kick action isn’t sent if the power argument is 0.

7.1.5 CatchAction

class: robocup.component.actions.CatchAction

constructor: CatchAction(double direction)

The CatchAction is a main action that makes the goalie to catch the ball. Therefore the ball
must be close to the goalie and the directon argument must be the ball direction. Otherwise

74

the catch command fails and the goalie cannot perform any actions for a number of cycles,
what often leads to a goal. Other player than the goalie cannot perform the catch command.
If the goalie performs a catch outside the penalty area the the opponent team gets an indirect
free kick. The direction argument can be a value between -180 and 180.

7.1.6 MoveAction

class: robocup.component.actions.MoveAction

constructor: MoveAction(int x, int y)

The MoveAction is a main action that sets the player to the given position. Normal players
can move themselves only when the game isn’t running. The goalie can move himself after he
catched the ball. Such a move must be performed inside his penalty area. There are two moves
allowed after a goalie catch. A third move results in an indirect free kick for the opponent.

7.1.7 TackleAction

class: robocup.component.actions.TackleAction

constructor: TackleAction(int power)

The TackleAction is a main action that lets the player perform a kick with a bigger distance
than with the KickAction, but it has also some big disadvantages, so that it should be used
only in special situations. The first disadvantage is that the player needs to be turned in ball
direction to perform a successful tackling. Even then the tackling could fail. The probability
to fail increases the further away the ball is. The next disadvantage is that the player who
performed the tackling cannot do any actions in the next 10 cycles, so use this command
with care. The kick direction of the ball cannot be influenced very much. In general it is the
direction of the body of the player. The power argument can be a value between -100 and 100
where a positive argument means a kick in body direction and a negative kick means a kick
in the opposite direction. By calculating the resukting ball speed from the old ball speed and
the argument, is is possible to kick to different angles.

7.1.8 AttentionToAction

class: robocup.component.actions.AttentionToAction

constructor: AttentionToAction(Player player, String teamname)

The AttentionToAction is a secondary action that lets the performing player hear only
messages from the given player.

75

7.1.9 PointToAction

class: robocup.component.actions.PointToAction

constructor: PointToAction(double dist, double dir)

The PointToAction is a secondary action that lets the player point his arms to a position
given by dist and dir, where dir is a value between -180 and 180. Other players can see the
direction of the arm and use this as information.

7.1.10 TurnNeckAction

class: robocup.component.actions.TurnNeckAction

constructor: TurnNeckAction(double angle)

The TurnNeckAction is a secondary action that makes the player turn his head around
angle degrees. The resulting head angle must be between -90 and 90 and so the maximum
values for angle are between -180 and 180.

7.1.11 ChangeViewModeAction

class: robocup.component.actions.ChangeViewModeAction

constructor: ChangeViewModeAction(VIEW QUALITY quality, VIEW ANGLE angle)

The ChangeViewModeAction is a secondary action that changes the information quality
and quantity that a player receives by watching around. There are two view qualities possible
where the better one gives more detailled information, while the other one is twice as fast
as the first one. Next there are three different view angles available. The player has the
choice between NARROW, NORMAL and WIDE, where bigger angles lead to slower sending steps
for information.

7.1.12 SayAction

class: robocup.component.actions.SayAction

constructor: SayAction(String message)

The SayAction makes the player send a message to all player (also opponents) in a certain
distance around him. Note that this message can have a maximum length of 10 characters.
Each player can hear only one message per cycle. If more messages arrive him, a random
message is chosen. To choose, what messages the player wants to hear, he should use the
AttentionToAction.

76

7.2 Action factories

The action factories are collections of static methods, that create action-objects for certain
purposes like turning the body to a special point or kicking the ball to a certain point. These
methods are very helpful, since now we only have to say, what the player should do. We don’t
need to think about how the player should do this, because the details are calculated from
the factory-method. We divided our methods to six factories for different purposes. These 6
factories I’ll explain now.

7.2.1 AttentionToActionFactory

class: robocup.component.actionfactories.AttentionToActionFactory

methods: AttentionToAction getAction(WorldModel model)

This action factory provides methods, to find the best player to hear now. Presently it
containes only one simple method, so it should be expanded soon.

getAction

This method delivers an AttentionToAction. The delivered action makes our player to hear
another player each cycle, running through the numbers 1 to 11 and starting again with 1
afterwards.

7.2.2 BasicActionFactory

class: robocup.component.actionfactories.BasicActionFactory

methods: KickAction accelerateBallToVelocity(Player p, Ball b,

Vektor velocityToReach)

Action alternate(Player player, Vektor pos1, Vektor pos2,

double maxDist, STAMINA LEVEL staminalevel)

DashAction dashToPoint(Player p, Vektor point)

DashAction dashToPoint(Player p, Vektor point, int time)

DashAction dashToPoint(WorldModel world, Vektor point)

Action freezeBall(WorldModel world, Player p, Ball b,

double angle, double distance)

KickAction kickFastest(Player p, Ball b, Vektor posToKickTo)

KickAction kickInTime(Player p, Ball b, Vektor lastPos,

int cycles, double error)

KickAction kickToPlayer(Player p, Ball b, Player mate,)

int maxCycles

MoveAction move(Vektor pos)

77

Action moveToPos(Player player, Vektor point,

double maxDist, STAMINA LEVEL staminalevel)

Action moveToPos(WorldModel world, Vektor pos,

STAMINA LEVEL staminaLevel)

Action moveToPos(WorldModel world, Vektor q, double angle,

boolean b)

Action moveToPosWatching(Player player, Vektor point,

Vektor pointToWatch, double maxDist, STAMINA LEVEL staminalevel)

Action moveToPosXTolerance(Player player, Vektor point,

double maxXDist, STAMINA LEVEL staminalevel)

TurnAction turnBackToPoint(Player player, Vektor point)

Action turnBackToPoint(WorldModel world, Vektor point)

TurnAction turnBodyToPoint(Player player, Vektor point)

TurnAction turnBodyToPoint(Player player, Vektor point, int delay)

TurnAction turnBodyToPoint(WorldModel world, Vektor point)

TurnNeckAction turnNeckToObject(WorldModel world,

Action firstAction, double viewWidth, StaticObject object)

This action factory provides the basic methods, to run, kick and turn. So it is the most
important factory that we have and as you can see it is also the biggest one.

accelerateBallToVelocity

Given as parameters are the ball, the player and a wished velocity. From the current ball
speed and the possible kick power of the player is calculated, if the wished resulting ball speed
is possible to reach or not. If it is possible to reach, the method gives the needed KickAction,
otherwise it delivers null to show, that such a kick is impossible to produce.

alternate

This method makes the player move between two positions on the field. Normally it is used
when a player reached a good position. The aim is, to make it hard to defend alternating
player since he always is in movement. The function never returns null and when using it,
one should check, if the positions maybe are offside positions or outside the field. Besides, it
is important to use a STAMINA LEVEL since a player in optimal position should not waste too
much stamina. Otherwise, his good position only seems good for other players.

dashToPoint

This method makes the player to dash to a given point as close as possible. Since the given
point is not nessicarily on the dash line of the player, it is calculed how to come to a point on
the dash line that lies vertically to the desired point. There are two variants of this function.

78

One function consideres, in what time the player wants to be at the position (using the drift
too) and the other function ignores the drift.

freezeBall

This method delivers the KickAction that is needed, to stop the ball at a desired position.
The desired position can be given as a parameter and is seen relative to the position of the
kicking player in the following cycle. This is very useful, since you can use this command to
say: In the next cycle I want to have the ball 30cm away from me on my left side. All the
nessecary calculations are done by the method then. Note, that often such a kick is impossible.
Then a good alternative kick will be translated, or in the worst case null is returned.

kickFastest

This method returns the KickAction that kicks the ball as fast as possible to a desired position.
Here three cases are possible:

1. the desired position is reachable in the next cycle:
The ball is kicked exactly to the desired position.

2. it is possible to kick the ball into the desired direction:
The ball is kicked into the desired direction with maximum power.

3. it isn’t possible to kick the ball into the desired direction:
null is returned.

kickInTime

This method is used if one wants to have the ball at a desired position in a given number of
cycles. If it is possible to kick the ball in the desired way, the corresponding KickAction is
delivered. Otherwise null is returned.

kickToPlayer

This method gives a KickAction for a direct pass to a teammate. That means, that the ball
is kicked to the actual position of a player. In general you shouldn’t use such an easy way of
a pass, since the teammate could reach a much better position while the ball is on the way
to him. So a good pass maybe should calculate this better position instead of forcing the
teammate to wait for the ball. If the direct pas sis impossible, null is returned.

79

move

This method calculates a MoveAction to a given position. Use this method instead of gen-
erating the MoveAction yourself since this method uses our coordinate system in the right
way.

moveToPos

This method makes the player to move to a desired position. So it returns a DashAction

or a TurnAction. It always returns an action, never null. There are different variants of
this method, forcing the player to move backwards or to specify, how much error distance is
tolerated.

moveToPosWatching

This is almost the same like moveToPos, but here the player decides whether to run forward
or backwards by the direction of a position that he wants to see while running.

turnBackToPoint

The player turns his back to the desired point.

turnBodyToPoint

The player turns his body to the desired point.

turnNeckToObject

The player tries to turn his neck in the way that he can see a given object in the next cycle.
Therefore he assumes the next position of the object and he assumes his own next position
by the main action that he wants to do.

7.2.3 PointToActionFactory

class: robocup.component.actionfactories.PointToActionFactory

methods: PointToAction pointToPositionAction(WorldModel model, Vektor pointTo, Action mainAction)

This action factory provides a method, that helps to point the arm of a player to desired
positions. Presently here is only one method, but this factory could be expanded, when you
have a good idea, what to show with the arm.

80

pointToPositionAction

This method makes the player to point to a given position on the field. Here you need a
mainAction as an argument, since the pointing works only in the next cycle after the player
did the main action.

7.2.4 SayActionFactory

class: robocup.component.actionfactories.SayActionFactory

methods: SayAction getAction(WorldModel model)

This action factory provides methods, that help to communicate with the other teammates
on the field. Presently here is only one method, but there are many other possibilities to
communicate important data,

getAction

This method makes the player to communicate his own position and his stamina to all players
who hear to him. Since the opponent team should not understand this message, it is encoded.

7.2.5 TurnNeckActionFactory

class: robocup.component.actionfactories.TurnNeckActionFactory

methods: TurnNeckAction getAction(WorldModel world, STATES state,

Action mainAction, ChangeViewModeAction viewModeAction)

TurnNeckAction getAction(WorldModel world, STATES state,

Action mainAction, ChangeViewModeAction viewModeAction,)

double[] preferred)

TurnNeckAction getAction(WorldModel world, STATES state,

Action mainAction, ChangeViewModeAction viewModeAction,

DynamicObject preferredObject)

TurnNeckAction watchPoint(Player p, Vektor point)

This action factory provides methods, to turn the neck effectivly into an informative direction.
Most of the methods use the Neckrotator class that makes the player watching always different
but interesting regions to gain as much actual information as possible.

getAction

This methods use the Neckrotator to always find a new interesting place to watch, depending
on my position, on what I am doing now and on my watch history of the last cycles. It is

81

possible to give a an extra parameter if it is very important to see or not to see one or more
special objects.

watchPoint

Makes the player simply to watch this point if possible. This method shouldn’t be used very
often, since the Neckrotator mechanism is deactivated then.

7.2.6 ViewModeActionFactory

class: robocup.component.actionfactories.ViewModeActionFactory

methods: ViewModeAction getAction(Synchro synchro)

This action factory provides methods, that set the view mode in each cycle in that way, that
we get visible informations in each cycle. It isn’t used to make the view width bigger or smaller
depending on game situations, but depending on a special rhythm that has the desired effect.

getAction

This method produces the rhythm of different view modes that lets us receive information in
each cycle.

82

7.3 NeckRotator

7.3.1 Overview

The NeckRotator is one of the new features of the Dainamite Team. The aim is, that we
want to see as much as possible and that all relevant informations should not be too old.
The normal way to choose the neckangle of a player was, to let him turn the neck towards
an special object, for example the ball or another player. But in some situations it is not
very interesting to see the ball, because we have seen the ball even the last 5 cycles before.
The NeckRotator works with a new idea. Here a single object is not so important, but it is
checked, what areas of the field are of a certain interest. This depends on 3 questions: when
did we see the area for the last time? how big is the area? is the area important in the actual
game situation?

All these questions together are leading to the best neckangle in each cycle.

7.3.2 The NeckRotator in detail

What are the Slices?

Up to here it was spoken about ”areas”. Presently for every player the field is cut in 32 slices
around the player. Each of the slices has the same size of the angle. Slice number 0 begins at
−180 degrees. The cirle around the player is completed with slice number 31, that finishes at
180 degrees. The number of slices is calculated by 2numberSlicesExp and so it can be changed,
by changing numberSlicesExp = 5 to another value. A higher number of slices would give
more detailed values, but it costs also more time, so we think that 5 is the optimal value here.

How to fill the slices with a ”sense”

The NeckRotator is is caluculating several values for each slice and combines them to a final
value. Slices with a high final value are more important than slices with smaller values. If
the player could see only one slice in each cycle it would be easy to give him just the center–
angle of the best slice as the optimal angle, but the view-width of a player is variable and
always bigger then one slice. So at first we have to calculate how many slices the player
will see and then search for the row of slices with the biggest sum–value. The center–angle
of these slices finally is returned as best neck–angle. This main–calculation is done in the
bestViewDirAbs–method.

The final Value of a slice is calculated from 4 other values and weights for 3 of these values.
The formula is:

83

final = sliceHistoryhistoryWeight ∗ estimatedSliceAreaareaWeight ∗
stateSlicesstateWeight ∗ seeableSlices (7.1)

The weights have changed from time to time and possibly there can be found even better
weights. Presently the history and the area have the same weight and the weight of the state
is a small step higher, because the actual situation seems to be the most important fact in
this calculation.

sliceHistory

The sliceHistory is the difference between the actual cycle and the last cycle in that the slice
was seen. Everytime when a bodySense arrived, the sliceHistory of all slices increases by 1.
Arrives a visualInfo, then the sliceHistory decreases to almost 0 if the slice was seen completely.
If only a part of the slice was seen, the sliceHistory decreases to percentage of the seen area.

With this calculation, the sliceHistory of some slices sometimes increases up to more than
1000 and full seen slices have values of about 0,000001. This would mean too big differences
for our final calculation, so that these values will be mapped to more usable values by the
roundHistory–function. The detailed mapping can be seen in the following table:

sliceHistory mapped Value

< 1 0, 1
[1; 2[1, 5
[2; 3[2, 5
[3; 4[3, 5
[4; 5[4, 0
[5; 6[4, 5
[6; 8[5, 0
[8; 10[6, 0
[10; 25[7, 0
[25; 50[8, 0
[50; 100[9, 0
> 100 10, 0

So we see, that a fresh seen slice will not be very important in the next cycle, but at the
beginning the importance grows very fast. Was a slice not seen for a longer time, this can be
interpreted as the slice is not very important for this player. So the function does not need
such a big rate of growth for bigger history–values.

estimatedSliceArea

The meridian of a slice crosses the border of the field in one point. Let the distance between
the player and this point be the sliceLength, then the estimatedSliceArea is calculated by this

84

formula:

estimatedSliceArea = sliceLength2 (7.2)

Of corse this is not the real area of the slice, but the calculated value grows almost in the
same way like the real area and it is calculated faster. A small error occures, if the slice ends
at a corner of the field. Then the area is calculated some percent bigger than in reality, but
this error has no effect on our calculation.

The estimatedSliceArea is not calculated new in each cycle. If a player does not move, or
if he moves only little, then the areas of the slices don’t change enough to be calculated new.
So the calculation starts new if the player moved away more than 5m from the last point of
calculation. This value can be changed in minPosDiff.

In the final calculation the estimatedSliceArea is narrowed down to values between 0 and
10. This has no effect on the calculated neck–angle, but it gives finalValues as a result, that
are better to compare for humans.

The sense of using the area is that players should not look to slices where almost nothing
interesting is to see for them. For the goalie it makes no sense to look behind his own goal. A
dangerous ball cannot come from behind him.

stateSlices

The value of the stateSlices is calculated in very different ways, depending on the State in that
the player is at the moment. Some states, like DRIBBLING, SEARCHBALL and 2 special
goalie-states have their own methods to calculate the stateSlices but in general the results are
between 0 and 10.

For the most states is used the function setDefaultValues. This function has many pa-
rameters, so that it can be used for almost all situations. Here comes the detailed table of
parameters:

85

parameter explanation

pos position of the player
ballWeight how important is the ball
weight3m how important are other players who are within

3m around the player
this should be a small value because these players
are already sensed with body

weight10m how important are other players who are within
3 - 10m around the player

weight25mm how important are other players who are within
10 - 25m around the player

weight40m how important are other players who are within
25 - 40m around the player

farAwayWeight how important are other players who are more than
40m away from the player

kickableTeam ball is more important, if it can be kicked by a teammate?
often set to false because ball positions are given
over aural info when we kick it

kickableOpp ball is more important, if it can be kicked by an opponent?
often set to true because we cannot know where the
ball will be in the next cycle

teamWeight how important are teammates?
important for example, when we want to pass

oppWeight how important are opponents?
important for example, when we want to mark an opponent

oppGoalieWeight to check if I can shoot a goal

If one of the kickable–parameters is switched on, the the player will look with a very high
percentage to the ball, if it can be kicked by a teammate / opponent. Many of the parameters
for the several states are only first estimations, but they seem so work quite well, so that
changing these parameters would not make the team play much better.

Often the ball is at the border of the chosen view–cone and so sometimes the player doesn’t
see the ball because he missed it for about 1 or 2 degree. To avoid such missings, the neighbour-
cycles of important cycles get a certain weight too. So the important objects or not directly
at the border of the seen area and the risk to miss it is smaller.

seeableSlices

This value can only be 1 or 0, so if a slice can be seen by the player it will be 1 and otherwise
it will be 0. In our final formula this has the effect that unseeable slices will have definitely
the finalValue 0. All other values are not affected.

86

7.3.3 The special state “SEARCHBALL”

For the SEARCHBALL–state the NeckRotator works in a different way, because here the best
turn–angle for the body of the player is calculated. That means that the finalValue function
has changed in the way, that it is not interesting if a slice is unseeable. With turning the body
the player could see it anyway. So the formula is now:

final = sliceHistoryhistoryWeight ∗ estimatedSliceAreaareaWeight ∗
stateSlicesstateWeight (7.3)

For SEARCHBALL is not used the setDefaultValues–method but a special setSearchBallValues–
method. It gives the highest value to the slice with the estimated next ball. All other slices
get their value depending on their distance to the favourite slice. After setting these values
this method will not be called again for the next 5 cycles. The stateValues will be changed
now after each visual info. The values of all seen slices will be reduced to 10 percent, so that
in the next cycles other slices are more interesting. If the ball was not found after 5 cycles,
then the procedure starts again.

7.3.4 Many advantages - Any disadvantages?

The testing and using of the NeckRotator showed us, that it brings us many advantages. We
have a fine overview over the complete situation on the field, informations are very fresh, we
don’t see many uninteresting parts of the field and we can look depending on situations very
variable. But does it mean that everything is perfect?.

In my eyes the Neckrotator brings a small disadvantage too. Everything that we do with
the weigth gives only a kind of “indirect influence” on the player. We cannot say in a special
situation that a player has to see a special point. All we can do is to say him that this special
point is very interesting... If there are other interesting points for him too, the player could
choose another angle. Anyway this disadvantage is only a small one. With setting extreme
weight we can reach almost ”direct control” again, so the advantages are much much bigger.

7.3.5 Outlook

After some problems, bugfixes etc. now the NeckRotator works relatively fine. The biggest
work is done, but small things can always be made better. Of corse it can bring an advantage
to find better values for the over 100 weights that are used until now, but it will have more
effect to add some functionalities to the NeckRotator. Here I have two basic ideas.

The one idea is, that neighbour–slices of important slices should not get values in a static
way, but depending of the distance to the player. For example, if the ball is very far away
from the player, then it is not nessecary to use many neighbour–slices. The main slice will be

87

wide enough then. Otherwise, when the ball is very close, it is easy to miss the ball with a
single slice, but even 3 or 5 slices couldn’t be enough.

The second idea is, that in some situations a rotation is not useful. So in a very “hot” situ-
ation it could be possible that only the ball is interesting for the player and in this moment he
should forget that didn’t see some slices for a long time now. This can be done with non–static
weights for history and states. Is the player far away from ball, his state is not very important,
but he has a chance to look places that he didn’t see for a long time. So historyWeight should
increase with the distance to the ball and the stateWeight should decrease in the same way.
A player close to the ball will not have such a big rotation than.

88

8 Prophet

8.1 Overview

The prophet is used to predict future states based on WorldModel data by means of planning.
This is done by making certain assumptions for different analysis and by applying possible
actions to agents. However, there is no specific planning algorithm used - it is rather the
case that it is coded into the corresponding classes 1 by providing a high amount of domain
knowledge in order to reduce the search space and to keep them applicable in real time.
Though planning is much more performance consuming than applying rules, it provides the
only possibility to make use of opportunities that will arise in the near future or to express
conditions which are difficult to include into rules. Whenever the developer is confronted with
implementing a new situation, he/she should beware on its performance - the best plan is
useless if not generated in the moment it should be executed (usually within (much) less than
100ms).

The following sections first provides an overview about the Prophet in general and then
briefly describes the situations refered by the Prophet.

8.2 The structure of the Prophet and Situation class

The Prophet itself is responsible for delegating planning reqests to a responsible Situation,
hence it consists of a collection of them. Each Situation can plan towards a certain goal to
achieve, e.g. if an agent wants to intercept the ball, a specific Situation called InterceptBall-
Situation is used to calculate if this is possible and how to achieve this goal. Other (more or
less sophisticated) Situations are responsible for dribbling, passing, intercepting an opponent,
etc. The Situations are triggered by States (tactical components), which possess a reference
on the Prophet. There, generated plans are integrated into the action selection mechanism of
the agent by providing their benefit (utility value) and applicability (preCondition - does a
plan exist?). The structure of the Prophet can be seen in figure 8.1, containing an overview
of the most common Situations. It can be seen that each of them extends the abtract class
Situation, which contains methods for calculating the benefit of a goal and how (if possible)
to achieve it by providing an action (or plan of actions).

Another side-effect of some situations is providing game-information to the agents. For
example, if the InterceptBallSituation results in a plan, where the agent can get the ball prior

1called Situations, because they try to predict world states up to specific situations

89

Figure 8.1: Overview about the Situations of an Agent

to all others, he (and his team) is known to be in BallPossession. If no plan is createable,
where he (or his teammates) can get the ball first, the opponent team is. This information
also influences other decisison, because an agent behaves different in both cases respectively.

8.3 Situations Used by the Prophet

The following section provides some information to the most important situations implemented
so far. As some of these siutations have become very complex the description given here
includes only there main features. For a more detailed description of each situation refer to
the source code documentation.

8.3.1 The abstract Situation

The abstract Situation class defines methods that are needed by all situations such as:

• getBenefit() The benefit of the situation resulting from the best plan in the given
context (i.e. the benefit of the best pass when passing). The benefit is a value between
0 and 1. 0 meaning that there was no plan found. 1 meaning that the plan will 100%
result in a goal (which will never happen due to noise). Determining the benefit for a
situation or a plan inside of a situation is the most complicated part of the framework
espescially as the benefit functions of all situations have to be consistent.

• getBestAction() The next (main) action needed to fulfill the plan. NULL if no plan
was found.

90

Figure 8.2: Ball Interception using its Speed

• wasUpdated() Based on a given world a situation will always deliver the same plan.
Therefore we only calculate it once for a given world (i.e. after the arrival of a VI) saving
ressources. wasUpdated() returns true if the situation was already calculated for this
world and false otherwise.

• setSubStateString() The substate string will be visualized in the SoccerMonitor and
shows the chosen plan or in other words the leaf of the situations decision tree that
produced the best plan.

8.3.2 InterceptBallSituation

The InterceptBallSituation calculates, which player can intercept the ball in a given situation
first, assuming all agents will try to intercept it. It makes use of the movement knowledge for
the ball and the players (both precalculated and stored within the Movements class). Since the
ball can’t change its movement on its own (only some noise is added to its direction and velocity
by the server)2, the course it will take and the time spent therefore can be extrapolated very
easily, as long as no one can kick it. In this case, the ball is already in possession of someone
and the situation stops planning. For instance in figure 8.2, the future positions of a ball in
cycles t0 (actual cycle) and following is given by a red line and a resulting point at the end.

Knowing for each point how long the ball needs to reach it, it is analyzed, if any other player
can get there in the same amount of time, assuming they will try to get there as fast as they

2There is also noise contained in the visual ball information a play gets.

91

can. This is checked for every cycle starting from the current until a cycle where an agent can
kick and hence control the ball (indicated by the circles around the players) was found. This
method retrieves information on:

• Where will the ball be intercepted (InterceptionPoint).

• When will the ball be intercepted (InterceptionTime).

• By whom will the ball be intercepted (sometimes, this is more than one agent, if each
of them needs the same time to reach the interception point).

• What action will (probably) be done by the intercepting player(s) when intercepting the
ball as fast as possible. This information is used in order to predict the future movements
for some players.3

These information are important for checking for instance, which team is in ball-possession.
If one agent sees, that he is fastest to the ball - he usually tries to intercept it. In the current
implementation, an agent can also compare different interception points, if he is the very most
fastest player, in order to select the best.

8.3.3 PassSituation

Until now, the PassSituation is the most complex one. Within it, if an agent is in ball-
possession, he can analyze, which kick-action will result in situations, where a successful pass
was played. This is done in the following way:

1. The Situation checks for an amount of kick-directions and strengths, how the resulting
ball will look like (its speed and direction).

2. For each combination, the algorithm checks, who will intercept the ball first and where
does this take place, similar to the InterceptBallSituation.

3. Finally, it compares the outcomes of all possibilities and selects the best as suggested
pass. The pass is only executed, if it is assessed better than all other actions, e.g. as
dribbling. As passes that are intercepted by opponents are filtered a pass in a perfect
world without noise should always go to a teammate.

It is easy to see, why this algorithm is very complex. The amount of analyzed pass directions
can be reduced in order to fasten the algorithm, even dynamically during simulation (see the
Synchro-Chapter to get an idea, when the time to compute an action is less available).

The following methods are used on the Prophet to access the PassSituation:

3It has shown to be pretty simple to predict the movement of players intercepting the ball. The real challenge
is to predict other players especially the opponents.

92

• public boolean canPass() True if the best pass benefit is greater 0.

• public double getPassProb() The probability the a pass reaches a teammate. (NOT
used yet.)

• public Vektor getPassPoint() The next interception point resulting from the best
pass.

• public Player getPassTo() The teammate that will receive the pass.

• public Action getKickAction() The next action for the chosen pass plan.

• public Ball getResultingPassBall() The ball that will result from the pass. (Used
mainly for communication.)

• public double getPassBenefit() The benefit of the chosen pass plan.

For details about the calculation of the pass benefit see the SituationEvaluator class.

8.3.4 ScoreSituation

This situation simulates goal kicks. It tries to pass between each pair of neighboured opponents
inside the goalcone and calculates the score point if a pass reaches the goal before an opponent
is able to intercept it. For each resulting score point it determines the probability that the
ball goes into the goal when kicking to this point.4

The ScoreSituation also decides wether the goalie is important enough to be watched in
the next cycle. The goalie is important if he is the only opponent preventing us from scoring
and every action of him might result in a chance to score. The goalie is less important if we
won’t have a chance to score against him (.e. as we are to far away from the goal). In this
case it’s more important to watch out for teammates to pass to.

Corresponding Prophet Methods:

• public double getScoreBenefit() The benefit of the score plan. (This will be named
getScoreProb() in future releases as the benefit of a goal is always 1!)

• public Action getScoreAction() The next action for the chosen plan.

• public Ball getResultingScoreBall() The ball resulting from the next action.

• public boolean shouldWatchGoalie() True, if it is important to watch the oppo-
nent’s goalie waiting for a mistake.

4The kicking itself and the ball movement are noisy. For (much) more details see [8].

93

8.3.5 GoalkeeperSituation

The GoalkeeperSituation is described in detail in section ??, where it is explained in the
context of the complete agent (states and situations). Therefore this subsection provides only
a summary of methods provided by the Prophet.

Corresponding Prophet Methods:

• public Action getBestGoaliePositioningAction()

• public Action getBestGoalieDefensivePositioningAction()

• public Action getGoalieWaitAction()

• public int getGoalieInterceptCatchBallCycles()

• public boolean goalieCanCatchFastest()

• public boolean teamToGoaliePass()

• public boolean goalieCanKickFastest()

• public boolean ballInDangerousGoalDistance()

8.3.6 DribbleSituation

This situation calculations a dribbling plan. First it checks wether dribbling is save. Then it
determines where to dribble to and what action needs to be done for that. We try to dribble
with the ball on our side thus avoiding collisions and keeping control over the ball the whole
time.

The dribble situation also handles the waiting with the ball. This might prove useful when
the player has no more stamina and no passing is possible or there are to many opponents
around so the player tries to keep the ball as long as possible until he finds someone to pass
to.

Corresponding Prophet Methods:

• public double getDribbleBenefit() The benefit when dribbling.

• public Action getBestDribbleAction() The next action for fulfilling the dribble
plan.

94

9 Message-Factory

9.1 Introduction

Communication in Robocup serves mainly for two purposes. First of all, it can be used to share
knowledge such as positions of players or the ball. This is a very effective way of improving
the agents world-model accuracy. The second purpose, which certainly is on a higher level
of abstraction, is that of giving or requesting tactical information. However, since message
receivement is not assured, implementing some kind of dialogue is very risky and has a high
probabilty of failure.

The Message-Factory provides the means for encoding and decoding messages, and therefore
serves directly for the first purpose. All other tasks, especially those which need more logic
using AttentionTo and communication protocols, are not yet part of this framework. The
CLang, the messages that are sent by the coach, are not included here as well (see chapter
11 instead), but freeform-messages, i.e. messages which contain simple strings, may make use
of the given functions. In order to explain the Message-Factory, this chapter is organized as
follows: The next section gives an overview about the message format. Then the following
explains, how different values are encoded and decoded into and from strings. For instance,
floating point values can be encoded with a different kind of precision.Finally, a conclusion is
given and some extensions are suggested.

9.2 Message Format

Usually, messages which are exchanged between player agents, have a fixed maximum length
and can be composed by a subset of ASCII1. However, since the maximum length is con-
figurable (server.conf), and the allowed charset may change in newer versions, the Message-
Factory is implemented in a flexible way, such that changes to these values may not affect its
operational reliability, or it may at least be adopted with a few lines of code, such that it will
work again.

In general, all messages implemented here contain an id, which tells the receiver, what kind
of messages was received, and the message-body. Up to now, an id is the first character of a
string, which allows to differentiate 73 kinds of message types. If further messages are needed,
simply use one of the ids as indicator for a second thereafter, which would increase the number

1In the server-version 10.0.7, a message is limited to 10 characters length, using only a set of about 73 different
sympols

95

of definable messages again. Each id is associated with a message length, which defines the
number of characters used for the message-body. This allows to combine different messages
into one string, as shown in the following two lines.

string : c0 | c1 | c2 | c3 | c4︸ ︷︷ ︸
message1

| c5 | c6 | c7 | c8 | c9︸ ︷︷ ︸
message2

message1 : c0︸︷︷︸
id

| c1 | c2 | c3 | c4︸ ︷︷ ︸
message−body

Here, a string out of ten characters is shown (c0 to c9). The string contains two messages
(message1 and message2) each of five chars length. Each message is again made up of an
id (c0 in message1 and c5 in message2), which tells the receiver, what is the content and
the length of the corresponding message. This is important, because otherwise the Message-
Factory wouldn’t know how to decode the message-body. For instance, in this example each
message could be the position of a different player.

9.2.1 Definition of Messages

In order to define a new message, the following steps are neccesary:

1. A message type constant has to be defined. This is done by adding/changing a constant
to the enum MESSAGES. This automatically reserves an id for that message, because
the index (MY MESSAGE.ordinal()) of that constant points at the corresponding index
of the array of available characters defined in NumberConverter.digits.

2. The message length without its id has to be specified. This should be done within the
constructor of the MessageFactory. There, the length has to set to the array length-
OfMessage, using the value of the id as index, which enables a fast access:

lengthOfMessage[NumberConverter.digits[MESSAGES.MY MESSAGE.ordinal()]] = 4;

9.2.2 Receiving a Message

If a string message is received, e.g. from a say-action executed by another agent, this has
first to be passed to the method MessageFactory.generateMessages(String, int), whereas the
first parameter is the corresponding message itself, and the next is the bodyCycle indicating
when the message was received. The MessageFactory splits the messages by analyzing the
ids and the corresponding lengths of the messages, and stores them in the lists messageTypes
and messageContent. In the former, all received types are remembered, in the latter the
corresponding part of the message, i.e. the substring that makes the content of the message.
Note that the indices of both lists refer to the messages and message-types, which belong

96

together. If the given bodyCycle is higher, the lists were cleared, before new data is added,
such that only those messages are buffered, which are received in the actual cycle. Still missing
is the encoding and decoding of the messages, which is explained in the next section.

9.3 Encoding and Decoding Numerical Values

Sharing information with messages of about ten characters imply, that the content has to be
encoded efficiently. The approach taken here is straightforward, and allows to encode values
with different precision in order to give exact information if needed, or to save the message
capacity for other content, if precision is not so important. However, there are also some
restrictions, but these are not very serious.

The method for the encoding of floating point and integer values by the message factory
is nearly the same. Generally, a numerical value is mapped to a fixed set of characters,
which represent approximately the same value, but are stored in an n-ary number system.
Concretely, the usual decimal numbers (i.e. 10-ary numbers) are translated into numbers of the
base 73 (i.e. 73-ary numbers, which is the amount of allowed characters for communication).
In order to define an encoding, three decisions have to be made. First of all, the number of
characters into which a number should be converted have to be defined. The more characters
are used, the higher is the precision of the encoded value. After that, the range of the value
must be specified by giving the minimum and the maximum value. The larger the range, the
lower is the precision. The decoding of floating point values imply always a range of [0,1],
which allows the use of a fixed point. An appropriate scaling has to be made beforehand.

9.3.1 Converting Small Positive Integer Values

Small integer values, especially those smaller than 73, can be mapped directly to a character
using the array NumberConverter.digits. Therefore the number itself can be used as index for
retrieving the corresponding character, i.e.:

char c = NumberConverter.digits[value];

Be sure that the values are always smaller than the length of the array, else an Exception
will occur, which influences the process of the agent significantly. For instance encoding a
tricot number this way would be feasible. The revers operation is nearly as trivial, because of
the existance of an array for the decoding process, called valuesOfChars[], which maps each
character to the value it stands for. Simply give the character as index:

int i = this.valuesOfChars[c];

Note, that because the character-values (their Unicode-values) are not zero-based, the array
is larger than NumberConverter.digits, and has some unused fields. This was accepted, because
we gave priority to fast access instead of memory usage (which isn’t that critical here).

97

If two smaller values should be encoded, they can share a character. Each character is able
to hold little more than 6 bits of information, such that for example two bits can be used for
a simple status, and the other for a tricot number. Encoding must be done by hand, e.g. if
the first value has sixteen different states (four bits), and the latter four (two bits), use the
following code to create the corresponding character:

char c = NumberConverter.digits[(value1 * 4) + value2];

The used values should start at zero, else this calculation will fail. For the decoding there are
also precalculated arrays, which retrieve the corresponding values. These are sharedFrontValue
and sharedBackValue respectively. The former is used to address the first (higher) bits, the
latter for the lower bits. The corresponding decoding of the example above is given as:

number1 = this.sharedFrontValue[char1][3];
number2 = this.sharedBackValue[char1][3];

The arrays are two-dimensional, and store the reverse operation of the encoding shown
above. For example, the sharedFrontValue is calculated as:

vf = vchar/(j + 1)

Here vchar is the integer value of the character (given by the array valuesOfChars[c]). The
result is the number of times j + 1 (the number of states of the first value) fits into vchar. The
sharedBackValue is correspondingly calculated as:

vb = vcharmod(j + 1)

The array stores precalculations allowing four bits for the first value. This is no restriction,
because if more bits are required, the second value has to be smaller, and the order of them
can be swapped correspondingly.

9.3.2 Converting Other Integer Values

Converting integer values in general is done by specifying a minumum and a maximum value,
and hence implicitly its range. This value is scaled to the available range of the selected
amount of characters. Decoding is simply done by scaling back. There exists a method for
converting a number (stamina) to a single character, called convertIntToCharacter(int, int,
int), whereas the first is the value to convert, the second the minimum, and the third the
maximum value. This method may be extended to fit for a general mapping quite easy.

98

9.3.3 Converting Floating Point Values

As mentioned above, converting floating point values is allowed only for values of the interval
[0,1], hence these have to be scaled first using again a minimum and maximum value. The en-
and decoding is more flexible than that for integer values. We can define a set of doubles to be
converted to a set of chars and vice versa. For instance, it is possible to map four double-values
to three characters, whereas each of the doubles is mapped to approx. a frac34 char.

The methods used therefore are also contained in the class NumberConverter, having the
following signatures:

• char[] convertToChars(double[] doubles, int numberChars)

• double[] convertToDoubles(char[] chars, int start, int length, int numberDoubles)

The first is responsible for encoding values to chars. The first parameter is an array of the
values to encode, the second defines the numbers of characters which should be created. The
decoding method needs a character array as parameter, together with a start and an end-index
(usually 0 and length-1, if the complete array is used for decoding), and the number of doubles
which are contained in the encoded characters.

Example

A very often used encoding is that of a Vektor, i.e. a position on the field. A Vektor is given
by an x- and y-coordinate. In order to convert them, values have to be given in the interval
of [0,1]. Therefore we decided to encode the Vektor using polar coordinates, which is an angle
and a distance. The angle is scaled from [0,360] to [0,1] and the distance is assumed to be
maximal 70m from the coordinate center. Thus, a double array containing the corresponding
two values is encoded using the method convertToChars(double[], int). Using three characters
for encoding, the maximal error we get for the position is about 15cm. If we use four characters,
the error is about 1cm. Note that usually the error of visual data is approx. equal to the
encoding error using three characters. This way, a message can contain the position and the
speed of two players quite accuaret, or those of a single player very precisely.

9.4 En- and Decoding Processes

The MessageFactory provides an encoding- and decoding process, which was optimized for
performance issues. Thus, if extending, it is recommended to follow this approach. The given
section outlines the processes of encoding and decoding subsequently.

99

9.4.1 Encoding Messages

For the encoding of a message, a simple method called encodeMyMessage(..) should be im-
plemented, which directly returns the string. This method has to be public, because it is
accessed directly by other components, e.g. the SayActionFactory. The only thing to consider
here is, that the message format is kept, i.e. the id is the first character of the message, and
the length of the returned string is that specified for the message type (plus 1, because the id
counts extra).

9.4.2 Decoding Messages

As with encoding, this process requires a method called decodeXY(String), which handles the
decoding. The first thing to note here is, that this method doesn’t return any values. It rather
sets the results to attributes of the MessageFactory, which can be retrieved by getter-methods.
The second thing is, that this method isn’t called directly, but must be integrated into the de-
coding process as follows: As mentioned in section 9.2.2, after receiving a message (or a string
containing more messages), this should be passed to the method generateMessages(String).
After that, all contained message types and message contents are stored separately. Usually,
not every message is interesting for all components (i.e. the position of the ball is irrelevant
to the MeModel). Hence the component can get all contained message-types using getMes-
sageTypes(), and when iterating them, it can decide, which one contains relevant data. Then it
invokes the corresponding decoding using the method decodeMessageNumber(int), whereas the
parameter refers to the index of the message-type from iteration. This one will call, depend-
ing on the message type, the implemented decoding message. Therefore each new decoding
method has to be added to the decodeMessageNumber-implementation in order to be invoked
subsequently.

9.5 Conclusion

The MessageFactory currently implements many message-types for positions and/or speeds
of a player or a ball, together with some other data. The approach taken allows to flexibly
combine messages, to vary in precision of the content and to extend it easily. However, it
only allows to define simple messages. Communication protocols or dialogue systems are
beyond its scope. Implementing these would require to make use of AttentionTo, some kind
of communication rules and a model of the process of a protocol, i.e. a new IModel added to
the WorldModel. Extending the MessageFactory with new types is currently not restricted,
because only 20 out of 73 ids are yet used. If the maximum amount of messages is reached,
new ids can be obtained by using two characters as id (i.e. a distinguished first character
denotes that the second character is another id).

100

10 Tactic

10.1 Introduction

The most crucial element of an agent is his action selection, sometimes referred to as tactic,
because this component decides how he behaves. The implementation of the tactic is also
the most challenging aspect, because its measurement of quality is very vague and hence an
objective assessment is difficult. We believe that a simple, but flexible and intuitive mechanism
for implementing tactical decisions is required in order to obtain a good understanding of what
is going on inside an agent, and subsequently to achieve a well implemented system. Therefore
we used a simple state-based reactive approach, which is combined with reasoning mechanisms
(Situations) if needed. This chapter introduces the concepts of our tactic, and therefore is
organized as follows: First we present the process of action selection together with the structure
of the tactical components. After that, some of the implemented tactical classes are shown,
and finally we give a conclusion and an assessment of this approach.

10.2 States and StateEvaluation

Before describing the tactical parts of our framework in detail, this section starts with a brief
motivation of our approach. As already known, a robocup-agent is able to act by sending
action commands like dash, kick, etc. to the soccer server, whereas a tactical component is
reponsible for selecting an appropriate action in a given situation. If looking at real soccer,
actions are not only distinguished by their constituting motions, but also by their intended
goal. For instance, a kick could be executed as a pass in one situation, or as a goal-shot
in another one. Correpondingly, a soccer player intentionally decides how to behave on the
higher level, which is, if to dribble, to pass, to hold or reach a certain position or to intercept
the ball. These behaviours usually involve the execution of a sequence of actions or motions,
e.g. if dribbling, the player must decide, if a kick, a dash or a turn should be performed. In
order to reflect this relation, we use the concept of states. This is well suited for representing
in an abstract manner, what an agent is currently doing, similar to a state machine. Therefore
each state implements a defined behaviour, and the set of states that an agent owns describes
his possible options for acting.

Along with the states, the tactical decision of an agent is divided into two layers. The first
and higher layer is the selection of one of the states in each cycle, which corresponds to the
decision of the soccer player to dribble or to pass. If a state is selected, an action fitting best for
that state has to be selected. Thus their implementation involves two related activities to be

101

done by the developer. The first is the implementation of an assessment of a state for a given
situation, which enables to compare them with the other available states. The second task
is the determination of the lower level actions leading to a concrete motion for a behaviour.
From these requirements we obtain an abstract definition of a state that is implemented in
the class AbstractState by the following methods:

• public boolean preCondition()

• public double successProbability()

• public double successBenefit()

• public void calculateMainAction()

• public void calculateViewModeAction()

• public void calculateAttentionToAction()

• public void calculateTurnNeckAction()

• public void calculatePointToAction()

• public void calculateSayAction()

As denoted by their names, each of them serves for a certain purpose, which is stated next.
The method preCondition() has to make sure, that the corresponding state can be executed in
a given situation. For instance passing requires, that the ball is kickable by the player. If not,
this method should return false. successProbability and successBenefit are used to assess a
state for a given situation. The former should calculate or estimate the probability of successful
execution of an action. This should be returned as a value of the interval [0,1], whereas a zero
means, execution is impossible. The latter should estimate the benefit of executing the action.
This is also done by returning a value of the interval [0,1], whereas a 1 should relate to the
direct scoring of a goal. The product of the successProbability and the successBenefit serves
as an assessment for a state, which nearly corresponds to the expected reward for executing a
state1. Thus, our agents will naturally keep a balance between risk and benefit.

These three methods are now used for determining the state that should be selected, fol-
lowing this basic algorithm.

Let S be the states available for agent a. Then the state to select is given by

Svalid = {s ∈ S|s.preCondition()} (10.1)

sopt = arg max
s∈Svalid

(s.successBenefit() ∗ s.successProbability()) (10.2)

1Note that the penalty for failure is not included, hence this approach is not directly applicable with RL
algorithms

102

Figure 10.1: Overview about the tactical classes - the StateEvaluation and the States together
with their important relations

First, the precondition of all states is evaluated, and those returning false are removed
from consideration. Thereafter, each is assessed, and the best one, i.e. that with highest
assessment value, is kept for execution. This now means, that the corresponding actions have
to be determined. Therefore, the other methods are called in the order, which is given above.
First, the main-action (dash, turn, etc.) has to be calculated, followed by the viewmode-
action, and so on. This order is neccessary, because later determined actions require to know,
which of the previous ones are selected (e.g. it is required to know, which view-mode is used
in order to determine the turn-neck action).

The class, that is responsible for the selection of a state is called StateEvaluation, which is
included into a Player (see Figure 10.1), and contains the collection of States, that constitutes
the possible behaviours of an agent. Additionally, the StateEvaluation maintains a reference
to the WorldModel and the Prophet. Both are very important: The former provides the
information about the world, which has to be evaluated and assessed by each state. The latter
holds all Situations. These can derive necessary information from the WorldModel, implement
the agents reasoning capabilities and therefore are also very important for action selection (see
Chapter 8) for details). Finally the StateTactic is the interface of the agent for triggering the
calculation of actions in combination with the Synchro (see Chapter 5 for details).

States combined with Situations usually work little different than simple states. There,
most of the work work is done within the Situations, and a state is almost only needed as
mediator, such that a precondition and an assessment are also given. The reason for that is as

103

follows: The reasoning done in a Situation can be interpreted as planning, although no explicit
or formal mechanism is used. If a valid plan was found by the Situation, the precondition may
be true (there might be additional conditions, e.g. a playmode, which should be evaluated
before starting to plan in order to save performance). Also the assessment of that situation-
based state is directly related to the assumed resulting world-model (situation), such that this
is done after planning. If for example a plan leads to goal, the state should return 1 as benefit.
Subsequently, the calculation of the actions in the state is easier. Since a situation creates a
plan (or something similar) the main-action are already determined there and can be retrieved
by the states.

Finally it should be mentioned, that there are no explicit rules determining, which function-
ality has to be implemented within a state or in a situation respectively. For instance a state
may be implemented to contain complex reasoning methods without referring to any situa-
tion. But there is one aspect giving hints to that question: If the reasoning process provides
information that is important to more than one state, a situation should be used, because this
is accessible by all states via the Prophet per default. States usually do not refer one another
(and creating these references is not simple, because they are instantiated using reflection).
An example for this is the InterceptBallSituation, which determines who is in ball-possession.
Other states may depend on that information, e.g. a forward would behave different, if either
a teammate owns the ball or an opponent does.

10.3 Implemented States

As shown in Figure 10.1, there are a few states already implemented, such that a simple
kick’n’run tactic is given. This section gives an overview about these states by describing
them briefly. For details have a look at their JavaDoc, and in order to see, which state belong
to which player. and what play-modes they support, refer to the agents configuration files of
the project (Section 2.5). Looking at the source-code files, you will notice that some of the
state-assessment values do not to fit to the aforementioned guidelines (e.g. the ball-interception
is always assessed 0.95). Keep in mind, that without being in ball-possession, the best that an
agent can do is to get the ball. Important is only, that the agent selects in each situation the
best option, which is, the best state that is applicable in a current situation. Thus one has to
care, that states, which can be selected under equal circumstances (e.g. passing or dribbling)
are adjusted against each other. In the following, the available states are listed:

AbstractState: As the name intends, this state is defined abstract, and is the superclass for
all other states. Therefore it provides methods, which can be overriden by the extending
classes for their own behaviour definition. Additionally it provides some useful basic
method for the other states.

BeforeKickOffState: The BeforeKickOffState is triggered for all Situations with playmode
BEFORE KICK OFF. It’s the the state that lets the player move at its start position.
All players will be turned in the direction of the opponent’s goal. However, if its our kick

104

off player number 10 will be the fastest to the ball and this state will not be triggered
for him, because this will execute the kick-off.

DribbleState: This state represents the players dribbling intention. It is nearly always trig-
gered when the player has the ball under control. The decision is made in the corre-
sponding DribbleSituation.

GoalieKickInState: This state defines the behaviour of the goalie after catching the ball.
Then, he is able to move twice inside his penalty area in order to make a kick-in.

GoalkeeperState: This state implements most parts of the behaviour of the goalie. Especially
his positioning and when to catch the ball.

InterceptBallState: The state for intercepting the ball. This state is triggered when the
player can not kick the ball and is the one of the fastest player to the ball. Most of the
logic used here can be found in the InterceptBallSituation.

InterceptOpponentState: The state for intercepting an opponent with ball. This state is
triggered when the player can not kick the ball and is the one of the fastest player to
the opponent with ball. Note that the implementation is simple and hence not very
effective.

PassState: This state is responsible for passing. In combination with the PassSituation, this
behaviour is the most complex and comsumes most performance.

SearchBallState: The SearchBallState is triggered when a player lost the ball-position. It
triggeres the algorithm that searchs the ball. This state is also the default state triggered
when no other state is possible (which should never ever happen!!).

ShootGoalState: The state that that tries to score. Triggered when with ball and near the
opponents goal.

StartPositionState: State that moves a player to his start-position when in play-mode before
kick-off. The start-position depends on the number of the player and is encoded into the
FormationData-class.

10.4 Conclusion and Outlook

The tactical framework presented here has some interesting properties. The first is, that
it provides an easy way to implement a certain behaviour. Extending the AbstractState and
adding this to an agents configuration file is all that is necessary. However, since state selection
depends on numerical values (their assessment, which may depend on multiple parameters),
the explicit definition of state transition is not so easy. Balancing and adjusting these values
is very time consuming and it is possibly helpful to enhance them using learning algorithms.
Another property so far is, that states allow both, the implementation of simple reactive
behaviour, or behaviour which relies on more sophisticated reasoning using situations. In

105

the latter case, they can be used as interface to the state-selection mechanism. It should be
possible to add learned behaviours into this framework as easiliy as the others, but this was
not tested so far. The assessment procedure of the states should also allow to use learning on
a higher level, such that adjusting their assessment values can be done automatically. Finally,
configuration of states is an easy way of defining roles of the team. Therefore, the roles goalie,
defender and player already exist. Following this approach each agent can have its own defined
behaviour by providing an individual configuration plus the states for them.

The given tactical framework also lacks some functionality. One is for instance explicit
teamwork. Implementing a team would include to desing behaviours of two or more agents
to be executed simultaneously. The current approach doesn’t provide this. Up to now, we
only made use of roles, and in a given situation, an agent has to recognize his tasks depending
on that. Another missing feature is long-term planning. However, since robocup is highly
dynamic, these might be applicable only in special situations (e.g. standards), which are more
predictable.

106

11 Coach

11.1 Overview

The coach is a non-visible agent with different functions. The coach sets the heterogeneous
players, it is also able to change players during the game, it can communicate with the players
and gets noise-free information about all movable objects. Consequently the coach is a tactical
instrument to analyse the game and to give strategically information to the players.

11.2 Structure

Figure 11.1: Coach Structure

107

The server data is forwarded by the CoachAgent to the OLCoachTactic. The server data
contains visual info, aural info or the player type info. The OLCoachTactic contains three
linked lists, one list for each perception. The analyzers are now being listed in the appropriate
perception lists (see figure 11.1). For example the PlayerTypeAnalyzer only needs player-type
information for analyzing. So this analyzer is only registered in this perception list. Finally an
analyzer has the possibility to unsubscribe from a perception list with the removeFromXList
method (X can be Visual, Aural, Ptype).

11.3 Coach Language

The Coach Language was concepted in order to communicate strategically information from
the coach to the players. The grammar was designed in such a way, that there is no misun-
derstanding in their meaning, such that theretically coaches could be used by any team.

To communicate with the players, first a version has to be determined with the players via
server. This happens in RobocupAgent in package robocup.component. The command that
is communicated to the server is:
(clang (ver 7 8))

This simply means that we communicate Coach Language (short: clang) at least with version
7 and not more than version 8. This is also binding for the Freeform Messages, since they are
part of the Coach Language. After the coach is sending a clang message, the sequence (see
figure 11.2) is as follows:

1. Receiving and parsing the clang string by the Robocup Agent.

The CLangParser (14.1) builds an object tree and returns an info object to the Robocup
Agent. The components for the object tree can be found in package
robocup.component.speechacts.coachlanguage.

2. Evaluating and interpreting the clang object tree by the CLangModel (11.3.2).
Notice: That does not apply to Freeform Messages. They will be directly send to the
WorldModel and decoded by the MessageFactory (9)

3. The results from CLangModel may flow into the action selection by any state.

11.3.1 CLang Grammar

Package: robocup.parser9.CLangParser

The CLang Grammar (14.1) specifies the standard coach language and complies with version
7 and 8. The implementation can be found in CLangParser.jj in package robocup.parser9.

For example a RULE consists of a CONDITION and a DIRECTIVE LIST or of a CON-
DITION and a RULE LIST or of an ID LIST. The CONDITION can be TRUE or FALSE

108

Figure 11.2: Sequence of the clang message

or it consists of other statements which can be examined for truth. The DIRECTIVE LIST
contains a list of DIRECTIVEs, which can be assigned to all players or special players. So if
a CONDITION applies, the DIRECTIVE has to be followed. The following expression means
that our goalie should position itself at the point xy before kick off:
definerule((playm bko) (do our 1 (home (pt x y))))

11.3.2 The CLangModel

Package: robocup.component.worldmodel.CLangModel

The CLangModel is an extension of the WorldModel. After parsing a clang string by the
CLangParser the CLangModel receives a parsed object tree, which now can be interpreted
and evaluated. The results are then available for the states for further processing.

11.3.3 Freeform Message

To communicate via a Freeform Message, first the message has to be encoded with the Mes-
sagefactory (9). To send this message to the players the following command is used:
(say (freeform ”[MESSAGE]”))
The players are able to understand the message by decoding it with the Messagefactory.

11.3.4 Broadcasting Messages

Package: robocup.component.coach.BroadcastCommand

The coach only can communicate messages in specific intervals to the players. There are dif-
ferent intervals for freeform-messages and clang-messages. The BroadcastCommand controls
the dispatch of the messages under attention of the message send periods and the maximum

109

counts of each message type. If multiple messages of one message type arrive in one period,
all messages will be merged into one message to keep the message counts low.
Notice: You can send messages via OLCoachTactic. There are two methods to handoff the
messages to the BroadcastCommand and one method to send messages directly to the server:

• sendDirect(String) To send the messages directly to the server. This will only be
used for committing the player types (11.4.1).

• sendFreeform(String) To send Freeform Messages via the BroadcastCommand.

• sendActions(CoachSayInfo) To send Clang Messages via the BroadcastCommand.

11.4 Heterogeneous Player Types

Package: robocup.component.coach.PlayerTypeAnalyzer

Before the game starts seven heterogeneous player types are given by server. Each player
type has different pros and cons. The goalie can only be assigned to default player type 0.
The opponent receives the same player types by server. So the opponent goalie also has the
same values like our goalie. After receiving the player types, they are being ranked.

Now several ranked arrays are being offered. In this ranking the best player type is the first
one and the worst is the last one. Here is a list of the values of the current array ranking:

• ranked KM indicates, which player type has the best ”Kickable Margin”.

• ranked DP indicates, which player type has the best ”Dash Power Rate”.

• ranked IM indicates, which player type has the best ”Inertia Moment”.

• ranked St indicates, which player type has the best Value in ”Stamina”.

• ranked KM IM indicates, which player type has the best ”Kickable Margin” and ”Inertia
Moment” with equal weighting.

• ranked KM St indicates, which player type has the best ”Kickable Margin” and ”Stamina”
with equal weighting.

• ranked DP St indicates, which player type has the best ”Dash Power Rate” and ”Stamina”
with equal weighting.

• ranked 2DP 1St indicates, which player type has the best ”Dash Power Rate” and
”Stamina” with 2 to 1 weighting.

• ranked 1DP 2St indicates, which player type has the best ”Dash Power Rate” and
”Stamina” with 1 to 2 weighting.

110

The team–formation bases on this ranking. It happens in package robocup.component.tactics
in FormationData. Since each player type can only be assigned three times, the order of the
player type categorization is relevant.

11.4.1 Change Player Type

The command to set a heterogeneous player is the same as the one to change a player.
(change player type [PLAYER] [TYPE])
PLAYER stands for the player number and TYPE for the player type. Three players can be
replaced maximum.

111

12 SoccerScope and Tools

12.1 Introduction

Implementing and debugging a team of robocup software-agents involves a lot of testing. A
general problem with this is, that the most relevant aspects of the agents are not visible during
runtime, i.e. their knowledge about the state of the world and their tactical decision process.
In order to make these accessible, different methods can be used - logging to a file or the shell,
or even to a database is one option. A different method is to use a visualisation software,
which is able to display the internals of the agents during simulation. Yet another problem
the developers are faced with is, that testing by running complete games is very inefficient, if
only subparts of the whole simulation should be analyzed. This counts especially for situations
that do not occur very often, e.g. corner-kicks or situations near the opponents goal, if that
team is very strong. Therefore the soccer server provides training capabilities by means of
a trainer agent, which is able to manipulate the game and its setup in order to repeatedly
run certain situations. However, the soccer server lacks in providing an implementation of the
trainer, so teams have to care for that by themselves.

The given monitor is based on the SoccerScope2003 implementation of the team YowAI
[11], which we decided to extend for solving the aforementioned problems. Therefore it uses
other (freely available) software, and thus became a powerful tool for developing a simulation
team based on the dainamite framework. First of all, it is able to display the knowledge of
each dainamite agent by simply selecting it on the monitor. Additionally it is possible to see
the results of their tactical decisions, i.e. their states plus the corresponding assessments. All
these information can be serialized in two ways, either by writing into a file or by updating
a database, and can be evaluated lateron efficiently. Finally, the monitor can be used to
graphically design and store training scenarios, which can be executed for certain purposes
(e.g. machine learning) from the monitor as well.

In order to give an overview about the monitor and its extensions, this chapter is organized
as follows: In the next section, the monitor itself is presented together with its visualisation
capabilities. After that, the database connectivity is presented, and then the use of training
scenarios is shown. Finally, this chapter closes with a short discussion of improvements and
future work.

112

12.2 Monitor

12.2.1 Overview

The graphical user interface must comply two main features. Firstly the classic monitoring
and secondly the extended analyse, statistic and manual user interaction assistance feature
for the DAI-Namite framework.
To achieve these requirements the developers of the DAI-Namite team decided to develop
further SoccerScope 2003. SoccerScope 2003 fulfils the first requirement completely and is
available for free. It was written in JAVA so it’s relative easy to develop further and add
functions of the second main feature within the DAI-Namite framework.

Added visible gui functions:

1. Show the actual world model of each player within the field.

2. Show the executable states of each player for each cycle together with its assessment.

3. Display the world model data of a player using charts.

4. Save chart images to file

12.2.2 Using Soccerscope

The SoccerScope monitor starts automatically with the dainamite team, if configured this way
(see 2.5 for details). This should look like Figure 12.1. On startup, it automatically connects
to the soccer server as monitor instance, so that it is able to show the original game data.
Additionally, agents that are connected to the gui, send their world model and tactical data
to SoccerScope as well. Starting the game can be done by:

• Menu Monitor → Kick-Off

• Menu Monitor → Drop-Ball

• Menu Monitor → Drop-Ball to Center

• Toolbar-Button for Kick-Off (displays time 0:01)

• Toolbar-Button for Drop-Ball (displays ball with arrow down)

During game, (the original) SoccerScope provides different visualisation tools. These can
be found in the menus View and Analyze. With the View -menu, details of the simulation
can be shown or hidden, e.g. the kickable-area or the stamina of each player, their view-
cone. It also provides a submenu for selecting specific parts of the agents world model (called

113

Figure 12.1: The Soccerscope main window.

Figure 12.2: WM On/Off.

AgentWorldModel). Some of the actions, which are accessible via this menu are also executable
by the button-group on the bottom of the monitor. With the Analyze-menu, different analysis-
tools can be switched on or off, e.g. the offside line, the pass courses or dominant regions. The
visualizations are quite intuitive, so just try them out to see, how they work. Note, that some
of them consume quite much cpu-time, such that they should be used on logfiles rather than
on running games.

All added functionalities are placed in the menu called Dai. With the actions item it is
possible to send actions for a player (its tactic has to be switched off therefore). Player Data
shows a dialog with the current player data (e.g. its position). Statistics opens the the world
model statistic selection window. Tactic off turns all dainamite players decision processes off,
and to reduce the cpu usage it is possible to turn off the recording off all world model data.
It is also possible to turn off only a couple of values (via Refine).

114

Figure 12.3: SoccerScope showing the World-Model Data of Player number 2 (Yellow).

To show the world model of a dainamite player click on Agent WM -Button (located on
bottom right, see Figure 12.2) and then on the player of interest. Now SoccerScope additionally
shows players which looks like shadows. These are the player locations of the world model
from the selected player, as shown in Figure 12.3. The ball has a white shadow as well,
and a players expected stamina may also be shown (use menu View → AgentWorldModel
to refine the view). If shadows of players become darker, the corresponding information is
set to unreliable. That happens for example in cases, when the players weren’t seen for
long. Additionally, each player-shadow has some numbers next to it, as shown in Figure 12.4.
These are the players seen tricot number (above the shadow), its role number (below), and its
expected ball-interception time (right to the shadow), which in the figure for player 11 is 2.
The expected interception point can be displayed by switching the information on within the
corresponding View -menu.

A short summary of tactical information of a certain player is accessible via the context
menu, which is shown by right-clicking on a player (Figure 12.5). In the submenu States,
all executable states of the current cycle are listed together with their assessment value. In
brackets, more detailed information about the state can be shown. Most other entries of that
menu allow the same actiosn as the View -menu. In the Property-menu, its knowledge about
himself can be seen textually, together with information about its communication (heard and
send messages).

115

Figure 12.4: The World-Model Information of a Player

Figure 12.5: The World-Model Information of a Player

116

Figure 12.6: The statistic selection window.

The World Model Statistics

The statistic selection window (Figure 12.6) shows all available statistics and analyses. The
first choice selector selects the dainamite player of interest. The second selector selects a
teammate or an opponent player. That player number is used by analyses that depends
on a second player (like distance to enemy player). Min/max ball distance ignores analyses
depends on the ball distance less or greater than the given values. For example, it is not really
interesting how big is the difference of the ball positions in a distance of 100 Meter. That value
will result in a bad scaling. Min/max ball distance prevent that. Also for a better scaling it
is possible to cut off the charts by a given value (maximal absolute value). Note that some
statistics currently do not work (e.g. the state overview).

117

12.3 The Training scenario editor

12.3.1 Prerequisite

In order to use the training scenarios described subsequently, you have to use an adpated
version of the soccer server, which is available at our website http://www.dainamite.de. This
was extended to support a new option (called train), that disables the move-command for
players in order to ease the scenario setup. Additionally a new command for the trainer is
implemented, which allows to disconnect players. This is important, if testing is done with
fewer than 11 agents per team.

12.3.2 Introduction

What is a training scenario? If you want to test your changes of the code, fix bugs or
simply analyse the agents’ behav́ıour for the sake of improvement, it is not merely sufficient
to observate a running game of 22 twin-coloured points fighting for the ball. Indeed, you have
to expose the agents to a specific test-situation where their reaction can be easily associated
to but a few simple influencing factors. Such a situation is called trainings scenario. Such
situations can be created, saved to a file, and run in the “train” mode of the soccer server.

Example (for the training of the defender): Set one opponent in the middle of the field,
the ball at his feet. Put your own defender between him and the goal while the goal keeper
has taken his place in the goal. When the scenario is kicked off, the opponent will try get the
ball in the goal, having to bypass your defender. This is a wonderful way to observate your
own defender’s behaviour and to find out about the mistakes he makes.

Let us firstly take a closer look at soccerscope.

12.3.3 How to create a training scenario with Soccerscope

Starting Soccerscope

Soccerscope is a viewer of the playing field that can connect to the soccerserver, displaying
the game that is currently played by the help of this very server. However, for the purpose of
creating a training scenario we do not need to start a server, we will simply run Soccerscope
on its own. The executing class is Main in the package src.soccerscope.

A screenshot, showing the settings, can be seen in 12.7

Please, do not forget to set the “Working directory” in the next tab:
${workspace loc:Robocup}/etc/agents/

118

Figure 12.7: “Run Soccerscope” in Eclipse

Use Soccerscope and the Training Scenario Editor

To open the Training Scenario Editor make a middle-click on the playing field or press the
button Open Training Scenario Editor (1.3). The window 12.9 will open.

The buttons “Load” and “Save” (2.1) at the bottom of the window indicate that this window
not only displays the tool that will configure the settings of the training scenario, but that we
also have to lateron save it to a file in order to let it run from that file. So let us start with
the configuration of the training scenario.

12.3.4 How to configure a training scenario

We will now take a look at how to configure an examplary training scenario which simulates
an attack by a single opponent on a single one of our defenders.

Placing players

Remember that a training scenario is certain game-situation that a game-simulation starts to
run from. So how are we going to start? The first thing to do is to put the players to the

119

Figure 12.8: Describing Soccerscope’s training functionalities

120

Figure 12.9: The Training Scenario Editor

121

Figure 12.10: Players in their positions to form a typical defending-situation

points they are to occupy in the first cycle of the simulation. Click on the “Hand”-button
(1.2) to be able to move the players (and the ball!) with the mouse and let them form the
constellation you desire. (Leave those you do not need keep standing at the side, they will
disappear when the game starts.) Our example would look like figure 12.10

Please note that you can not (yet) chose any player number for any purpose (defender,
goalie, ...) Each number of the players in our team are attributed to a specific task on the
playing field. In our example we have chosen number two because number two is a defending
character. The opponent is number nine, which is of no special importance as the restrictions
in the usage of our own players are not valid with other known teams. Check out the file
team.conf in the package etc.agents to know the “who-is-who” of our team.

Now there are some configurations that are player-specific and others which are not. Take
a look the Training Scenario Editor again. There is a drop-down-menu (2.2) that lets you
select each one of the 22 players on the field. Select one of the players you just set on the
field. Alternatively use the select-mode by clicking the blue button displaying a mouse-pointer-
symbol (1.1). In this mode you can select players by the help of the mouse, but once you click
on one of them please note that the pull-down-menu (2.2) in the Training Scenario Editor is
automatically adjusted. We start with the settings that are player-specific.

Player specific settings

The first tab (“Training Setup”, 2.4) should be opened already as this is the default tab the
trainings scenario editor starts with. Take a look at the five tabs (2.5) in the downer right
corner. The player configurations are only set in these five tabs. The following text describes
the functionality of each tab and how to set it up:

• “Position”: The player is usually set to exactly the same coordinates each time you run
the scenario (“FIXED”). You can change this by selecting a “CIRCLE” or a “RECT-
ANGLE”. The player is then set into a random position within the selected area. Please
do not forget to adjust lenght AND height, otherwise the setup position of the player

122

Figure 12.11: Example for a player having a rectangular starting area

will stay a line.

• “BodyAngle”: Before you make a change to the configuration in this tab you should
give the player a body-direction. To this end, click at any point in the green field over
the tab (2.6). The player will turn his body to the point you have clicked at. This will
show in the display as a move of the black half-round, which is the players back. (2.7)
Now you can select a bunch of possible directions that the body of the player points to.
You can do this by the help of the ruler.

The wider an angle you select, the wider is the “bunch”. At the start of the game one
of those body-directions is randomly chosen from the range you have permitted.
Our example does not need such a diffusion. However, the body direction has necessarily
to be adjusted, as every player initially looks right, but has to look left for our purposes
(to see the ball and try to bypass our defender with it)!

• “Speed-direction”: The player has an initial speed. Select the check box if you want this
speed’s direction to be the same as the body-direction. (This is not necessarily so: The
inertia of the player might cause his body to further move in a certain direction while
his body-direction has already deliberately turned in order to move elsewhere (because
you can only start a move in a certain direction if your body angle aligns its direction)).

123

Figure 12.12: Body-Angle Ruler

Figure 12.13: Speed-Length Ruler

You can make the speed’s direction vary by plus/minus a range of angles that you can
determine by the help of the ruler.
There is no need of a specific direction in our example.

• “Speed-Length”: Speed-length means the length of the speed-vector, which is last of all
how we generally measure the speed in this project. Select either an upper (3.1) or a
lower limit (3.2) for the speed.

At the beginning of the scenario a certain speed according to the selected criteria is
chosen. (In our example you can let the minimum speed remain zero.)

• “Other” (#): To set a player “Active” is to let him participate in the game. If not
“Active”, the trainer will disconnect that player at the beginning of the scenario. Select
“Round-View”, to let the player have a good sight around. Actually, the trainer will
send a message to the agents with all positions and speeds of the dynamic objects. Select
both check box’ for our example.

124

Figure 12.14: Second tab: “Training-State”

General (player-independent) scenario settings

First tab, “Training-Setup” (which should still be opened) We have already described
the “Select Object”-pull-down-menu (2.2). There is just one last object we have to adjust
before we can switch to the “Training-State”-tab (2.4): The menu “Select Start-Playmode”
(2.3):

• The concept of playmodes is first and foremost to enable the soccer server to apply
different “rules of the game” during situations such as “Corner Kick”, “Free Kick”,
“Offside” and so forth. For a player, it is also necessary to know which playmode the
game is in, as he is p.e. not allowed to kick the ball in “Corner-Kick”-mode, rather
should he look for an advantageous position.
“Play On” is the normal playmode during a football game. Now, we have to chose the
playmode that our scenario is to start with. As with most scenarios, “Play On” is the
right one for our defender’s scenario.

Second tab, “Training-State”(#): Open the second tab now, marked “Training-State”.
There are three different configurations to set in this tab:

125

• The leftmost select box (“Playmode”, 4.2) contains a lot of different playmodes to chose.
Once chosen, as soon as they are activated during the run, they will immediately cancel
the scenario’s execution. This can happen because the playmode often changes during
the execution of a game/scenario. Check the “Activate”-box (4.1) to use this function
and select several break-conditions (4.2).
For the defending scenario we might chose break conditions such as FreeKick Left, Goal-
Kick Left, Foul Charge Left/- Right, etc, as all these mean that the test situation is over
or not longer valuable to observate.

• The number “Stop After” (4.3) indicates the number of cycles which a scenario termi-
nates after. Check “Activate” if you want to use the function. If you enter a number,
please, confirm the number with Enter! Otherwise it will not take effect. This is not
needed for the defending scenario, as we want to observate the behaviour of the player
till a situation appears where the defense is either succesful or not, only then can we
draw conclusions. However, this setting is helpful for situations where the player is to
react (quickly) in a certain range of cycles and later behaviour is not relevant.

• The scenario can also abort as soon as a certain team get hold of the ball. In order to
use this function, check “Activate” in the rightmost check box (4.4) and chose a team.
This function is very necessary for the defending scenario, as the ball possession of our
team means a succesful defense and suffices to justify the termination of the scenario.

Third tab, “Training-Statistics”: Not implemented yet.

Fourth tab, “Training-Execution”: Not implemented yet.

Do not forget to save your scenario to a file by clicking “Save” (2.1) and following the
usual procedure. Save the file with the extension .xml because this is what it is. You
can open it with an ASCII-editor and have a look. Most entries are self-explanatory if you
know the Trainings Scenario Editor’s GUI. For the creation of the XML the XStream-library
(xstream.codehaus.org) was used. However, it occured already that the Trainings Scenario
Editor did not save the right coordinates of a player. Then you must edit his position in the
XML.

12.3.5 Running the scenario

First of all, how to start a trainings scenario from the file you have just saved? These are the
steps to take:

1. Start the soccer server in train mode.
You can do so by running it like this in the command line:
$rcssserver train server::coach=true server::coach w referee=true

126

Figure 12.15: Scenario-Run Control-buttons

server::forbid kick off offside=false server::half time = -1

If you are a person of good taste and find this too long a line, simply edit the file
server.conf, which you find here: [home directory]/.rcssserver/server.conf. Set the pa-
rameters mentioned in the command line in the same way. You can then do without
them in the command line; it will only look like this:
$rcssserver train

2. Start your team as usual. But beware that this part is a little tricky: If you have edited
the scenario with our team left and the opponent’s at the right, you have to make sure
that the scenario runs in the same way! Our team is not yet able to handle the situation
if you don’t. You should know that the team started first is the one that is set up at the
left side, the second is right.

3. Once the players are all present, klick on the ball-button (1.4).

4. Select the file that you previously saved the scenario to and click “Open”. The scenario
should run now.

5. You can control the run of the scenario by turning the mouse wheel (advance - rewind),
or by clicking on these buttons in Soccerscope:

12.3.6 Outlook

The Trainings Scenario Editor is our most important tool when designing the players intelli-
gence, and it is already highly usable. However, there are still things to be done:

• There is a bug in saving complex scenarios to a file, which occurs from time to time.
The data is then not saved the way desired. This is what I mentioned above, referring
to the misplaced position of a player.

127

• Two out of four tabs within the Training Scenario Editor are not yet filled with the
functionality attributed to it.

• Our team is not yet able to handle the situation of a scenario run where sides are
exchanged compared to the creation of this scenario. This could be adjusted.

• Players of other teams can adapt to any necessary character, regardless of the number
on their back. Our defender would not “dare” to kick the ball in the opponents’ goal if
he was the only one of his team on the field (for example in trainings scenarios).

12.4 Database

12.4.1 Introduction

Until now scenes are stored by robocup soccer server (logfile *.rcg) and all scenes of a game
are stored in only one file. When we later want to open the file, we must have access to
the robocup soccer server folder on the network. SoccerScope is now added with database
functions. Storing scenes to the database equals to recording, a new game has to be openend,
and each scene is added into this subsequently, such that only interesting parts may be stored.
Besides, we can use SQL-Queries to make some certain statistics more efficiently.

12.4.2 Setup

This section details how to setup a database server, so SoccerScope’s functions will work.

SoccerScope works with MySQL. A free version (Commnunity Edition) of the database server
MySQL can be downloaded at http://dev.mysql.com/downloads/. SoccerScope’s database
functions were developed and tested with the old release MySQL 4.1, but current release 5.0
should work well.

After installing the database server you need to create one database and working tables.
In robocup folder/etc/ you will find the script file robocup.sql for this. Import this script and
all required tables will be created for you. It is assumed that the database robocup doesn’t
exists and will be created. To import this script type the following command on the shell

mysql -u username -p password < robocup.sql

The importing can be done on the command line as described but to manage a database
easily, it is suggested to use a database management program. One very popular web based
program is phpMyAdmin (current version is 2.9.0.2), which can be freely downloaded at
http://www.phpmyadmin.net/. However one must install a web server, for example an

128

http://dev.mysql.com/downloads/
http://www.phpmyadmin.net/

Figure 12.16: MySQL in project

Apache (http://httpd.apache.org/) and the PHP-Interpreter (http://www.php.net/).

Installing and configuring these mentioned programs are a bit complex. Alternatively one
can use the all in one package XAMPP (http://www.apachefriends.org/en/xampp.html).
XAMPP includes Apache, PHP, MySQL and phpMyAdmin. There are versions for Windows
and Linux) and they can be even used without installation.

The easiest and most comfortable way to work with MySQL is working with EMS SQL Man-
ager for MySQL. A trial version is available at http://www.sqlmanager.net/en/products/
mysql/manager.

Java programs work with MySQL thanks to the library mysql-connector (http://www.mysql.
com/products/connector/j/), which is available in robocup repository/lib. You muss ensure
that the connector is bound with robocup project as in Figure 12.16.

129

http://httpd.apache.org/
http://www.php.net/
http://www.apachefriends.org/en/xampp.html
http://www.sqlmanager.net/en/products/mysql/manager
http://www.sqlmanager.net/en/products/mysql/manager
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/

Figure 12.17: Added items to Dai menu

12.4.3 Usage

In order to connect with the database server soccerscope must know its connection settings.
These settings about server name, database name, user name and password... are in the file
robocup/etc/database.config and can be edited directly. It can also be done later through
menu. Run soccerscope and one will see under menu Dai (Figure 12.17) five new menu items
at the top.

130

Figure 12.18: Database settings

Database settings

With Database setting... information about the database can be edited (Fig. 12.18). In
addition to server name, database name and password there are two options

• When the check box Record only after both teams are loaded is checked, recording starts
only when two teams are loaded.

• When the second check box is checked no scene is recorded until the game starts.

131

Figure 12.19: Load game

Record a game

A game is simply a sequence of several scenes. One can start, pause and stop recording at any
time and as many times as desired.

By click on New game a new game is started, but scenes are not recorded until click on
Record scenes. By click once more time on Record scenes it is paused. A game is saved with
team names, score, number of scenes and the moment, at which the game was started, e.g.
”DAINAMITE vs. TsinghuAeoplus - 0:1 - 700 Scenes - 2006-10-08 01:03:21.0”.

The check box Record scenes on the menu Dai is checked indicates that scenes are recorded.

Load a game

A dialog box for opening saved games (Fig. 12.19) appears when one clicks on Load game...
shows a list of recorded games with extra information like number of scenes, score...

132

View statistics

Statistic can only be showed for saved games. To view statistics click on Statistics..., a window
(Fig. 12.20) will open.

On the top of this window is a list of saved games. Click on a game and statistics for that
game will be showed at the bottom. The number in brackets show when the event happended.

12.4.4 Structure and Implementation

The program’s data model is depicted on Figure 12.21

Colored classes are saved in respective tables. We look at the E-R model (12.22) of the
database now

Classes for database functions:

• soccerscope.db.DatabaseConfig: database setting

• soccerscope.db.RobocupDatabase: scene saving methods

• soccerscope.db.DatabaseReader: methods for loading a game

• soccerscope.view.LoadGameDialog: dialog box for choosing a game to load

• soccerscope.view.StatisticFrame: window to show statistics

• soccerscope.util.analyze.DBAnalyzer: statistic methods

12.4.5 Remarks

The database is currently in a beta status. It is mainly tested under windows, and there might
be still some bugs in its implementation. However, we think it is a good thing to have the
database, and future work will, beside bugfixing, concentrate on analysis-queries and their
integration into the monitor.

133

Figure 12.20: Statistics

134

Figure 12.21: Data model

135

Figure 12.22: ER-Model

136

13 Acknowledgement

First of all we like to thank Prof. S. Albayrak, the head of the DAI-Labor, for supporting us in
the development of the dainamite team. Next, we like to thank the YowAI team for allowing
us to publish an extended version of their SoccerScope implementation, which enriches this
release significantly. For their great help at the Robocup Competition 2006 in Bremen special
thanks go to Jan Murray and Tomomi Kawarabayashi. Without them, we wouldn’t be able to
participate in the tournament (even with their help, we had to pass the qualification without
our coach). Further thanks go to all students, which helped to developed the team and the
tools. These are Rodin von Georgi, Paul Häder, Aubrey Schmidt, Karl Bartel, Maximilian
Kern, Paul André, Luzian Wild, Grzegorz Lehmann, Tomasz Olszewski, Felix Brossmann,
Janis Danisevskis, Wai-Lung Lee, Sebastian Peters, Dirk Roscher, Oliver Thiel, Winfried Um-
brath, Till Klister, Sebastian Boelter, Judith Rohloff, Jürgen Widiker, Peter Sander, Andreas
Windisch, Moritz Hilger, Jakob Uszkoreit, Stefan Harke, Carsten Wirth, Martin Eismann,
Marco Lützenberger, Michael Waller, Daniel Bicher, Florian Gödde, Andreas Baginski, Den-
nis Hamerla, Dennis von Ferenczy, Thomas Helm, Matthias Runge, Tian Kuan, Benjamin
Böttcher and Linh Phong Le. Finally we like to thank Hiroaki Kitano and all others of the
Robocup community to establish and maintain this research initiative.

Team Dainamite

137

14 Appendix

14.1 The CLang Grammar

Package: robocup.parser9.CLangParser

The following Grammar specifies the standard coach language and complies with version 7
and 8. The implementation can be found in CLangParser.jj in package robocup.parser9.

<MESSAGE> : <FREEFORM MESS> | <DEFINE MESS> | <RULE MESS> | <DEL MESS>

| <INFO MESS> | <ADVICE MESS> | <META MESS>

<RULE MESS> : (rule <ACTIVATION LIST>)

<DEL MESS> : (delete <ID LIST>)

<DEFINE MESS> : (define <DEFINE TOKEN LIST>)

<FREEFORM MESS> : (freeform <CLANG STR>)

<INFO MESS> : (info <TOKEN LIST>)

<ADVICE MESS> : (advice <TOKEN LIST>)

<TOKEN LIST> : <TOKEN LIST> <TOKEN> | <TOKEN>

<TOKEN> : (<TIME> <CONDITION> <DIRECTIVE LIST>) | (clear)

<META MESS> : (meta <META TOKEN LIST>)

<META TOKEN LIST> : <META TOKEN LIST> <META TOKEN> | <META TOKEN>

<META TOKEN> : (ver [int])

<DEFINE TOKEN LIST> : <DEFINE TOKEN LIST> <DEFINE TOKEN> | <DEFINE TOKEN>

138

<DEFINE TOKEN> : (definec <CLANG STR> <CONDITION>)

| (defined <CLANG STR> <DIRECTIVE>)

| (definer <CLANG STR> <REGION>)

| (definea <CLANG STR> <ACTION>)

| (definerule <DEFINE RULE>)

<DEFINE RULE> : <CLANG VAR> model <RULE>

| <CLANG VAR> direc <RULE>

<RULE> : (<CONDITION> <DIRECTIVE LIST>)

| (<CONDITION> <RULE LIST>)

| <ID LIST>

<ACTIVATION LIST> : <ACTIVATION LIST> <ACTIVATION ELEMENT>

| <ACTIVATION ELEMENT>

<ACTIVATION ELEMENT> : (on|off <ID LIST>)

<ACTION> : (pos <REGION>)

| (home <REGION>)

| (mark <UNUM SET>)

| (markl <UNUM SET>)

| (markl <REGION>)

| (oline <REGION>)

| (htype <INTEGER>)

| <CLANG STR>

| (pass <REGION>)

| (pass <UNUM SET>)

| (dribble <REGION>)

| (clear <REGION>)

| (shoot)

| (hold)

| (intercept)

| (tackle <UNUM SET>)

<CONDITION> : (true)

| (false)

| (ppos <TEAM> <UNUM SET> <INTEGER> <INTEGER> <REGION>)

139

| (bpos <REGION>)

| (bowner <TEAM> <UNUM SET>)

| (playm <PLAY MODE>)

| (and <CONDITION LIST>)

| (or <CONDITION LIST>)

| (not <CONDITION>)

| <CLANG STR>

| (<COND COMP>)

| (unum <CLANG VAR> <UNUM SET>)

| (unum <CLANG STR> <UNUM SET>)

<COND COMP> : <TIME COMP>

| <OPP GOAL COMP>

| <OUR GOAL COMP>

| <GOAL DIFF COMP>

<TIME COMP> : time <COMP> <INTEGER>

| <INTEGER> <COMP> time

<OPP GOAL COMP> : opp goals <COMP> <INTEGER>

| <INTEGER> <COMP> opp goals

<OUR GOAL COMP> : our goals <COMP> <INTEGER>

| <INTEGER> <COMP> our goals

<GOAL DIFF COMP> : goal diff <COMP> <INTEGER>

| <INTEGER> <COMP> goal diff

<COMP> : < | <= | == | != | >= | >

<PLAY MODE> : bko | time over | play on | ko our | ko opp

| ki our | ki opp | fk our | fk opp

| ck our | ck opp | gk opp | gk our

| gc our | gc opp | ag opp | ag our

<DIRECTIVE> : (do|dont <TEAM> <UNUM SET> <ACTION LIST>)

| <CLANG STR>

140

<REGION> : (null)

| (arc <POINT> <REAL> <REAL> <REAL> <REAL>)

| (reg <REGION LIST>)

| <CLANG STR>

| <POINT>

| (tri <POINT> <POINT> <POINT>)

| (rec <POINT> <POINT>)

<POINT> : (pt <REAL> <REAL>)

| (pt ball)

| (pt <TEAM> <INTEGER>)

| (pt <TEAM> <CLANG VAR>)

| (pt <TEAM> <CLANG STR>)

| (<POINT ARITH>)

<POINT ARITH> : <POINT ARITH> <OP> <POINT ARITH>

| <POINT>

<OP> : + | - | * | /

<REGION> : <REGION LIST> <REGION>

| <REGION>

<UNUM SET> : <UNUM LIST>

<UNUM LIST> : <UNUM>

| <UNUM LIST> <UNUM>

<UNUM> : <INTEGER> | <CLANG VAR> | <CLANG STR>

<ACTION LIST> : <ACTION LIST> <ACTION>

| <ACTION>

<DIRECTIVE LIST> : <DIRECTIVE LIST> <DIRECTIVE>

| <DIRECTIVE>

141

<CONDITION LIST> : <CONDITION LIST> <CONDITION>

| <CONDITION>

<RULE LIST> : <RULE LIST> <RULE>

| <RULE>

<ID-LIST> : <CLANG VAR>

| (<ID LIST2>)

| all

<ID-LIST2> : <ID LIST2> <CLANG VAR>

| <CLANG VAR>

<CLANG STR> : "[0-9A-Za-z\(\)\.\+\-*\/\?\<\>\]+"

<CLANG VAR> : [abe-oqrt-zA-Z]+[a-zA-Z0-9]*

142

Bibliography

[1] The eclipse project http://www.eclipse.org.

[2] Gnu general public license, version 2, june 1991
http://www.fsf.org/licensing/licenses/gpl.txt.

[3] Javacc: The java compiler compiler https://javacc.dev.java.net/.

[4] Mysql website http://www.mysql.com/.

[5] Ssj: Stochastic simulation in java http://www.iro.umontreal.ca/ lecuyer/ssj/.

[6] Xstream website http://xstream.codehaus.org/license.html.

[7] Mao Cheny, Klaus Dorer, Ehsan Foroughi, Fredrik Heintz, ZhanXiang Huangy, Spiros
Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Jan Murray, Itsuki Noda, Oliver
Obst, Pat Riley, Timo Stevens, Yi Wangy, and Xiang Yiny. Robocup soccer server. 2003.

[8] R. de Boer and J. Kok. The incremental development of a synthetic multi-agent system:
The uva trilearn 2001 robotic soccer simulation team. Master’s thesis, University of
Amsterdam, 2002.

[9] Jfree website: http://www.jfree.org/jfreechart/index.php, Last visited 23 Nov 2006.

[10] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
RoboCup: The robot world cup initiative. In W. Lewis Johnson and Barbara Hayes-
Roth, editors, Proceedings of the First International Conference on Autonomous Agents
(Agents’97), pages 340–347, New York, 5–8, 1997. ACM Press.

[11] S. Takahashi. Soccerscope website:
http://ne.cs.uec.ac.jp/˜newone/soccerscope2003/, Last visited 23 Nov 2006.

143

	Introduction
	Introduction - The Robot World Cup Initiative (RoboCup)
	The Robocup Simulated Soccer Environment
	Release Notes
	Structure of this Document

	Getting Started
	Introduction
	Requirements

	Project Structure
	Starting the Team From Command-Line
	Embedding Dainamite in Eclipse
	The Agent Configuration Files

	The Dainamite Agent Architecture
	Introduction
	Agents of the Dainamite Team
	The AbstractAgent
	The RobocupAgent
	The CoachAgent
	The TrainerAgent

	Parser
	Introduction to the Parser Component
	The Different Parts of the Parser
	The Player Parser
	The Coach/Trainer Parser
	The Hear Parser
	The See Parser
	The SenseBody Parser
	The Parameter Parser
	The Other Information Parser

	The Different Messagetypes Explained
	General Message Layout
	The Hear Message
	The See Message
	The Sense_Body Message
	The Server_Param Message
	The Player_Param Message
	The Player_Type Message
	Overview About Generated Info-Types

	Synchronisation
	Overview
	Communication
	Problem
	Holes and Clashes
	Waiting for a VI

	Synchronization Concept
	Emergency sending

	WorldModel
	Overview
	Global vs. Agent Perspective on the Environment
	Geometry Classes and their Usage

	World Model Content
	Class Descriptions

	Structure of the WorldModel
	PlayersModel
	MeModel
	BallModel
	ShortTermMemory
	LongTermMemory
	PConf and SConf

	Updates of the WorldModel
	The update methods for information types
	The body sense update methods
	The visual update methods
	The aural update methods
	NeckRotator (robocup.component.NeckRotator)

	Particle Filter
	Overview
	The particle filter in theory
	Important Classes
	Outlook

	ReachableArea
	What is the Reachable Area?
	Usage of ReachableArea
	Internal work of ReachableArea
	What parts need to be improved?

	Action
	Action classes
	Action
	DashAction
	TurnAction
	KickAction
	CatchAction
	MoveAction
	TackleAction
	AttentionToAction
	PointToAction
	TurnNeckAction
	ChangeViewModeAction
	SayAction

	Action factories
	AttentionToActionFactory
	BasicActionFactory
	PointToActionFactory
	SayActionFactory
	TurnNeckActionFactory
	ViewModeActionFactory

	NeckRotator
	Overview
	The NeckRotator in detail
	The special state ``SEARCHBALL''
	Many advantages - Any disadvantages?
	Outlook

	Prophet
	Overview
	The structure of the Prophet and Situation class
	Situations Used by the Prophet
	The abstract Situation
	InterceptBallSituation
	PassSituation
	ScoreSituation
	GoalkeeperSituation
	DribbleSituation

	Message-Factory
	Introduction
	Message Format
	Definition of Messages
	Receiving a Message

	Encoding and Decoding Numerical Values
	Converting Small Positive Integer Values
	Converting Other Integer Values
	Converting Floating Point Values

	En- and Decoding Processes
	Encoding Messages
	Decoding Messages

	Conclusion

	Tactic
	Introduction
	States and StateEvaluation
	Implemented States
	Conclusion and Outlook

	Coach
	Overview
	Structure
	Coach Language
	CLang Grammar
	The CLangModel
	Freeform Message
	Broadcasting Messages

	Heterogeneous Player Types
	Change Player Type

	SoccerScope and Tools
	Introduction
	Monitor
	Overview
	Using Soccerscope

	The Training scenario editor
	Prerequisite
	Introduction
	How to create a training scenario with Soccerscope
	How to configure a training scenario
	Running the scenario
	Outlook

	Database
	Introduction
	Setup
	Usage
	Structure and Implementation
	Remarks

	Acknowledgement
	Appendix
	The CLang Grammar

