
IIT.SRC 2008, Bratislava, March 21, 2008, pp. 1-2.

RoboCup - UTTP Player
Re-factoring Case Study

Bc. Peter Kajsa, Bc. Michal Kasan, Bc. Branislav Kontúr, Bc. Dávid Kováč, Bc.
Martin Nepšinský, Bc. Tibor Sekereš*

Slovak University of Technology
Faculty of Informatics and Information Technologies

Ilkovičova 3, 842 16 Bratislava, Slovakia
TPteam06@googlegroups.com

Extended abstract

This extended abstract provides a case study focused on the re-factoring and
modularization of a software complex agent consisting of many behaviors. We focused
on the architecture of the RoboCup soccer player addressing non-functional
requirements on the system. We describe our experience with re-factoring of a large
unstructured code into modular behavior-based architecture.

The target of re-factoring was the last year’s team Loptoši [2]. The source code of
the player was platform independent. We decided to improve the structure of this
player without changing functionality. From the object-oriented design viewpoint,
player’s architecture is not very suitable. Major part of the player consists of only three
large classes (PlayerTactics/GoalieTactics extends PlayerSkills extends PlayerKernel).
For example the class PlayerTactics has about 3500 lines of code and contains many
comments like: “What is this doing?” The functionality is then very hardly
understandable and changing the source code often leads to unpredictable behavior.
The inheritance was not used properly in this case. The use of composition would be
better in this case and the player should be split into more clearly understandable
modules, not just three classes with unclearly roles. We also made some quality
analysis of the source code. According to these analyses, the source code has several
serious problems, e.g. cyclomatic complexity more than 10, different count of
operators new and delete in one file, more than one return point per one function.
Another serious problem is low understandability and therefore high effort needed for
adding of new functionality or improving the existing one, because high effort is
necessary for analyzing and studying this complex and ill structured code.

* Supervisor: Ing. Marián Lekavý, Institute of Informatics and Software Engineering, Faculty of

Informatics and Information Technologies STU in Bratislava.

mailto:TPteam06@googlegroups.com

2 Kajsa, Kasan, Kontúr, Kováč, Nepšinský, Sekereš

We decided to re-structure the player based on behaviors. We started our work by
analysis and identification of behaviors in the source codes and in the documentation
of previous players. The analysis was the most important part of our work, because
there were several undocumented behaviors in the code and many of the documented
behaviors were implemented inconsistent with the documentation or not implemented
at all. As a result, we created documentation for all identified behaviors [1]. The
documentation was created prior to the new code, thus serving as specification.

The re-factoring started from 3 classes with thousands lines of codes. The whole
high behavior is placed in only two large methods. Both methods consist of many
nested if-then-else blocks which define the behavior in all game situations. Every block
consists of tens to hundreds code lines and there are a lot of state variables, containing
the state of the player and the world. There is no visible structure of the code and the
code is very complex. This makes the code un-modifiable and un-maintainable.

We separated individual behaviors and encapsulated them into individual
modules. At the same time, the usage of other modules has to be declared explicitly in
the module definition. This way, we achieve high level of modularization, loose
coupling between the modules and thus better maintainability.

We chose bottom-up approach to the re-factoring. This way, we start with simple
behaviors and build more complex behaviors by combining simpler ones. This
approach showed to be better than top-down, because the behaviors at the top level
were too complex and coupled with most of the lower parts of the code. Using top-
down approach would require analyzing the whole code to separate a single top-level
behavior. Separating a low-level module is simpler, because there are just a few
interactions with the remaining code. When we reach the top level behaviors (with the
bottom-up approach) , we can already build on the well-structured lower behaviors.

The new behavior-based structure allows easier and faster orientation in the code
than the previous unstructured code. Further modifications should be easier with the
new structure, because most changes are localized in one or a few behaviors.
Therefore, this kind of changes can be made without affecting of other behaviors.
There could be a problem if we change the behavior’s interface, but with the loose
coupling and explicit couplings between modules, this can be done with low effort.

The new structure of the player will allow other teams to focus on new strategies
and improvement of behaviors rather than spending most time for analyzing and
studying of complex and chaotic code.

Acknowledgement: This work was partially supported by the Institute of Informatics
and Software Engineering, Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava.

References

[1] Kontúr, B., et al.: RoboCup – nové stratégie, Bratislava, FIIT STU, 2007, Team
project - UTTP.

[2] Kútny, M., et al.: RoboCup – nové stratégie, Bratislava, FIIT STU, 2006, Team
project - Loptoši.

