
Struts in Action

Struts in Action
Building web applications

with the leading Java framework

Ted Husted
Cedric Dumoulin

George Franciscus

David Winterfeldt

M A N N I N G
Greenwich

(74° w. long.)

struts_00_a.fm Page iv Tuesday, October 29, 2002 11:14 AM
For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

The following figures were adapted from other Manning books: figure 2.1 from Swing by
Matthew Robinson and Pavel Vorobiev (figure 1.3); figures 2.8, 10.6, 11.1, and 11.2 from
Web Development with JavaServer Pages Second Edition by Duane Fields and Mark Kolb (figures 10.1,
10.5, 6.2, and 10.4). Figure 2.9 by Jean-Michel Garnier is reproduced with permission from the
Apache Software Foundation.

Manning Publications Co. Copyeditor: Liz Welch
32 Lafayette Place Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-50-2

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

brief contents

PART 1 GETTING STARTED WITH STRUTS1

1 � Introduction 3

2 � Exploring the Struts architecture 29

3 � Building a simple application 59

4 � Configuring Struts components 105

PART 2 RAISING YOUR FRAMEWORK 145

5 � Coping with ActionForms 147

6 � Wiring with ActionForwards 183

7 � Designing with ActionMappings 193

8 � Working with Action objects 207

9 � Extending ActionServlet 255

PART 3 BUILDING YOUR PAGES 265

10 � Displaying dynamic content 267
v

vi BRIEF CONTENTS
11 � Developing applications with Tiles 319

12 � Validating user input 365

13 � Localizing content 409

14 � Using data services with Struts 437

PART 4 STRUTS BY EXAMPLE ... 473

15 � Artimus: pulling out the stops 475

16 � Redux: migrating to Struts 1.1 533

17 � Velocity: replacing JSPs 555

contents

foreword xix
preface xxiii
acknowledgments xxvi
about this book xxviii

PART 1 GETTING STARTED WITH STRUTS 1

1 Introduction 3
1.1 What is this book about? 4

Who makes the Struts software? 4 � Why is Struts open source? 5
Why is it called Struts? 5

1.2 What are application frameworks? 5
Other types of frameworks 6

1.3 Enabling technologies 6
Hypertext Transfer Protocol (HTTP) 7 � Common Gateway
Interface (CGI) 8 � Java servlets 9 � JavaServer Pages 10
JSP tags 11 � JavaBeans 12 � Model 2 14

1.4 Struts from 30,000 feet 14
Building a simple application 16 � Jump-starting
development 16 � Where the rubber meets the road 18
Looking back 24

1.5 Summary 28
vii

viii CONTENTS
2 Exploring the Struts architecture 29
2.1 Talking the talk 30

2.2 Why we need Struts 30
One step back, three steps forward 30 � Enter Struts 31
Struts controller components 31 � Developing a web
application with Struts 36

2.3 Why we need frameworks 37
The Web—a never-ending kluge 37 � The servlet solution 38
Servlet frameworks 39 � The whitebox-blackbox continuum 40

2.4 Struts, Model 2, and MVC 41
The evolution of MVC 41 � The rise of Model 2 42
Application layers—decoupling the view 43
How Struts implements Model 2, MVC, and layers 44

2.5 Struts control flow 46
The big picture 47 � The finer details 48
Is Struts performant? 52

2.6 The strengths and weaknesses of Struts 53
The weak points 54 � Struts’ strong points 56

2.7 Summary 58

3 Building a simple application 59
3.1 Strut by Strut 60

Why a logon application? 61
3.2 Touring a logon application 61

Start here 61 � Screens we’ll see 62 � The welcome screen 62
The logon screen 62 � The welcome screen, again 64
The welcome screen, good-bye 64 � Feature roundup 65

3.3 Dissecting the logon application 65
The browser source for the welcome screen 65 � The JSP source for
the welcome screen 66 � The configuration source for the welcome
screen 69 � The browser source for the logon screen 70
The configuration source for the logon screen 73
The LogonSubmit source 73 � The LogonForm source 74
The LogonAction source 77 � The LogoffAction source 83

3.4 Constructing an application 86
Defining the requirements 86 � Planning the application 87
Planning the source tree 90 � Setting up development tools 90

CONTENTS ix
Setting up the build.xml file 92 � Setting up the web.xml
file 92 � Setting up the struts-config.xml file 92
Testing the deployment 94 � Constructing our welcome page 95
Constructing the logon page 96 � Constructing the Constants
class 98 � Constructing the other classes 99 � Creating the user
directory 99 � Configuring the ActionErrors 100 � Compiling
and testing the logon page 101 � Amending the welcome
page 101 � The Struts ActionForward Action 102

3.5 Summary 104

4 Configuring Struts components 105
4.1 Three XMLs and a Properties file 106

The rest of the family 106
4.2 The web application deployment descriptor 107

The web.xml file 107 � ActionServlet parameters 110
4.3 The Struts configuration 113

Details, details 113 � Change management 115
The principle of Protected Variation 115

4.4 The Struts configuration elements 116
<global-exceptions> 118 � <form-beans> 119
<global-forwards> 120 � <action-mappings> 121
<controller> 123 � <message-resources> 123
<plug-in> 124 � <data-sources> 125
Rolling your own 126 � A skeleton Struts config 127

4.5 The application resources file 128

4.6 The Ant build file 130

4.7 Configuring the Struts core 133
Installing Java and a Java servlet container 133
Installing a development environment 134
 Installing the Struts core files 134

4.8 Configuring the Tiles framework 134

4.9 Configuring the Struts Validator 136

4.10 Getting started with the Struts Blank application 137

4.11 Configuring modular applications 139
Divide and conquer 140 � Prefixing pages 142
Retrofitting a configuration 142

4.12 Sharing the Struts JAR 142

4.13 Summary 143

x CONTENTS
PART 2 RAISING YOUR FRAMEWORK.......................... 145

5 Coping with ActionForms 147
5.1 Garbage in, treasure out 148

ActionForm requirements 150
5.2 The many faces of an ActionForm 151

The ActionForm as a field harvester 151 � The ActionForm as a
data buffer 153 � The ActionForm as a data validator 154
The ActionForm as a type transformer 155 � The ActionForm as a
transfer object 155 � The ActionForm as a firewall 156

5.3 ActionForm design consequences 157
ActionForms may share names 157 � ActionForms may minimize
custom code 158 � ActionForms may encapsulate helpers 158
ActionForms may nest other beans 158

5.4 ActionForm flavors 160
Map-backed ActionForms 160 � DynaActionForms 162

5.5 Why isn’t an ActionForm... 162
Why isn’t an ActionForm just a Map? 163 � Why isn’t an
ActionForm a plain JavaBean? 163 � Why isn’t an ActionForm
an interface? 163

5.6 Debriefing ActionForms 164
Implementing a business-layer interface 166 � Nesting a mutable
value object 167 � Setting an immutable value object 168
Setting a mutable value object 169 � Using a factory method 170
Passing a Map 171 � Transferring values by reflection 173
Using an adaptor class 178

5.7 BaseForm 179
SessionLocale 180 � Dispatch 180 � Autopopulation 181
BaseMapForm 181

5.8 Summary 182

6 Wiring with ActionForwards 183
6.1 What ActionForwards do 184

6.2 How ActionForwards work 185
Forward versus redirect 185

6.3 Global and local forwards 187

6.4 Runtime parameters 188

CONTENTS xi
Adding parameters in the page 188
Adding parameters in the Action class 188

6.5 Dynamic forwards 189

6.6 Why doesn’t the address bar change? 190

6.7 Rolling your own ActionForward 190

6.8 Summary 191

7 Designing with ActionMappings 193
7.1 Enter ActionMappings 194

The ActionMapping bean 195
The ActionMappings catalog 195

7.2 ActionMapping properties 196
The path property 197 � The forward property 198
The include property 198 � The type property 199
The className property 199 � The name property 199
The roles property 199 � The scope property 199
The validate property 200 � The input property 200
The parameter property 201 � The attribute property 202
The prefix and suffix properties 202 � The unknown
ActionMapping 203

7.3 Nested components 203
Local forwards 203 � Local exceptions 204

7.4 Rolling your own ActionMapping 204

7.5 Summary 205

8 Working with Action objects 207
8.1 Ready, set, action! 208

8.2 Getting it done with Action objects 208
What are Actions? 209 � When are Actions called? 210
What do Actions do? 211 � What does an Action look like? 217

8.3 The standard Actions 219
Standard bridge Action classes 219 �

Standard base Actions 222
8.4 Chaining Actions 228

Starting fresh 229

xii CONTENTS
8.5 Scaffold Actions 229
Forward-only Actions 230 � Helper Actions 236

8.6 Base View Actions 239

8.7 Helper Action techniques 240
Optional forwarding 241 � Calling ahead 242
Catching chained exceptions 243 � Smart error forwarding 245
Confirming success 246 � Alternate views 247
Reflecting methods 247 � Reflecting classes 248

8.8 Using smart forwarding 249

8.9 Summary 254

9 Extending ActionServlet 255
9.1 Where’s the beef? 256

The servlet’s Gang of Three 258
9.2 The RequestProcessor 259

The process method 260 � processRoles 260
9.3 The ExceptionHandler 262

9.4 PlugIn 263

9.5 Summary 264

PART 3 BUILDING YOUR PAGES 265

10 Displaying dynamic content 267
10.1 Tag—you’re it 268

JSP tags—what are they good for? 268 � Struts and JSTL 271
Struts tags and MVC 273

10.2 Working with tag extensions 274
How are tag extensions written? 274 � How are tag extensions
installed? 276 � What tag extensions are not 278

10.3 The Struts taglibs 279
Features common to Struts tags 280 � The bean tags 282
The html tags 285 � The logic tags 287

10.4 Using Struts JSP tags 290
The Struts tag team 291 � Fundamentals 291
Techniques 300 � Successful controls 314

CONTENTS xiii
10.5 Alternate views 315
Struts and JSPs 315 � Servlet contexts 315
Beyond JSPs 317

10.6 Summary 317

11 Developing applications with Tiles 319
11.1 Leveraging layouts 320

Layering with dynamic templates 320 � Template
consequences 321 � Using templates 322
Combining templates, Tiles, and Struts 323

11.2 Building a layout template 324
But what is a tile? 326 � Deploying a Tiles template 328
Adding a style sheet 329 � Templates and MVC 330

11.3 Tiles Definitions 331
Declaring Definitions 331 � JSP declarations 332
Configuration file declarations 335
Using Definitions as ActionForwards 338

11.4 Tile attributes 339
useAttribute 340 � importAttribute 340 � put 341
putList and add 343

11.5 Migrating an application to Tiles 343
Setting up the Tiles framework 344 � Testing the default
configuration 344 � Reviewing the pages 345
Refactoring a page with <tiles:insert> 348 � Extracting the
<tiles:insert> tags into a Definition 355 � Normalizing your
base layout 359 � Refining your Definitions into base and
extended classes 360 � Developing a routine 361
Managing the migration 362

11.6 Summary 363

12 Validating user input 365
12.1 I know it when I see it 366

Input we can’t refuse 366 � Web-tier validations 367
Validator consequences 368

12.2 Overview of the Struts Validator 371
Logon example 374

xiv CONTENTS
12.3 Basic validators 379
The required validator 380 � The mask validator 380
The range validator 381 � The maxLength validator 382
The minLength validator 383 � The byte, short, integer, long,
float, and double validators 383 � The date validator 383
The creditCard validator 384 � The email validator 384

12.4 Resource bundles 384
The default bundle 385 � Default validator messages 385
Custom validator messages 386

12.5 Configuration files 387

12.6 Validator JSP tags 388

12.7 ValidatorForm and ValidatorActionForm 391

12.8 Localized validations 392

12.9 Pluggable validators 392
Creating pluggable validators 392

12.10 Techniques 394
Multipage validations 395 � Cancel buttons 395 � Custom
messages 396 � Interrelated fields 397
Combining validators with the validate method 398

12.11 Migrating an application to the Struts Validator 399
Setting up the Validator framework 399 � Testing the default
configuration 399 � Reviewing your validations 400
Extending ValidatorForm or the Scaffold BaseForm 401
Selecting a validation to migrate 401 � Adding the formset, form,
and field elements 403 � Adding new entries to the
ApplicationResources 403 � Calling the Struts Validator 404
Test and repeat 405 � Removing the ActionForm subclass 406

12.12 Summary 408

13 Localizing content 409
13.1 By any other name 410

Why localize? 411 � How Java internationalization works 412
13.2 Struts’ internationalized components 417

Session Locale attribute 417 � MessageResources 418
The default resource bundle 419 � ActionErrors 421
ActionMessages 421 � Locale-sensitive JSP tags 422

CONTENTS xv
13.3 Localizing a Struts application 427
Enabling localization 428 � Using the framework Locale
object 430 � Placing labels and messages in Properties files 431
Creating language-specified Properties files 431 � Specifying an
appropriate key in localization-aware components 431 � Using
<bean:message> with other components 431

13.4 Localizing other components 432
Localizing the Struts Validator 432 � Localizing Tiles 433
Localizing collections 433

13.5 Summary 435

14 Using data services with Struts 437
14.1 Stepping out 438

JDBC from a patterns perspective 438
Introducing our data services 440

14.2 Exploring the business layer 440
Struts—bringing your own Model 440 � Defining
business objects 441 � Designing business objects 442
Design consequences 443 � Mixing business with
Actions (not) 443 � A simple example 444

14.3 Using ProcessBeans and JDBC with Struts 445
Introducing ProcessBeans 446 � ProcessBeans as transfer
objects 447 � Populating ProcessBeans 448 � Executing
ProcessBeans 448 � Accessing data services 449 � Following
a typical flow 451 � Coding a business activity 451
ProcessBeans as a persistence layer 454 � Using other
persistence layers 455

14.4 Using result objects 455
ResultList methods 455

14.5 Using helper Actions 457

14.6 Using Lucene 458
searchProperties redux 459

14.7 Using content syndication 464
Digesting RSS 464 � Retrieve and render 465
Syndicating RSS 466

14.8 Using EJBs with Struts 468
Session Facade 469 � Data transfer objects 470
Implementation patterns 470

14.9 Summary 471

xvi CONTENTS
PART 4 STRUTS BY EXAMPLE 473

15 Artimus: pulling out the stops 475
15.1 The framework’s framework 476

15.2 Scaffold—birth of a toolset 476

15.3 About Artimus 477
Building Artimus 479

15.4 The deployment descriptor (web.xml) 480
Configuring Artimus 482 � Our application properties 482
Our connection adaptor 482 � Our startup priority 483
Other configuration settings 483 � Our security settings 483
The URLs we protect 483 � The authorized users 484
Our authentication strategy 484

15.5 ArtimusServlet 484
Our subclass 486 � Our String tokens 486
Our extension point 486

15.6 The application and SQL Properties files 487

15.7 index.jsp 488

15.8 Global forwards 489

15.9 /find/Recent 492
extends bean 494 � super.execute 495 � getArticles 495
Access.findByLast and ResultList 495 � ProcessResult 497
ProcessAction 498

15.10 tiles.xml and Article.jsp 499
useAttribute 501 � baseStyle 501 � title 502 � Tiles 502

15.11 result.jsp 504
The legend 506 � isResult? 506 � RESULT 506

15.12 Article actions 510

15.13 view.jsp 513
headline 514 � content 514 � contributor 515

15.14 edit.jsp 516
Article content 518 � Contributed / contributor 519
Article ID 519 � Validation 519

15.15 /do/Menu 521
logon 523 � menu 523 � Our controls 525
saveResult 525 � Our results 525

CONTENTS xvii
15.16 menu.jsp 526
/find/Hours 528 � /menu/Find 528 � /find/Last 529
/menu/Contributor 530 � /menu/Manager 531

15.17 Summary 532

16 Redux: migrating to Struts 1.1 533
16.1 Next station, Struts 1.1 534

Struts 1.1 feature roundup 535 � Features we can use 538
16.2 Baseline changes 538

Tiles in Struts 1.1 540 � Validator in Struts 1.1 543
ReloadAction in Struts 1.1 544 � Other baseline changes to
web.xml and struts-config.xml 544 � message.jsp (1.1) 545
form.jsp (1.1) 546 � MenuCreate (1.1) 547 � Onward 548

16.3 Discretionary changes 548
Form to DynaActionForm 549 � Action-based security 550
Action path changes 553
Application resources in Struts 1.1 553

16.4 Summary 554

17 Velocity: replacing JSPs 555
17.1 Moving to Velocity templates 556

17.2 Change makes the framework 556

17.3 Why we need Velocity 557
Velocity is light, fast, and versatile 557 � Velocity works well with
others 557 � Velocity is simple but powerful 557

17.4 Using Velocity with web applications 558
Using Velocity with servlet resources 559 � Using Velocity with
context attributes 560 � How Velocity works with Struts 561
The VelocityStruts toolkit 562 � The Struts View tools 563

17.5 Our logon templates 563

17.6 Setting up VelocityViewServlet 566
Installing the VelocityViewServlet 566 � Deploying the Velocity
servlet 567 � The toolbox configuration file 568

17.7 Setting up struts-config 569

17.8 Summary 570

xviii CONTENTS
A Design patterns 573
A.1 A brief history of design patterns 574

The Gang of Four 575 � J2EE Blueprints 575
Core J2EE Patterns 576

A.2 Why patterns are important 576

A.3 What patterns won’t do 577

A.4 Struts—a Who’s Who of design patterns 577
The Service to Worker pattern 578 � The Singleton pattern 579
The Session Facade pattern 579 � Value Object / Value Object
Assembler patterns 579 � The Composite View pattern 580
The Synchronizer Token pattern 580 � The Decorator
pattern 581

B The struts-config API 583
B.1 <struts-config> 584

<set-property> 585 � <data-sources> 585
<data-source> 585 � <global-exceptions> 586
<exception> 586 � <form-beans> 587
<form-bean> 588 � <form-property> 589
<global-forwards> 590 � <forward> 590
<action-mappings> 591 � <action> 592
<controller> 594 � <message-resources> 596
<plug-in> 597

C Taglib quick reference 599

glossary 605
references 614
index 624

foreword

You’re holding in your hands the result of the hard labor of some of Struts’
most important developers. Ted, Cedric, George, and David have done an
outstanding job of explaining how Struts works and how it is used in prac-
tice. If you’re a new developer, Struts in Action will make it much easier for
you to learn the framework and quickly put it to work on your own projects.
But even the most seasoned Struts developer is certain to learn something
new by reading this book.

 I became interested in web application development in the late 1990s. I
was ready for a language that would let me address one of the most problem-
atic aspects of advanced development—the need to free up dynamically allo-
cated memory when I was through with it.

 In the beginning, all I really hoped to accomplish was to make life a little
easier for a few developers building web applications. The incredible popu-
larity that Struts has achieved since then means that I wasn’t the only one
who struggled—Struts fills a very common need.

 When the early public drafts of the JavaServer Pages specification (ver-
sions 0.91 and 0.92) became available, one of the intriguing concepts
embedded in these documents was the idea of two basic design styles for JSP-
based applications. A Model 1 design is characterized by form submits that go
back to the servlet or JSP page that created the form. This design encourages
you to mix the presentation logic (used to create the form) with the business
xix

xx FOREWORD
logic (used to validate the form input and process the requested transaction).
Such a design is often used when developers of only one skill set (either page
authors who know a little programming, or Java developers who know a little
HTML) are available. It is also useful when time is of the essence (“The prototype
needs to work by next Monday or we don’t get our venture capital funding”).
Experience has taught us that Model 1 designs can be difficult to maintain and
enhance in the future.

 In contrast, a Model 2 design submits forms to a controller component. The con-
troller component dispatches to an appropriate business-logic component to per-
form the requested transaction. The business-logic component interacts with the
database and acquires the information it needs for the next user interaction. The
controller component delegates the creation of the response page to a presentation
component whose sole purpose is to create that response.

 You’re probably thinking that the Model 2 style sounds much more compli-
cated—perhaps even like overkill for simple applications. Indeed, creating an
application based on the Model 2 design does take longer than building the same
application in a Model 1 style. But the primary benefits show up quickly. If you’ve
created the proper architecture, major changes to one tier should have relatively
little (if any) impact on the other tier, and you can reuse the logic in the unaf-
fected tier immediately.

 While all of this intellectual investigation of web application architectures was
going on, my professional career was leading me in interesting directions as well. I
was working for a company that provided information services to the long-haul
trucking industry in the United States, and we wanted to expand this service into
Europe. This created the need to deal with multiple languages and international-
ization. I quickly whipped up a simple controller servlet that let me implement
the basic MVC architecture, but it didn’t address, say, the need to include a Select
Language control.

 Our first effort at internationalization started me down the path of creating
“user interface components” using the new custom tags facilities of JSP 1.1—which
led ultimately to things like the <bean:message> tag that is a part of Struts today.

 Shortly after this, I joined Sun Microsystems to work with the Tomcat servlet
and JSP container (I was the primary architect of the Catalina servlet container that
is the basis of Tomcat 4). A large portion of this development took place in the
open source community at Apache, as part of the Jakarta Project—initiated when
Sun contributed the source code of what had been the servlet and JSP reference
implementation to Apache in 1999. However, I was never happy with the state of
Model 2-oriented application designs, so I resolved to do something about it.

FOREWORD xxi
 Although I had a pretty good idea of how to solve the remaining problems, the
actual code for Struts did not come into being until, much to the chagrin of my
wife, I took my laptop along with me to the 2000 Memorial Day weekend with my
family on the Oregon coast. The very first version of what became the ActionForm
was born that weekend, and it turned out to solve a number of interesting design
problems. In addition, the idea of defining logical names for the presentation and
business logic components—and centralizing the definition of those names in a
single configuration file—was clearly beneficial in solving the overlapping prob-
lems of coordination between the development of the two tiers and the goal of
insulating tiers from changes in the other.

 Through my work on Tomcat I had recognized the benefits of open source
development so it was a natural choice to bring Struts to the world of open source
as well. This choice—and the elegance of how Struts deals with some of the most
basic problems of web application design—has resulted in acceptance that is truly
astounding. Thousands of developers have downloaded Struts, gone through the
learning curve, asked questions (and received answers) through the STRUTS-
USER mailing list, and have successfully deployed applications based on Struts all
over the world.

 Of course, I was not able to accomplish all of this on my own. Ted, Cedric,
David, and all the other past and present Committers for the Struts project, along
with George and the community of Struts developers, have made the framework
far more useful than I ever could have done alone. To them, I offer my heartfelt
thanks. To you, the reader of this much-needed book, I hope that you find Struts a
useful addition to your arsenal, well worth the investment of time to learn its tech-
niques and APIs.

 Enjoy!
Craig McClanahan

Portland, Oregon

preface
By 2000, Java had come of age. The dust from the early hype had settled and
some very interesting development tools and libraries were cropping up. I
had already been writing web applications for several years. Like many devel-
opers, I started with simple apps in JavaScript and Perl. A powerful combina-
tion, but a bear to maintain. Next came ColdFusion, which was much more
powerful but at the time too expensive for my client’s pocketbook. I even
tried FileMaker Pro, which was fun, but very, very proprietary.

 My major client for this succession of web applications was a public broad-
casting station. The station’s major fund-raiser was (and still is) an annual auc-
tion. Local vendors donate goods and services, and people buy them at
auction to support the station. Of course, we were quick to post images of the
high-end items on the web site: objets d’art, a car, vacation packages, auto-
graphed items, and so forth.

 In 1998, we used an application written with JavaScript and Perl to accept
“pre-bids” on the high-end items. The actual bidding on these items took
place in live television bid-downs. All the application really did was set the
starting bid price. In 1999, we accepted both online and phone bids right up
to when the item sold. Each year, I used a different platform to put the auction
online, because each year I found that the platform didn’t meet all my needs.

 Since we were already satisfied users of the Apache HTTPD server, I
invested some time in wandering through the nascent Jakarta site, where I
discovered Struts. At first, I wasn’t even sure the project was still active. But
xxiii

xxiv PREFACE
the documentation seemed promising, so I subscribed to the list to see if anyone
was home. An example application was already bundled with the documentation.
I started working my way through the example, trying to figure out the framework
as I went along. This journey turned into the “Walking Tour of the Struts Applica-
tion,” which describes how the example application works, screen by screen. I
posted the tour to the list, where some of the subscribers gently corrected my
understanding of the finer points.

 I continued to follow the list, helping others when I could, and being helped
by those who had traveled this road before me. Traffic on the list grew steadily.
Toward the end of the year, Struts’ architect and lead developer, Craig McClana-
han, was looking for people to help with the documentation for the 1.0 release. I
was elected a Struts Committer in December 2000, and we finally shipped
Struts 1.0 in June 2001.

 Along the way, I started my “More About Struts” page. At first, it was just a place
where I could keep the links to the Struts material I was writing. Then I began
adding links to the Struts “extensions” people had started to distribute, and then
to the many Struts articles that had begun to appear. My Struts Resources page
grew larger, and more popular, and so I moved it to the main Struts site. It is now
a set of several pages with links to everything known about the Struts universe.

 The Struts list remained a treasure trove of helpful information, especially
since Craig himself was usually on hand to shed light on the implementation
details and architectural philosophy. But finding the best bits in the list archive
could be a challenge. So, I started a “threads page” within links to the best email
nuggets, which grew into a fairly large FAQ. In June 2001, JGuru decided to open
a Struts forum and FAQ, and we moved the main Struts FAQ to JGuru, where I con-
tinue to manage it.

 Around the same time, publishers started to take notice of Struts, and offers
began to arrive in my mailbox. After consulting with some of the other Struts
Committers, we eventually decided to work with Manning Publications. Like
Apache, Manning has a longstanding commitment to quality. While we wanted to
get a Struts book out as soon as we could, we also wanted to be sure that it would
be the best book possible.

 The result is Struts in Action. It is very much a “team book.” David Winterfeldt,
the creator of the Struts Validator, was kind enough to draft our Validator chapter.
Likewise, Cedric Dumoulin, the creator of Tiles, drafted the Tiles chapter. George
Franciscus provided the critical chapter 1 of the book, which is designed to help
bring newbies into the fold. We even dragged a foreword out of Craig (who would
“rather be programming”). Of course, other Struts developers and Committers

PREFACE xxv
reviewed the manuscript at every stage, and we are thankful for the many helpful
comments.

 Oh, and the auction? We are going on our third year using Struts. Now instead
of rewriting it every year, we improve it every year.

Ted Husted
 Fairport, New York

acknowledgments
We recognize the support and understanding of the many people who
helped make this book possible. We hope that the people we need to
acknowledge most—the family and friends who stand by us while a project
like this is under way—already know how much we appreciate their love and
forbearance.

 But a great many other people, who might otherwise have remained
anonymous, have also contributed a great deal to this book.

 First, there is the legion of volunteer developers responsible for the
development of Struts. Literally hundreds of people have helped make
Struts what is today. Most have contributed indirectly through thousands of
invaluable, frank discussions on the Struts mailing lists. Others have contrib-
uted directly by donating code and documentation to the framework. As of
the 1.02 release, these individuals include Arun M. Thomas, Chris Assenza,
Chris Audley, Craig R. McClanahan, David Geary, dIon Gillard, Don Clasen,
Ed Burns, Eric Wu, Florent Carpentier, Jeff Hutchison, Jimmy Larsson, John
Rousseau, John Ueltzhoeffer, Larry McCay, Luis Arias, Marius Barduta, Mar-
tin Cooper, Matthias Kerkhoff, Mike Schachter, Niall Pemberton, Oleg V
Alexeev, Paul Runyan, Ralph Schaer, Rob Leland, Robert Hayden, Sean
Kelly, Stanley Santiago, and Wong Kok Kai.

 Several Struts developers were also kind enough to review portions of the
manuscript and provided many useful comments. Dan Malks’ commentary
contributed much to the final version of chapter 2. Richard Starr’s thorough
xxvi

ACKNOWLEDGMENTS xxvii
review of chapter 3 helped greatly in locking down our Hello World logon exam-
ple. We are also grateful to many other developers who provided feedback on the
manuscript, including Martin Cooper, Vincent Masool, John Yu, Jon Skeet, Max
Loukianov, James Holmes, Bill Wallace, Nathan Anderson, Cody Burleson, Darryl
Thompson, James F. McGovern, Steve Wilkinson, and Shawn Bayern. Our techni-
cal review editors, Steve Wilkinson and Stephen LeClair, deserve a special vote of
thanks for picking every conceivable nit. We are also very grateful to our copyedi-
tor, Liz Welch, who dotted our i’s and crossed many a t.

 This book also owes a great deal to our publisher, Marjan Bace, and the Man-
ning editorial team. Manning didn’t just want our work—they wanted our best
work. That took more effort, and a lot more time, but when readers invest their
own time and money into a book, they do deserve the very best we can give them.

about this book
The Struts framework joins together several related technologies so that web
developers can create standards-based applications that are easier to build,
extend, and maintain. Struts is already the framework of choice for both
novice and experienced developers throughout the world

 Struts in Action is a step-by-step introduction to the Struts framework. The
text is complemented by several case study applications designed to demon-
strate the best practices techniques introduced throughout the book. This
book is intended for professional developers who want practical, battle-
tested advice on how to get their own applications working the “Struts way.”

 Developers building web applications with Struts will typically use several
related technologies as part of their project. A book that provided complete
information on each of these would fill many volumes. To keep this work a
single volume about Struts, we do not attempt to describe the HTML markup
language, the syntax of JavaServer Pages, the conventions of JavaBean devel-
opment, or the fine details of similar technologies. It is assumed that the
reader is sufficiently familiar with these technologies to follow the examples
presented. It is likewise assumed that the reader is familiar with URLs, docu-
ment hierarchies, web application archives, and other concepts related to
creating and publishing web applications.

 We also do not include a primer on the Java programming language. As
with HTML, JSP, JavaBeans, and related technologies, a wealth of information
is already available. We assume that developers reading this book are familiar
xxviii

ABOUT THIS BOOK xxix
with Java syntax, the development cycle, and object-oriented design concepts. A
basic understanding of relational database technology in general, and JDBC in
particular, is recommended but not required.

 Our focus here, then, is strictly on web applications and the Struts framework.
The interaction between the technologies already mentioned—HTML, Java, data-
bases, and others—is the focal point of this book and the subject that we cover in
greatest depth.

 However, for the benefit of readers not so well versed in some of the enabling
technologies on which Struts depends, the text does include primers on the
Hypertext Transfer Protocol (HTTP), Java servlets, JavaServer Pages, and custom
JSP tags.

Roadmap
Chapter 1 introduces web application development in general and Struts in par-
ticular. We look at how Struts is written and distributed, the enabling technologies
behind web applications, and the overall Struts architecture. To round out the
chapter, we jump right in and develop our first Struts application.

 Chapter 2 explores the Struts architecture. We start with a general overview of
the Struts architecture followed by a close look at the how control flows through
the framework. The chapter concludes with a frank discussion of Struts’ strengths
and weaknesses. The chapter is intended to give working developers a firm
grounding in what working in Struts is really all about. It may also help product
managers decide whether Struts is a good fit for their team.

 Chapter 3 walks through the development of a simple application. Like the
exercise in chapter 1, this is a very simple logon application, but it includes the
same essentials as any web application. The goal here is to give a hands-on devel-
oper the “big picture” before we drill-down on the gory details in part 2. To add a
touch of realism, we go back and upgrade the completed application from
Struts 1.02 to the Struts 1.1 release.

 Chapter 4 explores the backbone of the Struts framework—the configuration
elements. We also describe configuring the web deployment descriptors and Ant
build files to help you build and deploy your own application.

 Chapter 5 covers the Struts ActionForm. This key object can be many things to
the application: transfer object, firewall, API, data validator, and type transformer.
We introduce several techniques to help you get the most out of the double-edged
sword Struts likes to call form beans.

 Chapter 6 covers the Struts ActionForward. The trickiest part of any Web
application can be getting there from here. ActionForwards help you clearly

xxx ABOUT THIS BOOK
define the entry points to your application, making it easier to see if you’ve cov-
ered all the bases.

 Chapter 7 covers the Struts ActionMapping. The mappings are the foundation
of the Struts controller. Actions classes can be designed for reuse and configured
for different tasks with an ActionMapping. Here we explore how to use Action-
Mappings to control the flow through your application, and get the most out of
every Action class.

 Chapter 8 covers the Struts Action object. These are the workhorses of a Struts
application—and where the web developers spend most of their time. We take a
close look at the Action classes bundled with Struts, and several goodies from the
Scaffold package, along with the thorny problem of populating business classes
from the incoming Struts ActionForms.

 Chapter 9 covers the Struts ActionServlet. The controller servlet is the
framework’s “mouthpiece.” It calls the shots but lets others do the dirty work.
Here we look at the new ways to customize the ActionServlet to best suit the needs
of your application or a specific application module.

 Chapter 10 explores the Struts JSP tags and server pages generally. From the
user’s perspective, the web page is the application and represents everything the
application is supposed to do. The key advantage of using Struts is that it helps
you separate displaying content from acquiring content. In this chapter, we scruti-
nize the Struts JSP tags and briefly introduce using other presentation systems
with Struts, such as XLST and Velocity. Most Struts applications rely on JSP to cre-
ate dynamic pages, but the framework can be used with any Java presentation
technology.

 Chapter 11 covers the Tiles page-assembly framework. Dynamic template sys-
tems, like Tiles, bring familiar programming patterns to the presentation layer of
a web application. A tile encapsulates a block of markup, much like a method
encapsulates a block of Java code. Building web pages with Tiles brings consis-
tency and flexibility to the unruly, chaotic world of HTML.

 Chapter 12 covers the important topic of validating user input. A popular
extension to the Struts core is the Struts Validator. This is a very powerful compo-
nent that provides both client-side and server-side validation from the same con-
figuration. We show how to integrate validation into your Struts application, using
both prewritten validators as well as any you write on your own.

 Chapter 13 covers the Struts i18n features. Struts supports internationalization
from the ground up. This chapter explores how and where i18n is built into
Struts, and what you need to do to get it working properly. The underlying theme
is what you must do to develop your application for one language today but be
able to add others tomorrow.

ABOUT THIS BOOK xxxi
 Chapter 14 explores hooking up data services to Struts. This chapter shows
how to use helper classes to connect a Struts Action with different types of enter-
prise data systems—including databases, search engines, and content-syndication
services. Working examples are provided using JDBC, Lucene, and Rich Site
Summary.

 Chapter 15 is our feature application, Artimus. This enterprise-grade applica-
tion pulls out all the stops and demonstrates the key Struts features and add-ons
in one tidy, eminently reusable package. Authentication, customization, localiza-
tion, Scaffold, Tiles, transactions, Validator, and more—it’s an A-to-Z walk-
through of the best and brightest Struts has to offer.

 Chapter 16 is our Struts 1.1 upgrade guide. Here we take the Artimus applica-
tion from chapter 15 and retrofit it for the new 1.1 features, including
DynaForms, plug-ins, and multiple modules. If you have a legacy Struts 1.0 appli-
cation ready for upgrade, this is the chapter for you!

 Chapter 17 shows how you can use Velocity templates with Struts. We revise our
logon application (from chapter 3) to use with Velocity templates, and show you
how the Velocity templates and JavaServer Pages compare, side by side.

Code
The source code for the example applications in this book has been donated to the
Apache Software Foundation. The source code is now available as part of the Struts
distribution and is also freely available from Manning’s website, www.man-
ning.com/husted.

 Much of the source code shown in the earlier part of the book consists of frag-
ments designed to illustrate the text. When a complete segment of code is given,
it is shown as a numbered listing; code annotations accompany some listings.
When we present source code, we sometimes use a bold font to draw attention to
specific elements.

 In the text, Courier typeface is used to denote code (JSP, Java, and HTML) as
well as Java methods, JSP tag names, and other source code identifiers:

� A reference to a method in the text will generally not include the signature,
because there may be more than one form of the method call.

� A reference to a JSP tag will include the braces and default prefix, but not
the list of properties the tag accepts (<bean:write>).

� A reference to an XML element in the text will include the braces but not
the properties or closing tag (<action>).

xxxii ABOUT THIS BOOK
� When a Java class or tag library is first introduced in a section, the full pack-
age identifier is given in braces and set in a Courier font (java.util.Map);
other references to the classname are set in normal body type.

� When JSP is interspersed with HTML in the code listings or code fragments,
we have used UPPERCASE letters for the HTML elements and lowercase let-
ters for JSP elements.

References
Bibliographic references are indicated in square brackets in the body of the text;
for example, [ASF, Artimus]. Full publication details and/or URLs are provided in
the “References” section on page 614 of this book.

Author Online
Purchase of Struts in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the lead author and from other users. To
access the forum and subscribe to it, point your web browser to www.man-
ning.com/husted. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

About the authors
 Ted Husted is an acknowledged Struts authority, an active member of the

Struts development team, and manager of the JGuru Struts Forum. As a consult-
ant, Ted has worked with professional Struts development teams throughout the
United States. Ted also helps manage the Apache Jakarta project, which hosts the
Struts framework. Ted lives in Fairport, New York, with his wife, two children, four
computers, and an aging cat.

 Cedric Dumoulin is an active member of the Struts development team and
author of the Tiles framework. Cedric is presently a researcher at the University of
Lille. He has also worked in the R&D department of a leading international Inter-
net banking company. He lives in Lille, France.

ABOUT THIS BOOK xxxiii
 George Franciscus is a principal at Nexcel, providing technical and manage-
ment consulting services in several industries, including telecommunications,
banking, life insurance, and property and casualty insurance. George has exper-
tise in Java, J2EE, Domino, relational databases, and mainframe technologies. He
holds a BSc in Computer Science from the University of Toronto. George lives in
Toronto, Ontario, with his wife and three children.

 David Winterfeldt is a Struts Committer and author of the Commons Validator
package. He works as a senior developer at a major company implementing J2EE
technology. David currently lives in New York City.

 Craig McClanahan, creator of the Struts framework, contributed the foreword
to this book. Craig was the primary architect of Tomcat 4 and the implementation
architect of the Java Web Services Developer Pack. He is now Sun’s Specification
Lead for JavaServer Faces (JSR-127) as well as the Web Layer Architect for the J2EE
platform. Craig, as the primary developer of Struts, perhaps provided the most
important part of this book—a framework for us to write about.

About the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action book is that it is
example-driven. It encourages the reader to try things out, to play with new code,
and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.

About the cover
The figure on the cover of Struts in Action is a shepherd from the moors of Bor-
deaux, “Berger des Landes de Bordeaux.” The region of Bordeaux in southwest-
ern France has sunny hills that are ideal for viniculture, as well as many open and
marshy fields dotted with small farms and flocks of grazing sheep. Perched on his

xxxiv ABOUT THIS BOOK
stilts, the shepherd was better able to navigate the boggy fields and tend to his
charges.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by
J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new
phenomenon at the time and travel guides such as this one were popular, intro-
ducing both the tourist as well as the armchair traveler to the inhabitants of other
regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.

Part 1

Getting started with Struts

Part 1 is Struts distilled. We introduce Java web applications, examine the
framework’s architecture, build two simple applications, and walk through con-
figuring the Struts components.

1Introduction
Co-authored by George Franciscus and Ted Husted
This chapter covers
� Introducing application frameworks
� Understanding HTTP, CGI, servlets, and JSPs
� Using the Model 2 architecture
� Building a simple application
3

4 CHAPTER 1

Introduction
The only stupid question is the one you never ask.
—Anonymous

1.1 What is this book about?

Welcome to Struts in Action. We wrote this book to help web developers make the
best possible use of the Struts web application framework.

 Struts is open source software that helps developers build web applications
quickly and easily. Struts relies on standard technologies—such as JavaBeans, Java
servlets, and JavaServer Pages (JSP)—that most developers already know how to
use. By taking a standards-based, “fill-in-the-blanks” approach to software develop-
ment, Struts can alleviate much of the time-consuming grunt work that comes
with every new project.

1.1.1 Who makes the Struts software?

Struts is hosted by the Apache Software Foundation (ASF) as part of its Jakarta
project. Besides Struts, Jakarta hosts several successful open source products,
including Tomcat, Ant, and Velocity.

 The initial Struts codebase was developed between May 2000 and June 2001
when version 1.0 was released. More than 30 developers contributed to the Struts
distribution, and thousands more follow the Struts mailing lists. The Struts code-
base is managed by a team of volunteer “Committers.” By 2002, the Struts team
included nine active Committers.

 The primary architect and developer of the Struts framework is Craig R.
McClanahan. Craig is also the primary architect of Tomcat 4 and the implementa-
tion architect of the Java Web Services Developer Pack. He is now Sun’s specifica-
tion lead for JavaServer Faces (JSR-127) as well as the Web Layer Architect for the
Java 2 Enterprise Edition (J2EE) platform.

 Struts is available to the public at no charge under the Apache Software
License [ASF, License]. There are no acquisition or other recurring costs for using
the software. Unlike some other open source licenses, the Apache Software
License is business-friendly. You can use Struts to create a commercial project and
distribute the Struts binary without any red tape, fees, or other hassles. You can
also integrate the Struts components into your own framework just as if they were
written in-house. For complete details, see the Apache Software License at
www.apache.org/LICENSE.

What are application frameworks? 5
1.1.2 Why is Struts open source?

Most of the leading Java utilities and frameworks are now open source projects.
Many of the developers working on these projects do so as part of their regular
jobs with companies like IBM, Sun Microsystems, and Apple. Collaborating openly
on this type of software benefits the entire marketplace. Today, many open source
components are integrated into commercial products. Companies then sell pro-
fessional documentation, guaranteed support levels, and other valuable aftermar-
ket services to their clients.

 When software is freely available, it becomes much easier for the marketplace
to support. Struts is a prime example of this. Although still a youngster, it has
already been featured in dozens of articles and seminars, not to mention books
like this one.

 Many development teams do not like to use software that was not “invented”
in-house. Open source components provide all the benefits of writing the same
software in-house but do not lock you into a proprietary solution that only your
team understands.

 Open source frameworks are a win-win for everyone.

1.1.3 Why is it called Struts?

The framework is called “Struts” to remind us of the invisible underpinnings that
hold up our houses, buildings, bridges, and, indeed, ourselves when we are on
stilts. This is an excellent description of the role Struts plays in developing web
applications. When raising physical structures, construction engineers use struts
to provide support for each floor of a building. Likewise, software engineers use
Struts to support each layer of a business application.

1.2 What are application frameworks?

A framework is a reusable, semi-complete application that can be specialized to
produce custom applications [Johnson]. Like people, software applications are
more alike than they are different. They run on the same computers, expect input
from the same devices, output to the same displays, and save data to the same
hard disks. Developers working on conventional desktop applications are accus-
tomed to toolkits and development environments that leverage the sameness
between applications. Application frameworks build on this common ground to
provide developers with a reusable structure that can serve as the foundation for
their own products.

6 CHAPTER 1

Introduction
 A framework provides developers with a set of backbone components that have
the following characteristics:

� They are known to work well in other applications.

� They are ready to use with the next project.

� They can also be used by other teams in the organization.

Frameworks are the classic build-versus-buy proposition. If you build it, you will
understand it when you are done—but how long will it be before you can roll your
own? If you buy it, you will have to climb the learning curve—and how long is that
going to take? There is no right answer here, but most observers would agree that
frameworks such as Struts provide a significant return on investment compared to
starting from scratch, especially for larger projects.

1.2.1 Other types of frameworks

The idea of a framework applies not only to applications but to application com-
ponents as well. Throughout this book, we introduce other types of frameworks
that you can use with Struts. These include the Lucene search engine, the Scaf-
fold toolkit, the Struts validator, and the Tiles tag library. Like application frame-
works, these tools provide semi-complete versions of a subsystem that can be
specialized to provide a custom component.

 Some frameworks have been linked to a proprietary development environ-
ment. This is not the case with Struts or any of the other frameworks shown in this
book. You can use any development environment with Struts: Visual Age for Java,
JBuilder, Eclipse, Emacs, and Textpad are all popular choices among Struts devel-
opers. If you can use it with Java, you can use it with Struts.

1.3 Enabling technologies

Applications developed with Struts are based on a number of enabling technolo-
gies. These components are not specific to Struts and underlie every Java web
application. A reason that developers use frameworks like Struts is to hide the
nasty details behind acronyms like HTTP, CGI, and JSP. As a Struts developer, you
don’t need to be an alphabet soup guru, but a working knowledge of these base
technologies can help you devise creative solutions to tricky problems.

 If you are already all-too-familiar with the fundamentals, feel free to skip ahead
to section 1.4.

Enabling technologies 7
1.3.1 Hypertext Transfer Protocol (HTTP)

When mediating talks between nations, diplomats often follow a formal protocol.
Diplomatic protocols are designed to avoid misunderstandings and to keep nego-
tiations from breaking down. In a similar vein, when computers need to talk, they
also follow a formal protocol. The protocol defines how data is transmitted and
how to decode it once it arrives. Web applications use the Hypertext Transfer Pro-
tocol (HTTP) to move data between the browser running on your computer and
the application running on the server.

 Many server applications communicate using protocols other than HTTP.
Some of these maintain an ongoing connection between the computers. The
application server knows exactly who is connected at all times and can tell when a
connection is dropped. Because they know the state of each connection and the
identity of each person using it, these are known as stateful protocols.

 By contrast, HTTP is known as a stateless protocol. An HTTP server will accept
any request from any client and will always provide some type of response, even if
the response is just to say no. Without the overhead of negotiating and retaining a
connection, stateless protocols can handle a large volume of requests. This is one
reason why the Internet has been able to scale to millions of computers.

 Another reason HTTP has become the universal standard is its simplicity. An
HTTP request looks like an ordinary text document. This has made it easy for
applications to make HTTP requests. You can even send an HTTP request by hand
using a standard utility such as Telnet. When the HTTP response comes back, it is
also in plain text that developers can read.

 The first line in the HTTP request contains the method, followed by the loca-
tion of the requested resource and the version of HTTP. Zero or more HTTP
request headers follow the initial line. The HTTP headers provide additional
information to the server. This can include the browser type and version, accept-
able document types, and the browser’s cookies, just to name a few. Of the seven
request methods, GET and POST are by far the most popular.

 Once the server has received and serviced the request, it will issue an HTTP
response. The first line in the response is called the status line and carries the
HTTP protocol version, a numeric status, and a brief description of the status. Fol-
lowing the status line, the server will return a set of HTTP response headers that
work in a way similar to the request headers.

 As we mentioned, HTTP does not preserve state information between requests.
The server logs the request, sends the response, and goes blissfully on to the next
request. While simple and efficient, a stateless protocol is problematic for

8 CHAPTER 1

Introduction
dynamic applications that need to keep track of their users. (Ignorance is not
always bliss.)

 Cookies and URL rewriting are two common ways to keep track of users
between requests. A cookie is a special packet of information on the user’s com-
puter. URL rewriting stores a special reference in the page address that a Java
server can use to track users. Neither approach is seamless, and using either means
extra work when developing a web application. On its own, a standard HTTP web
server does not traffic in dynamic content. It mainly uses the request to locate a file
and then returns that file in the response. The file is typically formatted using
Hypertext Markup Language (HTML) [W3C, HTML] that the web browser can for-
mat and display. The HTML page often includes hypertext links to other web pages
and may display any number of other goodies, such as images and videos. The user
clicks a link to make another request, and the process begins anew.

 Standard web servers handle static content and images quite well but need a
helping hand to provide users with a customized, dynamic response.

DEFINITION Static content on the Web comes directly from text or data files, like
HTML or JPEG files. These files might be changed from time to time, but
they are not altered automatically when requested by a web browser. Dy-
namic content, on the other hand, is generated on the fly, typically in re-
sponse to an individualized request from a browser.

1.3.2 Common Gateway Interface (CGI)

The first widely used standard for producing dynamic content was the Common
Gateway Interface (CGI). CGI uses standard operating system features, such as
environment variables and standard input and output, to create a bridge, or gate-
way, between the web server and other applications on the host machine. The
other applications can look at the request sent to them by the web server and cre-
ate a customized response.

 When a web server receives a request that’s intended for a CGI program, it runs
that program and provides the program with information from the incoming
request. The CGI program runs and sends its output back to the server. The web
server then relays the response to the browser.

 CGI defines a set of conventions regarding what information it will pass as envi-
ronment variables and how it expects standard input and output to be used. Like
HTTP, CGI is flexible and easy to implement, and a great number of CGI-aware
programs have been written.

Enabling technologies 9
 The main drawback to CGI is that it must run a new copy of the CGI-aware pro-
gram for each request. This is a relatively expensive process that can bog down
high-volume sites where thousands of requests are serviced per minute. Another
drawback is that CGI programs tend to be platform dependent. A CGI program
written for one operating system may not run on another.

1.3.3 Java servlets

Sun’s Java Servlet platform directly addresses the two main drawbacks of CGI pro-
grams. First, servlets offer better performance and utilization of resources than
conventional CGI programs. Second, the write-once, run-anywhere nature of Java
means that servlets are portable between operating systems that have a Java Vir-
tual Machine (JVM).

 A servlet looks and feels like a miniature web server. It receives a request and
renders a response. But, unlike conventional web servers, the servlet application
programming interface (API) is specifically designed to help Java developers cre-
ate dynamic applications.

 The servlet itself is simply a Java class that has been compiled into byte code,
like any other Java object. The servlet has access to a rich API of HTTP-specific ser-
vices, but it is still just another Java object running in an application and can lever-
age all your other Java assets.

 To give conventional web servers access to servlets, the servlets are plugged
into containers. The servlet container is attached to the web server. Each servlet
can declare what URL patterns it would like to handle. When a request matching a
registered pattern arrives, the web server passes the request to the container, and
the container invokes the servlet.

 But unlike CGI programs, a new servlet is not created for each request. Once the
container instantiates the servlet, it will just create a new thread for each request.
Java threads are much less expensive than the server processes used by CGI pro-
grams. Once the servlet has been created, using it for additional requests incurs
very little overhead. Servlet developers can use the init() method to hold refer-
ences to expensive resources, such as database connections or EJB Home Inter-
faces, so that they can be shared between requests. Acquiring resources like these
can take several seconds—which is longer than many surfers are willing to wait.

 The other edge of the sword is that, since servlets are multithreaded, servlet
developers must take special care to be sure their servlets are thread-safe. To learn
more about servlet programming, we recommend Java Servlets by Example, by Alan
R. Williamson [Williamson]. The definitive source for Servlet information is the
Java Servlet Specification [Sun, JST].

10 CHAPTER 1

Introduction
1.3.4 JavaServer Pages

While Java servlets are a big step up from CGI programs, they are not a panacea.
To generate the response, developers are still stuck with using println state-
ments to render the HTML. Code that looks like

out.println("<P>One line of HTML.</P>");
out.println("<P>Another line of HTML.</P>");

is all too common in servlets that generate the HTTP response. There are libraries
that can help you generate HTML, but as applications grow more complex, Java
developers end up being cast into the role of HTML page designers.

 Meanwhile, given the choice, most project managers prefer to divide develop-
ment teams into specialized groups. They like HTML designers to be working on
the presentation while Java engineers sweat the business logic. Using servlets
alone encourages mixing markup with business logic, making it difficult for team
members to specialize.

 To solve this problem, Sun turned to the idea of using server pages to combine
scripting and templating technologies into a single component. To build Java-
Server Pages, developers start by creating HTML pages in the same old way, using
the same old HTML syntax. To bring dynamic content into the page, the devel-
oper can also place JSP scripting elements on the page. Scripting elements are
tags that encapsulate logic that is recognized by the JSP. You can easily pick out
scripting elements on JSP pages by looking for code that begins with <% and ends
with %>. For instance, to display the last modified date on the page, the developer
would place the following code in the page:

This page was accessed at <%= new Date() %>

There are three different types of scripting elements: expressions, scriptlets, and
declarations, as shown in table 1.1.

Table 1.1 JSP scripting elements

Element Purpose

Expressions Java code, bound by <%= and %>, used to evaluate Java language statements and
insert the result into the servlet’s output

Scriptlets Java code, bound by <% and %>, often used to create dynamic content

Declarations Java code, bound by <%! and %>, used to add code to the body of the servlet class

Enabling technologies 11
To be seen as a JSP page, the file just needs to be saved with an extension of .jsp.
When a client requests the JSP page, the container translates the page into a
source code file for a Java servlet and compiles the source into a Java class file—
just as you would do if you were writing a servlet from scratch. At runtime, the
container can also check the last modified date of the JSP file against the class file.
If the JSP file has changed since it was last compiled, the container will retranslate
and rebuild the page all over again.

 Project managers can now assign the presen-
tation layer to HTML developers, who then pass
on their work to Java developers to complete
the business-logic portion. The important thing
to remember is that a JSP page is really just a
servlet. Anything you can do with a servlet, you
can do with a JSP.

1.3.5 JSP tags

Scripting elements are only one of the two ways
to generate dynamic JSP content. Scriptlets are
quick, easy, and powerful but require that devel-
opers mix Java code with HTML. Experience has
taught us that embedding logic into JSP pages
leads to non-maintainable applications with
minimal opportunity for reuse. A popular alter-
native is to use JSP tags.

 JSP tags are mixed in with the HTML
markup and can be used as if they were ordi-
nary HTML tags. A single JSP tag may represent
dozens of Java statements, but all the developer
needs to know is to how to insert the tag. The
programming code is hidden away in a Java
class file.

 To use the same code on another page, the
developer only has to insert the tag markup
again. If the code for the tag changes, all the
tags will automatically use the updated version.
The JSP page using the tag does not need to be
revised. JSP tags provide much better reuse than
scriptlets and can be easier for page developers

JSPs vs. ASPs
Microsoft and Sun both offer their
own brand of server pages. Sun
offers JavaServer Pages and
Microsoft offers Active Server
Pages (ASP). Both JSPs and ASPs
are designed so that developers
can create dynamic web pages
customized with back-office data.
While similar on the surface,
there are several differences
between ASPs and JSPs:

� JSPs are platform indepen-
dent—write once, run any-
where.

� Developers have input to the
direction of JSPs through the
Java Community Process
(JCP).

� JSP developers can extend the
JSP tag set with custom tags.

� JavaBeans and Enterprise
JavaBeans (EJB) can be used
with JSPs to increase reusabil-
ity and reduce maintenance.

� JSPs can access many other
Java libraries, including Java
Database Connectivity (JDBC),
Java Mail, Java Message Ser-
vice (JMS), and Java Naming
and Directory Interface (JNDI).

� JSPs are compiled into a
binary class file and do not
need to be interpreted for
every request.

� JSPs find wide support with
tool vendors, containers, and
web servers.

12 CHAPTER 1

Introduction
to use, since they look like the familiar
HTML tags.

 A number of prebuilt JSP tags librar-
ies are available that will perform useful
functionality for developers. Among
these is the new JSP Standard Tag
Library (JSTL). This new standard pro-
vides a rich library of reusable JSP tags.
For more on JSTL, we highly recom-
mend JSTL in Action, by Shawn Bayern
[Bayern]. Struts works well with JSTL
and other publicly available tag libraries,
as well as any you might write yourself.

 For more on JSP and JSP pages, we
highly recommend Web Development with
JavaServer Pages, by Duane K. Fields,
Mark A. Kolb, and Shawn Bayern
[Fields]. The definitive source for JSP
information is the JavaServer Pages
Specification [Sun, JSP].

 JSP pages are an integral part of the
Struts developer’s toolbox. Most Struts
developers use JSP pages and custom
tags to create all the dynamic content for
their applications.

1.3.6 JavaBeans

JavaBeans are Java classes which conform to a set of design patterns that make
them easier to use with development tools and other components.

DEFINITION A JavaBean is a reusable software component written in Java. To qualify as
a JavaBean, the class must be concrete and public, and have a no-
argument constructor. JavaBeans expose internal fields as properties by
providing public methods that follow a consistent design pattern. Know-
ing that the property names follow this pattern, other Java classes are able
to use introspection to discover and manipulate JavaBean properties.

Rolling your own
Entire books have been written on devel-
oping your own JSP tags, but here’s a
quick overview of the process:

1 Create a class that implements
javax.servlet.jsp.tagext.TagSup-

port or javax.servlet.jsp.tag-
ext.BodyTagSupport by implementing
the doStart() or doEnd() method.
These methods obtain a JspWriter
object to write out any valid HTML con-
tent you need.

2 Create a tag library descriptor (TLD) file
to map the classes you just created to
a JSP tag name.

3 Define your <taglib> elements in the
web app l i ca t ion desc r ip to r f i l e
(web.xml). Tell the JSP page that you
will be using your tags by placing a
@taglib statement at the top of the
page:

<%@taglib uri="/tags/app.tld
 prefix="app" %>

4 This statement imports the library for
use on this page and assigns it a tag
prefix. For more, see the JSP Tag
Library technology page.

Enabling technologies 13
The JavaBean design patterns provide access to the bean’s internal state through
two flavors of methods: accessors are used to read a JavaBean’s state; mutators are
used to change a JavaBean’s state.

 Mutators are always prefixed with lowercase token set followed by the property
name. The first character in the property name must be uppercase. The return
value is always void—mutators only change property values; they do not retrieve
them. The mutator for a simple property takes only one parameter in its signature,
which can be of any type. Mutators are often nicknamed setters after their prefix.

 The mutator method signature for a weight property of the type Double
would be

public void setWeight(Double weight)

A similar design pattern is used to create the accessor method signature. Accessor
methods are always prefixed with the lowercase token get, followed by the prop-
erty name. The first character in the property name must be uppercase. The
return value will match the method parameter in the corresponding mutator.
Accessors for simple properties cannot accept parameters in their method signa-
ture. Not surprisingly, accessors are often called getters.

 The accessor method signature for our weight property is

public Double getWeight()

If the accessor returns a logical value, there is a variant pattern. Instead of using
the lowercase token get, a logical property can use the prefix is, followed by the
property name. The first character in the property name must be uppercase. The
return value will always be a logical value—either boolean or Boolean. Logical
accessors cannot accept parameters in their method signature.

 The boolean accessor method signature for an on property would be

public boolean isOn()

The canonical method signatures play an important role when working with Java-
Beans. Other components are able to use the Java Reflection API to discover a
JavaBean’s properties by looking for methods prefixed by set, is, or get. If a compo-
nent finds such a signature on a JavaBean, it knows that the method can be used
to access or change the bean’s properties.

 Sun introduced JavaBeans to work with GUI components, but they are now
used with every aspect of Java development, including web applications. When
Sun engineers developed the JSP tag extension classes, they designed them to

14 CHAPTER 1

Introduction
work with JavaBeans. The dynamic data for a page can be passed as a JavaBean,
and the JSP tag can then use the bean’s properties to customize the output.

 For more on JavaBeans, we highly recommend The Awesome Power of JavaBeans,
by Lawrence H. Rodrigues [Rodrigues]. The definitive source for JavaBean infor-
mation is the JavaBean Specification [Sun, JBS].

1.3.7 Model 2

The 0.92 release of the Servlet/JSP Specification described Model 2 as an architec-
ture that uses servlets and JSP pages together in the same application. The term
Model 2 disappeared from later releases, but it remains in popular use among Java
web developers.

 Under Model 2, servlets handle the data access and navigational flow, while JSP
pages handle the presentation. Model 2 lets Java engineers and HTML developers
each work on their own part of the application. A change in one part of a Model 2
application does not mandate a change to another part of the application. HTML
developers can often change the look and feel of an application without changing
how the back-office servlets work.

 The Struts framework is based on the Model 2 architecture. It provides a con-
troller servlet to handle the navigational flow and special classes to help with the
data access. A substantial custom tag library is bundled with the framework to
make Struts easy to use with JSP pages.

1.4 Struts from 30,000 feet

Hold on to your hats! Now that we’ve covered the basics, it’s time for a whirlwind
tour of Struts. Before we try to get into the nuts and bolts of the framework com-
ponents, let’s start with the big picture.

 Struts uses a Model 2 architecture. The Struts ActionServlet controls the naviga-
tional flow. Another Struts class, the Action, is used to access the business classes.
When the ActionServlet receives a request from the container, it uses the URI (or
“path”) to determine which Action it will use to handle the request. An Action can
validate input and access the business layer to retrieve information from databases
and other data services.

 To validate input or use the input to update a database, the Action needs to
know what values were submitted. Rather than force each Action to pull these
values out of the request, the ActionServlet bundles the input into a JavaBean.
The input beans are subclasses of the Struts ActionForm class. The ActionServlet
can determine which ActionForm to use by looking at the path of the request, in

Struts from 30,000 feet 15
the same way the Action was selected. An ActionForm extends org.apache.
struts.action.ActionForm.

 Each HTTP request must be answered with an HTTP response. Usually, a Struts
Action does not render the response itself but forwards the request on to another
resource, such as a JSP page. Struts provides an ActionForward class that can be
used to store the path to a page under a logical name. When it has completed the
business logic, the Action selects and returns an ActionForward to the servlet. The
servlet then uses the path stored in the ActionForward object to call the page and
complete the response.

 Struts bundles these details together into an ActionMapping object. Each
ActionMapping is related to a specific path. When that path is requested, the serv-
let retrieves the ActionMapping object. The mapping tells the servlet which
Actions, ActionForms, and ActionForwards to use.

 All of these details, the Actions, ActionForms, ActionForwards, ActionMap-
pings, and some other things, are declared in the struts-config.xml file. The Action-
Servlet reads this file at startup and creates a database of configuration objects. At
runtime, Struts refers to the objects created with the configuration file, not the
file itself. Figure 1.1 illustrates how these components fit together.

 Believe it or not, you already know enough about Struts to assemble a simple
application. It won’t do much, but it will illustrate how Struts actually works.

submit

response response

ACTION
SERVLET

JSP JSP

Form

Action

struts-config.xml

Initial Page
(JSP/HTML)

Figure 1.1 Struts from 30,000 feet

16 CHAPTER 1

Introduction
1.4.1 Building a simple application

Developers develop, and most of us learn best through example. Although we
have spent barely a page describing how Struts works, let’s just go ahead and build
something so you can see how it’s done. To close this chapter, we will put together
a very simple but fully functional web application. The application will be used to
register usernames and passwords. Once we are done you will have touched all
the pieces you need to develop your own applications with Struts.

1.4.2 Jump-starting development

We have all felt frustration when we were eager to get started with a product but
then hit a roadblock in just setting up the environment. To follow along with this
chapter, all you need is the Java Development Kit (JDK), a modern web container
(Tomcat 4, for example), and a simple text editor (such as Windows Notepad).
If you do not already have Java and a web container set up, here’s what you need
to do:

� Download and install JDK 1.4.

� Download and install Tomcat 4 LE.

� Verify that Tomcat is working.

� Download and install the starter registration application.

To keep it simple, we will walk through the Windows installation for each of these
steps.

 A hyperlinked version of this section is available at the book’s website
[Husted], to make it easier for you to find the files you need to download.

NOTE The references to web addresses and other resources are given in the Ref-
erences section of this book. For your convenience in getting started,
here are the URLs for the downloads you will need for this section:

� The Sun JDK [Sun, JDK], http://java.sun.com/j2se/

� Tomcat 4 [ASF, Tomcat], http://jakarta.apache.org/tomcat

� The book’s website [Husted], http://www.manning.com/husted/

Installing the Java Development Kit
The Sun JDK 1.4 download [Sun, JDK] for Windows is now bundled with a Win-
dows installation program. The setup wizard leads you through all the steps to
install the JDK.

Struts from 30,000 feet 17
Installing Tomcat 4
Once JDK 1.4 is installed on your machine, you are ready to download and install
Tomcat 4.0.4 (or later) [ASF, Tomcat]. A Windows setup wizard for Tomcat is avail-
able that will handle the installation details for you. To use the Windows setup
program, choose the download with the .exe extension. Then, just double-click
on the downloaded file to run the wizard.

 The Tomcat defaults should work fine for most people, so installing Tomcat is
mainly a matter of clicking Next. Let’s step through the process so that you will
know what to expect:

1 A small window will pop up indicating the location of the JDK.

2 Click OK and you will see the Acceptance Agreement. Review the agree-
ment before clicking Next.

3 The next screen presents your installation options. You should be able to
just accept the defaults and click Next.

4 You will be given the option to select a base directory. The default choice
will usually be C:\PROGRAM FILES\APACHE TOMCAT 4.0. This should work
fine for most people. If you need to put it on a different drive, we recom-
mend just changing the drive letter and keeping the rest of the path as it
is. This will make it easier to follow along later. This book and the Tomcat
documentation will refer to this location as your Tomcat base directory.

5 Click Install, and the wizard will copy and expand files. A progress bar
advises you how the installation is going.

6 When installation is complete, click the Close button.

Congratulations; you have installed Tomcat 4. Now it’s time to fire it up and test it
out. The Windows installer places a Tomcat Start item in your Start menu. Navi-
gate your way through the Start menu until you find the Tomcat Start item. You
stop Tomcat in the same way, except you select Tomcat Stop.

 Tomcat provides several working servlets and JSP examples. Running these
proves that your installation went according to plan. To test Tomcat (using the fac-
tory defaults), point your browser to http://localhost:8080. If all went well, a Wel-
come page with links to the examples will open. Try a few of the examples, just to
be sure everything is hunky-dory. Then, install the Register application.

 The easiest way to deploy a web application is with a Web Archive file (WAR). A
WAR file is a compressed file containing all the application files a web application
needs to function. To deploy a WAR file, you simply place it in the webapps

18 CHAPTER 1

Introduction
directory under the Tomcat base directory (for example, C:\PROGRAM
FILES\APACHE TOMCAT 4.0\webapps). The next time you restart Tomcat, you will
see that the WAR file has been expanded. The entire application directory struc-
ture will have been re-created.

 In the next section, you will be creating your first Struts application. To get you
started quickly, we have provided a starter application for you to complete.
Deployment will be a breeze because the starter application is a WAR file. You can
download the starter application at the book’s website [Husted]. The remainder
of this chapter will have you add a few files to complete the application. The fully
complete Register application is also available at the book’s website in a separate
WAR file. By default, the starter application will deploy under register and the com-
pleted version will deploy under register-complete.

 Congratulations—if you have set up the JDK, Tomcat 4, and the Register appli-
cation, you are ready to start development.

1.4.3 Where the rubber meets the road

Your first Struts application will be a simple user registration application. The user
will be presented with a registration screen that will contain three fields—user-
name, password, and confirmation password. A successful registration requires
that the two passwords match. If the registration is successful, control flows to a
page that says successful!. If the two passwords do not match, control flows to a page
that says failure.

 This simple exercise is designed to demonstrate the following:

� Creating HTML forms

� Capturing input from an HTML form

� Processing input (business logic)

� Changing the control flow based on dynamic input

To complete the starter application, you need to create:

� An ActionForm

� An Action

� The struts-config.xml file

� Three pages

That’s it!

Struts from 30,000 feet 19
Creating the ActionForm
An ActionForm is a JavaBean that extends org.apache.struts.ActionForm.
This object captures the input fields sent through the request. When a web
browser submits a form, it creates a parameter in the request for each field on the
form. The ActionForm has a corresponding property for each field on the HTML
form. The ActionServlet matches the parameters in the request with the proper-
ties on the ActionForm. When they correspond, the ActionServlet calls the setter
method for the property and passes it the value from the request.

 In our exercise, the username field on the HTML form will need to have a set-
Username(String) method. The password fields will need the setPass-
word1(String) and setPassword2(String) methods. These methods are
responsible for populating the instance variables hidden within the RegisterForm
JavaBean. The source code for our RegisterForm is shown in listing 1.1.

 Create a file called RegisterForm.java that contains the code in listing 1.1. Save
it under <Base Directory>/webapps/register/WEB-INF/classes/app. For the default
Windows installation, the <Base Directory> would be C:/PROGRAM FILES/APACHE
TOMCAT 4.0. For other containers, use the path to the classes directory for the
deployed Register application.

package app;
import org.apache.struts.action.*;

public class RegisterForm extends ActionForm {
 protected String username;
 protected String password1;
 protected String password2;

 public String getUsername () {return this.username;};
 public String getPassword1() {return this.password1;};
 public String getPassword2() {return this.password2;};

 public void setUsername (String username) {this.username = username;};
 public void setPassword1(String password) {this.password1 = password;};
 public void setPassword2(String password) {this.password2 = password;};
}

Creating the RegisterAction
An Action is a Java class that extends org.apache.struts.Action. The Action-
Servlet populates the ActionForm and then passes it to the Action. An Action is
generally responsible for validating input, accessing business information, and
determining which ActionForward to return to the servlet.

Listing 1.1 RegisterForm.java

20 CHAPTER 1

Introduction
 Now, create a file called RegisterAction.java that contains the code in listing 1.2.
Save the file under <Base Directory>/webapps/register/WEB-INF/classes/app.

package app;
import org.apache.struts.action.*;
import javax.servlet.http.*;
import java.io.*;

public class RegisterAction extends Action {

public ActionForward perform (ActionMapping mapping,
 ActionForm form,
 HttpServletRequest req,
 HttpServletResponse res) {

 // b Cast the form to the RegisterForm

 RegisterForm rf = (RegisterForm) form;

 String username = rf.getUsername();
 String password1 = rf.getPassword1();
 String password2 = rf.getPassword2();

 // c Apply business logic

 if (password1.equals(password2)) {

 try {

// d Return ActionForward for success

 UserDirectory.getInstance().setUser(username,password1);
 return mapping.findForward("success");
 } catch (UserDirectoryException e) {
 return mapping.findForward("failure");
 }
 }

 // E Return ActionForward for failure

 return mapping.findForward("failure");
}
}

While very simple, our RegisterAction does all the things Actions typically do. At
b, the incoming ActionForm is cast to the RegisterForm. We can then extract the
username, password1, and password2. If the two passwords match at c, we add
the user to the UserDirectory at d and return the ActionForward associated with
success. The UserDirectory is a helper class that will record usernames and
passwords into a standard properties file. Otherwise, the failure ActionForward is
returned at e.

Listing 1.2 RegisterAction.java

Struts from 30,000 feet 21
 When we create our struts-config file in the next step, we will specify the
ActionForward objects that represent the success and failure outcomes cited here.

NOTE Struts 1.1 offers an alternative entry method, named execute. This meth-
od provides for better exception handling but is otherwise the same as
the Struts 1.0 perform method. We will refer to the perform method in
this chapter so the code will work with both versions.

To keep things simple, we won’t try to compile this source file into a Java class. A
precompiled class is provided with the Starter application that we can use to test
the other components. In practice, you would have to build the Java classes as you
went along. In this exercise, we focus on what source files you need to create and
leave some of the technicalities for later.

Creating the Struts configuration file (struts-config.xml)
The struts-config.xml file contains details that the ActionServlet needs to han-
dle the requests made to your application. For the purposes of this exercise, we
have created a shell of the struts-config.xml file for you. All you need to do is fill
in a few of the specifics. Let’s look at the changes you need to make to <Base
Directory>/webapps/register/WEB-INF/struts-config.xml.

 First, add

/register

to the path attribute in the <action> element. The ActionServlet uses the URI
forwarded to it by the web container to select the correct Action class. The URI is
matched with the path attribute of an ActionMapping. In this case, the path given
by the request must match /register after trimming any prefix or suffix.

 The prefix or suffix is usually either /do/ or .do. For our exercise, it was set to
.do. When the URI has a .do extension, the container knows to forward the
request to our ActionServlet. Struts trims the extension automatically so we don’t
need to include it here.

 The next step is to add

registerForm

to the name attribute in the <action> element. The <action> element uses the
name attribute to indicate which ActionForm bean will be created by the Action-
Servlet and populated with the submitted fields.

 Next, add

22 CHAPTER 1

Introduction
app.RegisterAction

to the type attribute in the <action> element. The type attribute is used by the
ActionServlet to identify the Action used to process the request.

 At this point, in a <forward> element, add

success

to the name attribute and

/success.html

to the path attribute. Finally, add

failure

to the name attribute and

/failure.html

to the path attribute of the other <forward> tag. These elements will create the
ActionForward objects that we use to alter the application’s control flow. The
<forward> elements define the association between the logical names used in the
RegisterAction.

 The source code for our struts-config.xml is shown in listing 1.3. Modify the
file, found in <Base Directory>/webapps/register/WEB-INF/struts-config.xml, as
shown in listing 1.3 and save it to the same place.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">
<struts-config>
 <form-beans>
 <form-bean name="registerForm" type="app.RegisterForm"/>
 </form-beans>
<action-mappings>
 <action path="/register"
 type="app.RegisterAction"
 name="registerForm">
 <forward name="success" path="/success.html"/>
 <forward name="failure" path="/failure.html"/>
 </action>
 </action-mappings>
</struts-config>

Listing 1.3 The struts-config.xml file

Struts from 30,000 feet 23
The framework uses the struts-config.xml file as a deployment descriptor. It lets us
create and change the ActionMapping associated with a path without recompiling
a Java class. We can also change how pages are linked together without changing
the JSP templates.

Creating the pages
The final step is to create the success.html, failure.html, and register.jsp pages.
Create the three pages as described in listings 1.4, 1.5, and 1.6. Save your work in
<Base Directory>/webapps/register.

<HTML>
<HEAD>
 <TITLE>SUCCESS</TITLE>
</HEAD>
<BODY>
 Registration succeeded!
 <P>try another?</P>
</BODY>
</HTML>

<HTML>
<HEAD>
 <TITLE>FAILURE</TITLE>
</HEAD>
<BODY>
 Registration failed!
 <P>try again?</P>
</BODY>
</HTML>

<%@ taglib uri="/WEB-INF/struts-form.tld" prefix="form" %>

<form:form action="register.do">
 UserName:<form:text property="username"/>

 enter password:<form:password property="password1"/>

 re-enter password:<form:password property="password2"/>

<form:submit value="Register"/>
</form:form>

Listing 1.4 The success.html file

Listing 1.5 The failure.html file

Listing 1.6 The register.jsp file

24 CHAPTER 1

Introduction
At this point, you have done everything you need to build a simple web applica-
tion with Struts. Now let’s try it out.

 If Tomcat is not already running, you can start it by going to the Apache Tom-
cat menu on your Programs menu and selecting Tomcat Start.

 With your web container running, point your browser to http://localhost:8080/
register/register.jsp (see figure 1.2).

1.4.4 Looking back

Let’s take a step back to review what we did, how it worked, and what else you
need to do to build your own Struts application.

What we did
To assemble the Register application we had to create the following:

� The RegisterForm ActionForm

� The RegisterAction Action

� Three pages (the register page, the success page, and the failure page)

� The struts-config.xml file (to tell Struts how to wire the pieces together)

How it works
When you point your browser to http://localhost:8080/register/register.jsp,
Tomcat renders it as it would any JSP page. You enter a username and password,
and click Register to submit the page. The browser posts the contents of the form
as an HTTP request. The container sees that the request is being sent to a path

Figure 1.2 The Register application

Struts from 30,000 feet 25
registered to the Struts ActionServlet. The request is then forwarded to the
ActionServlet and processed by the RegisterAction. The RegisterAction validates
the user input before returning a success or failure ActionForward. The servlet
forwards control to the page indicated by the ActionForward. Figure 1.3 shows
the Register application architecture.

Looking back at register.jsp in listing 1.6, you will see that the form submits to the
URI /register. But if you watch as the page is being submitted, you will see that it is
actually sent to register.do. The Struts form tag adds the .do suffix for you. When
we set up the application shell you downloaded, we asked that all request paths
matching *.do be sent to our ActionServlet.

 When it receives a request, the first thing the ActionServlet does is check the
mappings for a matching path. The mappings are JavaBeans that Struts creates by
reading the struts-config.xml file. We will show the XML for reference, but at run-
time Struts refers to the objects, not the XML document.

 You’ll see from listing 1.3 that we created a mapping for the path /register
using this element:

<action
 path="/register"
 type="app.RegisterAction"
 name="registerForm"
 input="/register.jsp">

submit

response response

ACTION
SERVLET

success.html failure.html

RegisterForm.class

RegisterAction.class

struts-config.xml

register.jsp
(JSP/HTML)

Figure 1.3 The Register application architecture

26 CHAPTER 1

Introduction
 Next, the ActionServlet checks to see if a name property is associated with the
mapping:

<action
 path="/register"
 type=" app.RegisterAction"
 name="registerForm"
 input="/register.jsp">

Our /register mapping specifies a form bean by the name of registerForm. The
servlet uses this name to look up the corresponding ActionFormBean object. The
type specified by the form bean is used to create the ActionForm object:

<form-beans>
 <form-bean
 name="registerForm"
 type="RegisterForm"/>
</form-beans>

<action-mappings>
 <action
 path="/register"
 type=" app.RegisterAction"
 name="registerForm"
 input="/register.jsp">
 <forward
 name="success"
 path="/success.html"/>
 <forward

 name="failure"
 path="/failure.html"/>
 </action>
</action-mappings>

In this case, the servlet will use our RegisterForm class:

<form-beans>
 <form-bean
 name="registerForm"
 type="app.RegisterForm"/>
</form-beans>

Once RegisterForm is instantiated, the ActionServlet will try to call setter methods
on RegisterForm for any input fields in the request. In our example, these are
setUsername, setPassword1, and setPassword2. If a setter method doesn’t
exist for an input parameter, that parameter is ignored.

 The type attribute of the ActionMapping object is the name of the class that
the ActionServlet will use to instantiate an ActionForm. In this case, it will use the
RegisterAction object you created. The perform method of the RegisterAction

Struts from 30,000 feet 27
object is invoked and passed a reference to the RegisterForm, which was created
and populated in the previous step:

<action
 path="/register"
 type="app.RegisterAction"
 name="registerForm"
 input="/register.jsp">
 <forward
 name="success"
 path="/success.html"/>
 <forward
 name="failure"
 path="/failure.html"/>
</action>

Depending on the outcome of the perform method (see listing 1.2), one of the
two ActionForwards is returned. The findForward() method uses its single
String parameter to find a forward object that matches the name property. The
path property is used by the ActionServlet to determine which of our pages
should complete the response:

<forward
 name="success"
 path="/success.html"/>
<forward
 name="failure"
 path="/failure.html"/>

While very simple, our little exercise has shown you the essential components of
any Struts application.

What we didn’t do
To get you started as quickly as possible, our exercise cut a corner. Rather than
have you compile the Java source files, we skipped that step and relied on the class
files bundled with the starter application. We wanted to give you a chance to
develop a Struts application without being distracted by routine technicalities,
such as Ant build files.

 In chapter 3, we develop another simple application to demonstrate other
features of the framework. Here, we also get you started with Ant and an actual
programmer’s editor (jEdit). We also start to cover the Struts components in
greater depth. Part 2 of the book covers the framework components in the great-
est detail. In part 4, we put it all together and build a realistic production applica-
tion called Artimus.

28 CHAPTER 1

Introduction
1.5 Summary

In this chapter, we introduced Struts as an application framework. We examined
the technology behind HTTP, the Common Gateway Interface, Java servlets, JSPs,
and JavaBeans. We also looked at the Model 2 application architecture to see how
it is used to combine servlets and JSPs in the same application.

 Toward the end of the chapter, we moved into the fast lane and assembled our
first Struts application. Now that you have had a taste of what it is like to develop a
web application with Struts, in chapter 2 we dig deeper into the theory and prac-
tice behind the Struts architecture.

2Exploring the
Struts architecture
This chapter covers
� Introducing application frameworks, MVC, and Model 2
� Understanding how Struts works
� Using the Struts control flow
� Exploring the strengths and weaknesses of Struts
29

30 CHAPTER 2

Exploring the Struts architecture
A common mistake that people make when trying to design something
completely foolproof is to underestimate the ingenuity of

complete fools.
—Douglas Adams, Mostly Harmless

2.1 Talking the talk

This chapter explores the Struts framework in depth and highlights the benefits
Struts can bring to your development efforts. We believe that once you can “talk
the talk” of web architecture and design, you will be better equipped to use Struts
with your own applications.

 With a sound overview of the Struts architecture in place, we outline the Struts
control flow and the way it handles the request-response event cycle. A good
understanding of this process makes it much easier to create applications that
make the best use of the framework.

 Choosing a web application framework should not be a casual decision. Many
people will use this book, and especially this chapter, as part of evaluating Struts
for their project. Accordingly, we conclude this chapter with a candid look at the
strengths and weaknesses of the Struts framework and address concerns regarding
overall performance. Struts is designed for professional developers. To make
informed decisions, professionals need to be aware of both a tool’s capabilities
and its limitations.

2.2 Why we need Struts

Today’s web applications are critical components of the corporate mission. As
always, development teams need to build applications in record time, but they
have to build them right and build them to last.

 Java web developers already have utilities for building presentation pages, such
as JavaServer Pages and Velocity templates. We also have mechanisms for han-
dling databases—JDBC and Enterprise JavaBeans (EJBs), for example. But what do
we use to put these components together? We have the plumbing and the
drywall … what else do we need?

2.2.1 One step back, three steps forward

In the late 1970s, when graphical user interfaces (GUIs) were being invented,
software architects saw applications as having three major parts: the part that

Why we need Struts 31
manages data, the part that creates screens and reports, and the part that handles
interactions between the user and the other subsystems [Ooram]. In the early
1980s, the ObjectWorks/Smalltalk programming environment introduced this
triumvirate as a development framework. In Smalltalk 80 parlance, the data sys-
tem is dubbed the Model, the presentation system is called the View, and the inter-
action system is the Controller. Many modern development environments,
including Java’s Swing, use this Model/View/Controller (MVC) architecture (see
figure 2.1) as the foundation of their own frameworks.

Java web developers already have capable tools, such as JDBC and JSP, for consult-
ing the Model and creating the View, but where’s the Controller for our web
applications?

2.2.2 Enter Struts

The centerpiece of Struts is an MVC-style Controller. The Struts Controller bridges
the gap between Model and View. The framework also includes other missing
pieces developers need to write scalable, leading-edge web applications. Struts is a
collection of “invisible underpinnings” that help developers turn raw materials
like databases and web pages into a coherent application.

2.2.3 Struts controller components

The Struts controller is a set of programmable components that allow developers
to define exactly how their application interacts with the user. These components

View Controller

Model

Figure 2.1 The Model/View/Controller architecture

32 CHAPTER 2

Exploring the Struts architecture
hide nasty, cumbersome implementation details behind logical names. Developers
can program these details once, then go back to thinking in terms of what the pro-
gram does rather than how it does it.

 Users interact with a web application through hyperlinks and HTML forms.
The hyperlinks lead to pages that display data and other elements, such as text
and images. The forms generally submit data to the application via some type of
custom action.

 As shown in figure 2.2, Struts provides components that programmers can use
to define the hyperlinks, forms, and custom actions that web applications use to
interact with the user. We used these components to build a starter application in
chapter 1. In chapter 3, we walk through using these components to build
another simple application. Then, in chapter 4, we provide a detailed overview of
configuring these components. Later chapters provide more detail about putting
each component to use within your application. In part 4 we demonstrate using
the components in the context of working applications. But, since this chapter is
the architectural overview, let’s go ahead and introduce the major Struts compo-
nents now.

NOTE The Struts components are configured via XML. In practice, the configu-
ration elements are an integral part of the Struts framework. To help you
put it all together, we show a sample of each component’s XML element
as it is introduced.

Hyperlinks
To the application developer, a hyperlink is a path to some resource in the appli-
cation. This may be a web page or a custom action. It may also include special
parameters. In Struts, developers can define a hyperlink as an ActionForward.
These objects have a logical name and a path property. This lets developers set the
path and then refer to the ActionForward by name.

 ActionForwards are usually defined in an XML configuration file that Struts
reads when the web application loads. Struts uses the XML definitions to create the

Hyperlinks/ActionForms HTML forms/
ActionForms

Custom actions/
ActionForms

Figure 2.2 Major Struts components

Why we need Struts 33
Struts configuration, which includes a list of ActionForwards. The XML element
that would create an ActionForward for a welcome hyperlink might look like this:

<forward
 name="welcome"
 path="/pages/index.jsp"/>

This element would create an ActionForm JavaBean with its name property set to
welcome and its path property set to /pages/index.jsp.

 JSP pages and other components can then refer to the welcome forward. The
Struts framework will look up the welcome ActionForward bean and retrieve the
path to complete the hyperlink. This allows developers to change the destination
of a link without changing all the components that refer to that link. In most web
applications, details like this are hardcoded into JSP and Java code, making
changes difficult and prone to error. In a Struts application, these details can be
changed throughout the application without touching a single page or Java class.

 For more about ActionForwards, see chapter 6.

HTML forms
The web protocols, HTTP and HTML, provide a mechanism for submitting data
from a form but leave receiving the data as an exercise for the developer. The
Struts framework provides an ActionForm class, which is designed to handle input
from an HTML form, validate the input, and redisplay the form to the user for cor-
rection (when needed), along with any corresponding prompts or messages.

 ActionForms are just JavaBeans with a couple of standard methods to manage
the validation and revision cycle. Struts automatically matches the JavaBean prop-
erties with the attributes of the HTML controls. The developer defines the Action-
Form class. Struts does the rest.

 This class will automatically populate the username field from a form with an
HTML form element of the same name, as shown here:

 public final class LogonForm extends ActionForm {
 private String username = null;
 public String getUsername() {
 return (this.username);
 }
 public void setUsername(String username) {
 this.username = username;
 }
 }

34 CHAPTER 2

Exploring the Struts architecture
Other properties would be added for each field of the form. This lets other com-
ponents get what they need from a standard JavaBean, so everyone does not have
to sift through an HTTP request.

 The ActionForm classes are created using normal Java classes. The Struts con-
figuration refers to the ActionForm classes through a set of descriptors: the
<form-beans> and <form-bean> elements. The <form-bean> elements are descrip-
tors that the framework uses to identify and instantiate the ActionForm objects, as
shown here:

<form-bean
 name="articleForm"
 type="org.apache.artimus.struts.Form"/>

The Struts configuration lists the ActionForm beans it uses and gives the Action-
Form classes a logical name to use within the application.

1.0 vs 1.1 In Struts 1.1 the ActionForm can also use a Map (java.util.Map) to
store the attribute names rather than define individual properties. A new
type of JavaBean, the DynaBean, can also be used with Struts 1.1 and later.
You can specify the properties for a DynaActionForm by using an XML el-
ement. In effect, this does let you define ActionForms in the Struts con-
figuration file.

For more about ActionForms, see chapter 5.

Custom actions
An HTML form uses an action parameter to tell the browser where to send the
form’s data. The Struts framework supplies a corresponding Action class to receive
such data. The framework automatically creates, populates, validates, and finally
passes the appropriate ActionForm to the Action object. The Action can then get
the data it needs directly from the ActionForm bean. Here’s an example:

public final class LogonAction extends Action {
 public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 MyForm myForm = (MyForm) form;
 // ...
 return mapping.findForward("continue");
 }
}

Why we need Struts 35
An Action concludes by returning an ActionForward object to the controller. This
allows the Action to choose a definition using logical names, like continue or can-
cel, rather than system paths.

 To ensure extensibility, the controller also passes the current request and
response object. In practice, an Action can do anything a Java Servlet can do.

1.0 vs 1.1 In Struts 1.1 a new execute method is preferred over the perform
method shown in our example. The perform method is deprecated but
supported for backward compatibility. The execute method signature al-
lows for better exception handling. The new ExceptionHandler is cov-
ered in chapter 9.

For more about Action objects, see chapter 8.
 In addition to the ActionForward, ActionForm, and Action objects, the Struts

controller layer provides several other specialized components, including Action-
Mappings and the ActionServlet. Struts also supports localizing your application
from the controller layer.

ActionMappings
In a web application, every resource must be referred to through a Uniform
Resource Identifier (URI). This includes HTML pages, JSP pages, and any custom
actions. To give the custom Actions a URI, or path, the Struts framework provides
an ActionMapping object. Like the ActionForwards and ActionForms, the map-
pings are usually defined in the XML configuration file:

<action-mappings>
 <action
 path="/logonSubmit"
 type="app.LogonAction"
 name="logonForm"
 scope="request"
 validate="true"
 input="/pages/logon.jsp"/>
</action-mappings>

This also allows the same Action object to be used by different mappings. For
example, one mapping may require validation; another may not.

 For more about ActionMappings, see chapter 7.

36 CHAPTER 2

Exploring the Struts architecture
ActionServlet
The Struts ActionServlet works quietly behind the scenes, binding the other compo-
nents together. Although it can be subclassed, most Struts 1.0 developers treat the
ActionServlet as a blackbox: they configure it and leave it alone. For more about
configuring Struts, see chapter 4.

 In Struts 1.1, the ActionServlet is easier to extend. Chapter 9 covers the new
extension points and configuration options for the Struts 1.1 ActionServlet.

Localization
Web applications also interact with users through prompts and messages. The
Struts components have localization features built in so that applications can be
written for an international audience. We refer to the localization features
throughout the book. A general overview is provided in chapter 13.

2.2.4 Developing a web application with Struts

To build a web application with Struts, developers will define the hyperlinks they
need as ActionForwards, the HTML forms they need as ActionForms, and what-
ever custom server-side actions they need as Action classes.

 Developers who need to access EJBs or JDBC databases can do so by way of the
Action object. This way, the presentation page does not need to interact with the
Model layer.

 The Struts Action object will collect whatever data a View may need and then
forward it to the presentation page. Struts provides a JSP tag library for use with
JSP pages that simplifies writing HTML forms and accessing other data that an
Action may forward. Other presentation devices, such as Velocity templates, can
also access the Struts framework to create dynamic web pages. This process is
shown in figure 2.3.

For more about using various data systems with Struts, see chapter 14. See chap-
ters 10 and 11 to learn more about creating presentation pages with Struts.

 Before moving deeper into the Struts architecture, let’s take a look at the
issues faced by a web application framework that the architecture must address.

JavaServer page
Format data
for display

Collect
data

JSP tags Action object

Figure 2.3 Delivering data back to the view

Why we need frameworks 37
2.3 Why we need frameworks

In chapter 1, we introduced application frameworks and briefly discussed why
frameworks are important. But to really understand a solution, you need to appre-
ciate the problem. Developing for the web, while rewarding, brings its own set of
challenges. Let’s take a quick look at what makes web development so challenging.

2.3.1 The Web—a never-ending kluge

Web developers are hampered by a double web whammy. First, we are expected to
use web browsers for clients. Second, we must use the web protocol to
communicate.

 Web browsers communicate via Hypertext Transmission Protocol (HTTP) and
display pages created with Hypertext Markup Language (HTML). A web browser
sends out the HTTP request and renders the HTML it receives in response. This is
an excellent platform for serving prewritten pages that rarely change. But most of
us are writing dynamic applications with pages that are customized for each user.
While there are some handy “hooks” for dynamic features, web applications go
against the HTTP/HTML grain.

 As shown in table 2.1, restrictions imposed by the web protocol and the web
clients predetermine how web applications can be written.

Table 2.1 Difficulties web applications face and web application frameworks must address

Restrictions imposed by… Result in these difficulties…

The protocol By default, HTTP will accept a connection from any client on the network.
Changing this behavior varies from server to server.

Primarily, HTTP transfers data using simple text fields. Transferring binary
data requires use of a complicated extension to the protocol.

HTTP is sessionless and requires extra effort to track people using the
application.

HTTP is trusting and expects that clients will provide accurate information.

The clients Browsers are separate applications outside the application’s direct control.

All browsers are not equal and support different subsets of the official
standards.

Input from a browser may be incorrect or incomplete. Input may even be
hostile and contrived to harm the application.

38 CHAPTER 2

Exploring the Struts architecture
Sadly, the situation is not going to change any time soon. Web developers must see
these shortcomings as challenges to overcome. Since there are so many obstacles
to writing robust web applications, using a framework is vital, lest your application
become an endless series of workarounds and kluges.

 The challenges we face when developing web applications are great. But so are
the rewards. The duo of the HTTP protocol and the HTML client makes web appli-
cations accessible to people the world over. No other platform has ever been able
to make that claim.

2.3.2 The servlet solution

As mentioned in chapter 1, the Java Servlet platform [Sun, JST] acts like a base
framework to provide Java web applications with a number of important capabili-
ties. The servlet class provides a base interface for handling HTTP requests and
the ensuing response. It builds on HTTP to provide a “session” context to help
track users in the application. It provides other contexts to help applications pass
data to the browsers or to other servlets in the application. Java web applications
also have uniform access to basic security features that would otherwise be man-
aged differently by different HTTP servers.

 To put this all together, the servlet specification describes a container to manage
the servlets. The container may also provide other services, such as a handler for
JSPs. A servlet container can include its own web server or simply act as an adjunct
to an existing web server.

 For database access, Java applications have another common framework at
their disposal: JDBC. Developers can write to a standard SQL interface while an
adapter takes care of the hoary details. This makes it easier to change database
vendors without rewriting the source code.

 For high-performance applications that access database systems on remote
servers, web developers can use the Enterprise JavaBean platform. Most Java appli-
cation frameworks, including Struts, can be used with EJBs when they are needed.

The standard web formatting language, HTML, cannot construct many of
the interface elements found in desktop environments.

Creating HTML controls with default data is an exercise left to the
application.

Table 2.1 Difficulties web applications face and web application frameworks must address (continued)

Restrictions imposed by… Result in these difficulties…

Why we need frameworks 39
 Overall, this makes web applications based on Java servlets very portable and
relatively easy to write and maintain. Servlets and JSPs have made a real differ-
ence in the way we write applications. Java web application frameworks like Struts
build on the servlet platform and try to provide developers with a seamless,
kluge-free environment.

2.3.3 Servlet frameworks

Most, if not all, Java web frameworks use the Sun Servlet platform as a foundation.
These frameworks bundle one or more prewritten servlets that you can plug into
your application. A framework will also include a hierarchy of classes that you can
implement or extend within your own application.

 In general, the focus of a web application framework is to help get the data you
need out of a browser and into a programming structure, where your application
can use it—or out of a programming structure and into a browser, where your
user can see it.

 Some frameworks, such as Turbine [ASF, Turbine], also provide helper classes
for working with JDBC databases. Other frameworks, like Struts, are model-
neutral. They don’t hinder database access but neither do they help. Even other
frameworks, like dbForms [dbForms], specialize in database access and leave
other tasks as an exercise for the developer (or to another framework, like Struts).

Common framework strategies
As shown in figure 2.4, Java web application frameworks use several common tech-
niques to help make products easier to design, write, and maintain, including:

External configuration files. Provide implementation details that developers do
not want to embed in their source code.

A central controller. Provides a way to funnel the HTTP requests into a more easily
managed queue. This design is sometimes referred to as a Front Controller [Go3].

External presentation systems. Let different people work on different parts of the
application at the same time. For example, Java engineers can be working on
classes related to the central controller, while page designers work with the JSPs.
Aside from JSPs, other presentation systems, like Velocity Templates or XLST, can
be used with Struts.

Frameworks often have more components, but most share these hallmarks. These
common strategies are rooted in the programming paradigms expounded in
books like Design Patterns [Go4] and Core J2EE Patterns [Go3]. Many developers are

40 CHAPTER 2

Exploring the Struts architecture
comfortable discussing and using these patterns but may not be up to the task of
implementing them for the first time in a web environment.

 They make it easy to do the Right Thing and build your application using
proven design patterns, like Model-View-Controller (see section 2.2). The benefit
of using patterns when developing desktop applications is well known, but
deploying these same patterns in a web environment is still unfamiliar ground
for most developers.

2.3.4 The whitebox-blackbox continuum

Frameworks are sometimes categorized into a continuum with poles labeled white-
box and blackbox [Fayad]. Whitebox frameworks rely heavily on object-oriented
language features such as inheritance and dynamic binding. Blackbox frame-
works tend to define interfaces for pluggable components and then provide base
starter components based on those interfaces. The interface and base compo-
nents will often provide hotspot methods that can be used as is or overridden to
provide special behavior.

DEFINITION Also called flexible points or extension points, hotspots are locations where
code may be added to customize a framework. Hotspots (the hotspot sub-
system) describe the different characteristics of each application that can
be supported by the framework. In essence, they represent the problems
that a framework solves. Many object-orientated frameworks consist of a
kernel subsystem and a hotspot subsystem. [Braga, et al]

Like many real-life frameworks, Struts uses a mix of whitebox and blackbox tech-
niques. But overall, the framework would be placed toward the blackbox end of
the continuum.

External
configuration files

A central
controller

External presentation
systems

Figure 2.4 Frameworks commonly use a configuration file, a controller, and a presentation system.

Struts, Model 2, and MVC 41

struts_02.fm Page 41 Tuesday, October 29, 2002 11:33 AM
 Blackbox frameworks often rely strongly on design patterns. Struts is no excep-
tion. In fact, design patterns are often used to provide higher-level descriptions of
frameworks [Johnson]. In keeping with this trend, let’s introduce the design pat-
terns and show how they are used within the Struts framework.

 For more about Struts and design patterns, see appendix A.

2.4 Struts, Model 2, and MVC

One of the first things Struts says about itself is that the framework:

…encourages application architectures based on the Model 2
approach, a variation of the classic Model-View-Controller (MVC)

design paradigm.

This statement reassures some web developers but befuddles others who have not
been introduced to the mysteries of Model 2 or MVC. It can in fact be very difficult
to understand much of the Struts literature without a thorough grounding in
MVC and Sun’s Model 2.

 To be sure we are all on the same page, sections 2.4.1 and 2.4.2 are MVC and
Model 2 primers. Then in section 2.4.3, we look at how Struts implements these
classic patterns.

2.4.1 The evolution of MVC

As you will recall from section 2.1, originally, Model/View/Controller was a
framework for building Smalltalk applications. The framework supported a triad
of classes representing the application state,
the screen presentation, and control flow—
which it termed the Model, View, and Control-
ler. See figure 2.5.

 The Smalltalk MVC framework is used as a
case study in a very popular book called Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware [Go4]. The Design Patterns book has four
primary authors, who have come to be known
as the Gang of Four. For more about design
patterns, see appendix A.

 The MVC example in Design Patterns extols its use of the notify/subscribe proto-
col and the Observer pattern. The essentials of the example are that a system
needs to display several different views of the same data, such as a bar chart, pie

ControllerView

Model

Figure 2.5 The Smalltalk MVC triad
of classes

42 CHAPTER 2

Exploring the Struts architecture
chart, and spreadsheet. This is an excellent justification for compartmentalizing
applications, and the example has been often repeated.

 In the example shown in figure 2.6, each of the views could be displayed to dif-
ferent users at the same time. The application must keep the views updated when-
ever the underlying data, or Model, changes. To update the Model, users submit a
request to the Controller, which coordinates the change with the Model. The
views of the data must then be updated to reflect the latest state of the Model.

 The Smalltalk MVC solution is to use an Observer notification pattern. In this
pattern, each View registers as an observer of the Model’s data. The Model can then
notify the Views of changes by sending a message to all its registered observers.

 Others have since generalized the Smalltalk MVC framework into the Model-
View-Controller architectural paradigm, which can be applied to the construction
of applications on any platform.

2.4.2 The rise of Model 2

JavaServer Pages are intended make dynamic web pages easier to write. JSPs were
first introduced as an alternative to servlets, as well as to Microsoft’s Active Server
Pages. Developers were offered the power of servlets as easy-to-create server pages.

 But with great power comes great responsibility. Many teams found that if they
were not careful, a project could easily collapse under the weight of hopelessly
intertwined pages. Advanced features required the use of complex scriptlets. But

data

a

50
60
35

20
10
25

30
30
40

x
y

z

b c

bar chart

0

50

100

60 10 30

a b c

pie chart

a

b

c

Figure 2.6 The Model data can be used in several different views.

Struts, Model 2, and MVC 43

struts_02.fm Page 43 Tuesday, October 29, 2002 12:45 PM
scriptlets are difficult to reuse—unless you’re pasting the code from page to page.
Utility pages can be included, but they are difficult to keep organized and make
for some very ugly “source” trees. Something was wrong with this picture.

 Many developers soon realized that JSPs and servlets could be used together to
deploy web applications. The servlets could cope with the control flow; the JSPs
could focus on the nasty task of writing HTML. In due course, using JSPs and servlets
together became known as Model 2 (using JSPs alone was referred to as Model 1).

 Of course, there is nothing new under the Sun... and many have been quick to
point out that JSP’s Model 2 resembles the classic Model-View-Controller architec-
ture. In some circles, it is now commonplace to use the terms Model 2 and MVC
interchangeably, although some dispute whether an application can be MVC and
not support the classic Observer notification pattern. Model-View-Controller with-
out the notification pattern is sometimes called MVC2 or Web MVC.

2.4.3 Application layers—decoupling the view

One reason Model 2 is held to be distinct from MVC is that the Observer notifica-
tion pattern doesn’t work well in a web environment. HTTP is a “pull” protocol: the
client requests and the server responds. No request, no response. The Observer
pattern requires a push protocol for notification, so the server can push a message
to the client when the model changes. While there are ways to simulate pushing
data to a web client, they go against the grain and could be considered a kluge.

 Figure 2.7 shows the Model-View-Controller paradigm as it is most commonly
depicted: a triangle of three interconnected components. It can be difficult for a
web application to maintain the “change notification” portion of this diagram.
This sort of thing works well when all the resources are on the same server and the
clients have an open connection with that server. It does not work so well when
resources are distributed over several servers and clients do not maintain an open
connection with the application.

 Many architects of distributed systems, including web applications, wince at the
idea of the view making a state query. Most often, remote applications are designed
around the Layers pattern [POSA]. Essentially, the Layers pattern says that classes
may interact with classes in their own layer or classes in an adjacent layer. In a com-
plex application, this keeps dependencies from growing exponentially as compo-
nents are added. Layering is a core pattern in the design of remote applications.

 From an MVC context, introducing the Layers pattern puts the responsibility
for both state changes and state queries onto the Controller along with any
change notifications.

44 CHAPTER 2

Exploring the Struts architecture

struts_02.fm Page 44 Tuesday, October 29, 2002 1:37 PM
As shown in figure 2.8, layered web applications use a “flatter” design than con-
ventional MVC. The controller is sandwiched between the presentation layer
(View) and the application logic (Model).

The major responsibilities of each component are unchanged. The flow changes
slightly in that any state query or change notification must pass through the Con-
troller. Another difference is that when the View, or presentation layer, renders
dynamic content, it uses data passed by the Controller rather than data returned
directly by the Model. This change decouples the View from the Model, allowing
the Controller to select both the data and View that displays the data.

2.4.4 How Struts implements Model 2, MVC, and layers

Struts implements Sun’s Model 2 architecture by providing a controller servlet
that can be used to manage the flow between JSP pages and other presentation

Controller

State change

View View selection

User actions

yreuq etatS
Model

noitacifiton egnahC

Method invocationsEvents

Figure 2.7
MVC is usually represented as
three interconnected components.

Back-end
resources

Database
Application

logic
Control

layer
Presentation

layer

Figure 2.8 Web application layers

Struts, Model 2, and MVC 45
layer devices. Struts implements the MVC/Layers pattern through the use of
ActionForwards and ActionMappings to keep control-flow decisions out of the
presentation layer. The JSPs can refer to logical destinations. The Controller com-
ponents provide the actual URIs at runtime.

 Table 2.2 maps the Struts core classes to the classic responsibilities of MVC
components.

In addition to these core classes, Struts uses a number of configuration files and
view helpers to bridge the gap between the Controller and the Model. Table 2.3
lists the Struts configuration files and describes their role in the architecture.

To expose the data in the Struts configuration to the view, the framework provides
a number of helpers in the form of JSP tags, shown in table 2.4.

Table 2.2 Core Struts classes as they relate to MVC

Class Description

ActionForward A user gesture or view selection

ActionForm The data for a state change

ActionMapping The state change event

ActionServlet The part of the Controller that receives user gestures and state
changes and issues view selections

Action classes The part of the Controller that interacts with the model to execute a
state change or query and advises the ActionServlet of the next
view to select

Table 2.3 Struts configuration files

File Purpose

ApplicationResources.properties Stores localized messages and labels so that your application
can be internationalized

struts-config.xml Stores the default configuration for the controller objects, which
includes the user gestures, state changes, and state queries
supported by your model

46 CHAPTER 2

Exploring the Struts architecture
Putting this all together, table 2.5 indexes the Struts components by layer.

Note that in accord with the Layers pattern (see section 2.4.3), the components
should interact only with other components in their column or the adjacent col-
umn. To wit, the Model components should not interact directly with the View
components.

 In practice, the Controller and the View interact through the request, session,
and application contexts provided by the servlet platform (see section 2.3.2). The
Controller and Model interact through the file and memory system (in the case of
loading XML documents or Properties files) or through other services, like TCP, to
create a connection with a JDBC database.

2.5 Struts control flow

Since web applications are dynamic, it’s difficult to represent the “One True Con-
trol Flow.” Depending on the circumstances, a lot of different things can happen
in different ways—especially in web applications. But there is still a general order
to things that we can review here.

Table 2.4 Struts view helpers

Tag Library Descriptor Purpose

struts-html.tld JSP tag extension for HTML forms

struts-bean.tld JSP tag extension for handling JavaBeans

struts-logic.tld JSP tag extension for testing the values of properties

Table 2.5 Struts components indexed by layer

View layer Controller layer Model layer

JSP tag extensions ActionForwards
ActionForm classes
ActionMappings
ActionServlet
Action classes
ActionErrors
MessageResources

GenericDataSource

JavaServer Pages, Velocity tem-
plates, and other presentation
vehicles provided by the devel-
oper

Various utility classes, such as
the Commons-Digester and Com-
mons-BeanUtils

Other data services and APIs
provided by the developer

Struts control flow 47
 If you are new to Struts, or application frameworks, or even web applications,
this process may seem hard to follow at first. The various problems it is trying to
solve may not be evident. We’ll be covering those in detail throughout the book.
Here, we try to take a look at the forest before introducing the trees. As you read
through the book, we recommend that you revisit this section occasionally to see
how the pieces fit into the big picture.

2.5.1 The big picture

Figure 2.9 lays out the Struts request-response process in a visual sequence. Let’s
walk through a description of the request-response. The numbers in parentheses
refer to figure 2.9 where appropriate:

� A client requests a path that matches the Action URI pattern (1).

� The container passes the request to the ActionServlet.

� If this is a modular application, the ActionServlet selects the appropriate
module.

� The ActionServlet looks up the mapping for the path.

� If the mapping specifies a form bean, the ActionServlet sees if there is one
already or creates one (1.1).

� If a form bean is in play, the ActionServlet resets and populates it from the
HTTP request.

� If the mapping has the validate property set to true, it calls validate on
the form bean (1.2).

� If it fails, the servlet forwards to the path specified by the input property
and this control flow ends.

� If the mapping specifies an Action type, it is reused if it already exists or
instantiated (1.3).

� The Action’s perform or execute method is called and passed the instanti-
ated form bean (or null).

� The Action may populate the form bean, call business objects, and do what-
ever else is needed (1.3.1-1.3.4).

� The Action returns an ActionForward to the ActionServlet (1.3.5).

� If the ActionForward is to another Action URI, we begin again; otherwise,
it’s off to a display page or some other resource. Most often, it is a JSP, in
which case Jasper, or the equivalent (not Struts), renders the page (2, 3).

48 CHAPTER 2

Exploring the Struts architecture
� If the JSP uses Struts HTML tags, and they see the right ActionForm in the
request (1.1), they populate their controls from the ActionForm. Other-
wise, the <html:form> tag creates one. Since Struts 1.1, the form tag also
calls reset on the ActionForm if it creates the object itself.

If you just need to create a blank form (1.1), you can use a standard ForwardAction
(see chapter 8) to pass control through an Action and then out to the page.

2.5.2 The finer details

The devil, as they say, is in the details. The synopsis and diagram in the prior sec-
tions do a good job of outlining the big picture but omit important details. Let’s
drill down now and visit the finer points. Since this is HTTP, everything starts with
an incoming request.

Figure 2.9 The Struts Request-Response process. UML by Jean-Michel Garnier.

Struts control flow 49
Request is received by our container
The backbone component of the Struts framework is the ActionServlet. Like all
servlets, it lives in a container, such as Tomcat, Resin, or WebLogic. When the con-
tainer boots, it reads a deployment descriptor (web.xml) that tells it which servlets
to load.

 One of the standard servlet settings is the servlet mapping. The container uses
this setting to decide which requests are sent to which servlet:

<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>/do/*</url-pattern>

</servlet-mapping>

Here, we have asked the container to give our ActionServlet any request that
matches the pattern /do/*. That would include /do/This or /do/That and /do/
something/Whatever.

 Many applications like to use suffix mapping instead:

 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

This URL pattern would likewise match this.do or that.do or /something/what-
ever.do. Any valid extension or prefix can be used; .do is simply a popular choice.
When a request comes in with a path component that matches our servlet con-
text, the container forwards it to our ActionServlet. Requests that don’t match our
pattern are not sent to the ActionServlet. A request matching *.jsp, for example,
would be forwarded to the container’s JSP service, such as Jasper if you are using
Tomcat or WebSphere. There may be other servlets in your applications that han-
dle other patterns. Any pattern that doesn’t match a servlet mapping is sent to the
container’s default web server.

Request is received by our ActionServlet
When our ActionServlet receives a request, it runs the request through a gauntlet
that processes the locale, mapping, form bean, and finally the Action. Some of
these steps apply only to Struts 1.1 applications:

Process MultipartRequest. If this is a multipart request (a form with a Multipur-
pose Internet Mail Extension [MIME] attachment), the servlet wraps the request
with a special handler, to avoid errors later in the process.

50 CHAPTER 2

Exploring the Struts architecture
Process Path. The ActionServlet checks to see if this path is for an application
module. If so the configuration for the appropriate module is selected. [Struts 1.1]

Process Locale. By default, the ActionServlet will check to see if there is a stan-
dard locale object in the user’s session. If there is no locale object, the ActionServ-
let will put one there. This object can be used to provide a localized presentation
for each user.

Process Content and NoCache. The default MIME type and optional request head-
ers are added to the response.

Process Mapping. The ActionServlet checks the ActionMappings for a mapping
keyed to a path that matches the one we are processing. If one is not found, the
ActionServlet forwards to the default (or “unknown”) Action, if one has been set,
or generates a “bad request” error. If the mapping is found, it is placed into the
request for future reference.

Process Roles. The ActionServlet checks to see if the user is authorized to access
this action. [Struts 1.1]

Process ActionForm. The ActionServlet checks whether the mapping specifies an
ActionForm. If it does, the servlet checks to see if one already exists in the specified
scope. (The default is session.) If one does not exist, the ActionServlet creates one.

Process Populate. The ActionForm’s reset method is called, and then it is auto-
populated via reflection. Parameters that match the ActionForm’s properties are
applied. Other parameters and properties are ignored.

Process Validate. The ActionForm’s validate method is called. If the method
returns false, control is passed to the input property specified on the mapping,
and the Action is not processed.

Process Forward or Include. If the ActionMapping specifies the forward or
include attribute, control is transferred to another resource. Otherwise, the
ActionServlet delegates the request to an Action object.

Process Action. If the mapping specifies an Action type, the servlet checks to see
if one has already been instantiated. If it doesn’t find one, the Action object is
instantiated. There is only one Action object per class (the Singleton pattern),
which handles all the requests for that Action through multithreading. The serv-
let calls the Action’s perform or execute method, passing the request, response,
mapping, and any form bean.

Struts control flow 51
The Action executes whatever behavior is required, which may include:

� Accessing a data system, such as a JDBC database

� Creating objects in the request to be used by the view

� Creating objects in the user session, if required

� Updating session objects, such as the user’s locale, as needed

� Performing any other business function required by the application

� Handling exceptions and other error conditions

� Sending a direct response or (most often) returning an ActionForward to
the servlet

Some of this behavior, like accessing a database, is often handled by a business
object that is invoked by the Action (the Business Delegate pattern). The Action is
there to handle any web-specific tasks, but any code that can be placed in a busi-
ness object should be placed in a business object. The Action is a Controller class
and should not be used to handle your application’s core business logic.

The Action returns an ActionForward
When the Action completes, it returns an ActionForward. If the ActionForward is
null, the ActionServlet assumes the response has been generated and does noth-
ing. Otherwise, the ActionServlet reads the ActionForward and either redirects or
forwards the request as appropriate.

 If the request is another Action URI, the container will return the request to
the ActionServlet. Otherwise, the container sends the request to another servlet
or service.

 If the ActionForward is set for redirect, the request is sent back to the client
with instructions to submit a new request to the specified location.

Jasper (or equivalent) renders a JavaServer Page
When the ActionServlet sends a request to a JSP, the request is handled by another
service, such as Jasper. Typically, the Struts and other tag extensions are used to
write the dynamic portions of the page. Sometimes a JSP template may be used so
that the page is built up from other components.

 Most often, the dynamic data is passed to the page in the request context in a
JavaBean. This is known as the View Helper pattern [Go3]. The tag extensions sim-
ply call methods on the JavaBeans that return the formatted data. How data is
positioned on a page is considered part of the presentation logic. The format of
the data itself is usually part of the business logic, so it’s delegated to the bean.

52 CHAPTER 2

Exploring the Struts architecture
 The Struts tags may also access view helpers provided by the framework. These
include localized labels and prompts, error messages, and hyperlink paths. In
addition, Struts tags can evaluate expressions, iterate through lists, and populate
the controls in an HTML form.

Another servlet renders the response
After processing an Action, the request can be sent to any other servlet or service
in the application. Other presentation systems, such as Velocity templates, can
access framework resources through the servlet contexts.

2.5.3 Is Struts performant?

After a detailed description of the Struts process, you might wonder how long all
this is going to take. In general, Struts should improve the performance of most
properly designed web applications. In this section, we examine a few specific
design points that contribute to the framework’s efficiency.

DEFINITION Performant is a French word meaning efficient. Software engineers often
use the word performant to describe a process or device that performs well
in practice.

Struts is not only thread-safe but thread-dependent. A lightweight Action object, rather
than an individual servlet, handles the response to a request. Struts instantiates
each Action class once and allows other requests to be threaded through the origi-
nal object. This core strategy conserves resources and provides the best possible
throughput. A properly designed application will exploit this further by routing
related operations through a single Action.

ActionForm beans minimize subclass code and shorten subclass hierarchies. A key point
in the Struts framework is automatically populating any ActionForm bean from
any request. Without this component, custom code may have to be written and
instantiated to populate each class of bean. The careful use of reflection saves
resources, which are always finite, allowing them to be put to better use.

The Struts tag libraries provide general-purpose functionality. The bean and logic taglibs
bundled with Struts can meet most JSP tag needs. They reduce or even eliminate
the need to write and instantiate additional tags. The JSP specification includes
tag reuse within a JSP. Using the same general-purpose tag three times is more
performant than using three different tags.

The strengths and weaknesses of Struts 53
The Struts components are reusable by the application. Utilities bundled with the frame-
work have uses throughout most applications. The BeanUtil.populate method
is a good example. This method is used to populate form beans from an HTTP
request but can also be used to populate any bean from any type of map. Reusing
components reduces overhead and conserves resources.

The Struts localization strategies reduce the need for redundant JSPs. By allowing local-
ized messages to be retrieved at runtime, internationalized applications can pro-
vide a single page where one page for each language would otherwise be needed.
Meanwhile, the same messaging system is also used to handle error messages, pro-
viding dual use of the same objects.

Struts is designed with an open architecture. Struts components are designed so that
they can be subclassed by an application to provide additional functionality. This
allows developers to extend existing classes rather than add the overhead of creat-
ing and integrating new classes. Also, Struts shares its resources with the applica-
tion. This allows developers to leverage existing components, so they do not have
to write and instantiate their own.

Struts is lightweight. Similar frameworks may provide hundreds of classes or tags
and dozens of packages. The entire Struts framework is made up of five tag librar-
ies and five core packages.

Struts is standards compliant. Many containers are designed to perform best when
using standard components—JSPs and JavaBeans, for example.

Struts is open source and well documented. This means developers can easily exam-
ine the code to identify and resolve any potential bottlenecks.

Struts is model neutral. Since Struts does not make any assumptions about the
backend model, an application can implement the Model layer in the most effi-
cient way possible. Struts Actions can call a set of helper classes to access needed
data. Once the data is retrieved, Struts’ reliance on JavaBeans makes it easy to
retain value objects and reduce the number of calls to the Model layer.

2.6 The strengths and weaknesses of Struts

Like any complex system, Struts is a package deal. It has both its strengths and its
weaknesses. Some of these points will be subjective but hopefully still instructive.

54 CHAPTER 2

Exploring the Struts architecture
2.6.1 The weak points

As much as we love Struts, it’s important that we see the framework for what it is,
warts and all. Several similar weak points were cured by the Struts 1.1 release.
Table 2.6 lists Struts 1.0 weaknesses that were addressed by Struts 1.1. If you had
looked at Struts before, and any of these were showstoppers, Struts may now better
meet your needs. Table 2.7 examines some of the framework’s current weak points.

 In the next section, you may notice that we shamelessly turn many of these
points around and describe them as assets instead. “Goofus” or “Gallant,” the
choice is yours.

Table 2.6 Struts 1.0 weaknesses addressed by Struts 1.1

Weak point Remarks

Logging Struts uses the container’s default logging system and does not provide a
ready mechanism for applications to provide their own logging package.
(Struts 1.1 implements the Commons-Logging interface package.)

Loads a single configura-
tion file per application

Larger projects need to use multiple configuration files that do not need to
be shared by the entire team. (Struts 1.1 supports multiple configuration
files.)

Loads a single resource
file per locale

Larger projects need to use multiple resource files that do not need to be
shared by the entire team. (Struts 1.1 supports multiple resource files.)

No service manager ActionServlets must be subclassed to be extended with additional services,
such as a custom logger or authentication system. (Struts 1.1 offers sev-
eral new extension points and components.)

ActionForm red tape Struts 1.0 expects developers to create custom JavaBeans for use with
HTML input forms. (Struts 1.1 supports Maps and DynaBeans in place of
custom JavaBeans.)

Table 2.7 Struts 1.1 weaknesses

Weak point Remarks

No event model Struts is tightly coupled with the request-response model used by HTTP.
This can be restricting to developers used to finely grained events.

Debugging There is no support for automatic debugging. Developers have to resort to
creating manual “breakpoints” by writing to standard out or the container’s
log.

No default data model or
concrete recommenda-
tions

Access to a persistent data model is left entirely as an exercise for the
developer.

Single ActionServlet Only one ActionServlet can be used in a single application. This restriction
can lead to configuration conflicts.

The strengths and weaknesses of Struts 55
Requires understanding of
Struts components

To work in Struts, a developer needs to understand several special classes
and how they interact.

Vendor does not offer pri-
ority support

The Apache Software Foundation is an all-volunteer organization without a
paid staff that can provide a guaranteed response.

Mailing list is a embar-
rassment of riches

Struts has already outgrown its mailing list. It can be difficult to find the
best advice among the many daily posts.

Formal releases are not
rapid

The Struts formal releases have been relatively slow compared to some
other projects. Developers must often use the “nightly build” to use the lat-
est improvements. There is also no set schedule for releases.

i18n limitations The Struts message resources are quite good at internationalizing labels
and error messages but are not appropriate for managing larger blocks of
text.

JSP mindset While its use of a Model-View-Controller architecture can make its
resources available to any presentation system, there is a longstanding
Struts predisposition to JSP.

JSP exception localization Many system-level messages, like the JSP exceptions, are not localized
and always display in English.

Tag properties are verbose The Struts tag extensions can require several parameters and can be
clumsy to program.

The perform and exe-
cute signatures

The key to the Struts architecture is delegating a request to an Action
class or dispatcher. The Action class is the only dispatcher supported by
Struts and is invoked only through its perform method. This locks an
application into working with the data passed by the perform signature.
While there are ways to work around this restriction, the perform signa-
ture is still an architectural bottleneck. One common request is for the
ActionServlet to populate more than one ActionForm. But since perform
accepts a single ActionForm parameter, permitting this is not feasible with-
out a significant architectural change.
Struts 1.1 adds an alternate execute signature, which helps with the
other major stumbling block with perform: the exceptions it returns. How-
ever, the other consequences remain.

Table 2.7 Struts 1.1 weaknesses (continued)

Weak point Remarks

56 CHAPTER 2

Exploring the Struts architecture
2.6.2 Struts’ strong points

As mentioned, many of Struts’ strong points outlined in table 2.8 are the flip side
of the weaknesses found in tables 2.6 and 2.7. One developer’s treasure…

Fuzzy nomenclature The Struts framework “grew in the telling.” The names given to some of
the application options and classes can be confusing. For example, the
“validate” option in web.xml is not related to the Action validate method
but to how the configuration file is parsed. Likewise, the mysterious “null”
option refers to whether an error message is returned when a message key
is not found.

There is also a tendency toward compound names in the class hierarchy.
Every class in the action package is prefixed “Action,” which is redundant
and confusing. Meanwhile, in the Struts configuration, the element name
for ActionMapping definition is “Action” rather than “ActionMapping.” If
developers refer to “an action,” it’s hard to tell if they mean the Action
class or the ActionMapping that configures the class.

In the Struts config, a “name” field identifies ActionForwards and Action-
Forms. A “path” field identifies ActionMappings. The “name” property in an
action-mapping element refers to which ActionForm to use. The URI field
for an ActionForward is also named “path” but may also include a query
component along with the path. The “path” to an ActionMapping does not
include the servlet pattern, like *.do, but the ActionForward path does
include the *.do extension. The Application Resources are really the Mes-
sage Resources. And so forth. While not showstoppers, these little incon-
sistencies do confuse new developers and make the framework harder to
learn.

Table 2.7 Struts 1.1 weaknesses (continued)

Weak point Remarks

Table 2.8 Struts’ strengths

Strength Remarks

HTTP-centric Struts is designed around the standard HTTP request-response
model, familiar to many web developers.

Standard logging Struts can use the container’s default logging system and does not
require another package to be configured or understood.

Optional debug logging Struts optionally logs a number of status messages during process-
ing that can be helpful in debugging.

Model neutral Struts is not predisposed to any particular persistence layer.

Collects implementation detail
in a centralized configuration

The Struts configuration encapsulates the implementation detail for
an application, or application module [Struts 1.1], so it can be
reviewed and managed as a whole.

The strengths and weaknesses of Struts 57
Permits a different message
resources file for each locale

Different translators can work on their own copy of the message
resource file. Adding support for a new locale is simply a matter of
adding another message resource file.

Lightweight Struts has relatively few core classes for developers to learn.

Open source Full source code is provided under the liberal Apache Software
License, leaving all your options open.

Strong developer community There is a strong development community behind Struts. The mailing
is very active. Many developer extensions are available.

Strong vendor community Struts is incorporated by several other products, including Jcorpo-
rate’s Expresso and IBM’s WebSphere. Struts-specific tools are also
available from several vendors.

Strong product support Struts has its own professionally managed JGuru forum. The Struts
mailing list is available through at least two other support portals.
Struts has been covered in dozens of articles and several books, and
has been addressed at professional seminars by several organiza-
tions.

Strong development team Over 30 developers contributed to Struts 1.1. The Struts team is cur-
rently composed of nine active Committers, who share full responsi-
bility for the source code.

Stable releases The Struts formal releases follow a long testing period with no set
deadline, so teams can be assured of a high-quality product.

i18n support Support for localization is built into Struts from the ground up.

High compliance/mainstream
mindset

Struts is dedicated to providing a product that is 100 percent compli-
ant with public standards and that is in line with the development
mainstream.

Full-service tag extensions Struts includes a set of general-purpose tag extensions in addition to
those that use framework-specific resources. Together, they can meet
all of your JSP needs, without you having to resort to scriptlets.

Well-documented source code The Struts JavaDocs are so detailed that you rarely, if ever, need to
refer to the source. This is in addition to a high-level user guide to
introduce developers to the framework.

Strongly founded in design pat-
terns

The Struts framework implements several classic patterns in its archi-
tecture that are familiar to most developers.

Extensible All default settings can be configured. The core Struts classes may be
overridden and subclasses loaded in their place. The developer can
customize key classes such as ActionForm and Action.

Table 2.8 Struts’ strengths (continued)

Strength Remarks

58 CHAPTER 2

Exploring the Struts architecture
2.7 Summary

Today’s developers need to build full-featured applications that can be main-
tained over time. Web application frameworks such as Struts solve common prob-
lems, so developers can focus on their application’s unique functionality.
Frameworks are especially important when building web applications since the
way HTTP and HTML work makes creating dynamic applications difficult.

 Struts makes the most of the standard Java servlet API and has even become an
informal compliance test for servlet containers. Struts also builds on the common
design patterns, especially the MVC architectural paradigm. The framework
encourages a “layered” design for applications. This design helps make applica-
tions both robust and scalable.

 A key part of the Struts architecture is the way it extends the flow of the base
HTTP request-response cycle. The Struts controller manages the paths used by
your application, helps to safely collect input from users, and can localize applica-
tion messages—especially error messages.

 Struts is a performant solution. It will not hold your application back and usu-
ally frees resources that can be better used elsewhere.

 Of course, Struts has its flaws. Many of the classnames were hastily chosen dur-
ing development and can be confusing; other areas could also be improved.
Despite any drawback, Struts is easily the most popular web application frame-
work available today.

 In the next chapter, we put Struts back to work and build yet another web
application with it.

3Building a
simple application
This chapter covers
� Creating a simple application
� Extending an application
� Changing an application
� Using JavaServer Pages in an application
59

60 CHAPTER 3

Building a simple application
A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, bal-

ance accounts, build a wall, set a bone, comfort the dying, take
orders, give orders, cooperate, act alone, solve equations, analyze a
new problem, pitch manure, program a computer, cook a tasty meal,

fight efficiently, die gallantly. Specialization is for insects.
—Excerpt from the notebooks of Lazarus Long,

from Robert Heinlein’s Time Enough for Love

3.1 Strut by Strut

Today, teams write many web applications. Using a layered architecture [POSA]
for your application, as described in chapters 1 and 2, can make it easier for team
members to specialize and work on different parts of an application. But it is still
useful for everyone to understand the entire process from beginning to end.
Before getting into the details of how Struts widgets are ratcheted, let’s put
together a simple but useful program from square one. In this chapter, we say
hello to Struts by touring, dissecting, and then constructing an application for log-
ging users in and out.

 While not quite as trivial as the exercise in chapter 1, we will still keep it simple
for now. A practical application is presented in part 4.

 In this chapter, we walk through a classic logon application from a user’s per-
spective. The exercise in chapter 1 compared the passwords entered into a regis-
tration` form. Depending on whether the entries matched, control branched to
one page or another. This application lets you use the accounts created by the
chapter 1 exercise to actually log in. The control flow and page content change
depending on your status.

 After introducing the application, we break it down and zoom in on each com-
ponent. If you have Struts installed on your development machine, you are wel-
come to follow along if you like. But if you are leaning back in your armchair,
sipping cappuccino, that works too.

 Then, with the groundwork laid, we step through constructing the application.
Each piece is presented as you might write it yourself, in the order you might write
it (less much of the tedious rewriting). If you are working at your terminal, you
could enter the source as we go. If not, every detail is presented so you can follow
along from the book alone.

Touring a logon application 61
3.1.1 Why a logon application?

Our sample program allows a user to log in to the application. Once the user has
logged in, the pages change to reflect that the user is now authorized. Typically
this is the first step to a larger application that enables authorized users to do
something interesting. But for our purposes, just logging in a user is enough to
show you how a Struts application actually works.

 As shown in table 3.1, we chose doing just a logon application since the pro-
cess is well understood, simple, self-contained, and needed by most applications.

3.2 Touring a logon application

To begin our tour, we first discuss the scope of the logon application and how you
can follow along. We then look at the screens used by the application and note
how they change after you’ve logged in. After we conclude our nickel tour, we go
back and take a peek under the hood.

3.2.1 Start here

The purpose of our logon application is to give you a look at the nuts and bolts of
a Struts application. To help us stay on track, this application contains only the
components needed to demonstrate the framework. It contains no real business
logic, unit tests, or fancy dialog boxes. Such things are important elements of a
shipping application, but we need to walk before we can run.

 The logon application is also intentionally stark. It contains no HTML chrome
designed to please the eye—just the raw functionality we need to accept a logon.
Of course, your Struts applications can be as pretty as you please.

 If you are interested in running the application on your own machine as we go,
look for the logon application on the book site’s download page [Husted]. This is

Table 3.1 Why we chose a logon application

Reason Explanation

Well understood Most of us have logged in to our share of applications, so the pro-
cess is well understood.

Simple and self-contained A sample application that accepts a user logon can be simple to
write and can also be self-contained. It does not require a compli-
cated model.

Needed by many applications Most of us will eventually need to write an application that uses
some type of logon workflow, so this is code we can use.

62 CHAPTER 3

Building a simple application
packaged as a WAR ready to autodeploy. (See chapter 1 if you don’t know how to
autodeploy a web application.)

 Having the application open is not required but can be interesting at some
points. Everything you need to follow along is printed in the chapter.

 First, let’s tour the screens from the user’s viewpoint. Then, we can go back
and walk through the actual code.

3.2.2 Screens we’ll see

As shown in table 3.2, our logon application has two screens: welcome and logon.

If you are following along and have the application deployed on your local
machine, you can reach the welcome page with your browser by opening:

http://localhost:8080/logon/

3.2.3 The welcome screen

The first time you visit the welcome screen, there will be only one link, which
reads, “Sign in” (see figure 3.1). If you click this link, the logon screen will appear.

3.2.4 The logon screen

The logon screen submits the username and password, as you can see in figure 3.2.
To see the logon form in action, try clicking Submit without entering anything. If
you do, the logon screen returns but with a message, like the one shown in
figure 3.3.

 If you enter a username but forget the password and click Submit, the message
changes to the one shown in figure 3.4.

Table 3.2 Logon application screens

Screen Purpose

Welcome Greets visitor and offers links into the application

Logon Allows input of username and password

Welcome World!

• Sign in

Powered by
Struts Figure 3.1

The welcome screen of our logon application

Touring a logon application 63
Here are the important things to note about this workflow, from a user’s viewpoint:

� It tells the user everything that is missing all at once.

� When the user submits one thing, it reminds the user only about the other
thing.

� It redisplays on the screen what the user has entered so far, without asking
the user to press the Back key.

� If the user manages to enter both a username and a password, the form is
accepted and the next screen is displayed.

The logon application validates the logons against a Properties file, like the one
used with the registration application from chapter 1. If you download the logon

Username:

Password:

Submit Reset Figure 3.2
The logon screen

Username:

Password:

Submit Reset

Validation Error

You must correct the following error(s) before
proceeding:

• Username is required
• Password is required

Figure 3.3
The logon screen tells you the
password and username are missing.

Username:

Password:

Submit Reset

Validation Error

You must correct the following error(s) before
proceeding:

• Password is required

ted

Figure 3.4
The logon screen reminds you that
you must enter the password.

64 CHAPTER 3

Building a simple application
application from the book’s web site [Husted], you can log on using the names of
any of the book’s authors, as shown in table 3.3.

NOTE The passwords are case sensitive, so be sure to use an initial capital letter.

3.2.5 The welcome screen, again

After a successful login, the welcome screen displays again—but with two differ-
ences, as you can see in figure 3.5.

First, the screen has been tailored for the user. Instead of just saying “Welcome
World!” it now greets the user by name.

 In addition, you’ll notice that another link has been added. Besides signing in
(again), we can now sign out.

3.2.6 The welcome screen, good-bye

To close the loop, if we click the sign-out link, we are returned to the original wel-
come screen—the same screen shown in figure 3.1.

Table 3.3 Default logons

Username (or userid) Password

Ted Husted

Cedric Dumoulin

George Franciscus

David Winterfeldt

Craig McClanahan

Welcome Ted!

• Sign in
• Sign out

Powered by
Struts

Figure 3.5
The welcome screen after
the user has logged on

Dissecting the logon application 65
3.2.7 Feature roundup

Although simple, our application demonstrates several important techniques:

� Writing links

� Writing forms

� Validating input

� Displaying error messages

� Repopulating forms

� Displaying alternative content

While not as obvious, it also demonstrates:

� Referencing images from dynamic pages

� Rewriting hyperlinks

In the next section, we look at the source code for the application to show how
the core features are implemented.

3.3 Dissecting the logon application

Now that we’ve said hello to our Struts logon application, let’s wander back and
take a closer look. We now present the code for each page, along with its related
components, and explore what each piece does. After we introduce all the wid-
gets, we show how you can assemble the application from scratch.

3.3.1 The browser source for the welcome screen

As you will recall, our application opens with the welcome screen. Let’s have a
peek at the browser source for the welcome page—just to see what’s there (see
listing 3.1). The part in bold is what prints on the screen.

<HTML>
<HEAD>
<TITLE>Welcome World!!</TITLE>
<base href="http://localhost:8080/logon/pages/Welcome.jsp">
</HEAD>
<BODY>
<H3>Welcome World!</H3>

Sign in

Listing 3.1 The browser source for our welcome page

66 CHAPTER 3

Building a simple application

</BODY>
</HTML>

If you are new to web applications, an important thing to note is that there is
nothing here but standard HTML. In fact, there can never be anything in a web
page but the usual markup that browsers understand. All web applications are
constrained to the limitations of HTML and cannot do anything that you can’t do
with HTML. Struts makes it easier to get Velocity templates, JSP, and other systems
to write the HTML we want, but everything has to done with markup the browsers
understand.

3.3.2 The JSP source for the welcome screen

Now let’s peek at the JSP source that generated the page shown in figure 3.1. The
JSP tags appear in bold in listing 3.2.

The jsessionid key
There may be one thing in the browser source that you might not recognize as standard HTML. The
first time you visit this page, the sign-in link may actually look like this:

Sign in</a

Most web applications need to keep track of the people using the application. HTTP has some rudi-
mentary support for maintaining a user logon, but the approach is limited and not secure. The Java
servlet framework does provide support for a robust user session but needs a mechanism to main-
tain the session across HTTP.

The jsessionid is a key maintained by the container to track the user session via HTTP. Including
the session key in a hyperlink is called URL rewriting. The Servlet Specification [Sun, JST] encour-
ages the use of cookies to maintain the session. When that is not possible, URL rewriting is used
instead. The first time a browser makes a request to the container, the container does not know
whether the browser will accept a cookie. The container can offer the browser a cookie, but can’t
tell if it was accepted until the next time a request is made. (HTTP has no “handshaking.”) In the
meantime, the response for the current request must be written. So, the first page written for a
browser will always need to use URL rewriting. If on subsequent requests the container finds that
its cookie was accepted, it can skip rewriting the URLs.

Dissecting the logon application 67
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<HTML>
<HEAD>
<TITLE>Welcome World!!</TITLE>
<html:base/>
</HEAD>
<BODY>
<logic:present name="user">
<H3>Welcome <bean:write name="user" property="username"/>!</H3>
</logic:present>
<logic:notPresent scope="session" name="user">
<H3>Welcome World!</H3>
</logic:notPresent>
<html:errors/>

<html:link forward="logon">Sign in</html:link>
<logic:present name="user">
<html:link forward="logoff">Sign out</html:link>
</logic:present>

</BODY>
</HTML>

Now let’s take a look at what the lines in bold do:

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>

These are the JSP equivalents to import statements and make the tag extensions
available to the rest of the page. The code

<html:base/>

generates a standard HTML base tag, so that references to such things as images
can be relative to the location of the original JSP page. You may have noticed that
the logon application sometimes refers to .do pages. These aren’t actual files on
the server but references to Java classes, or Actions, written by the application
developer. These Actions then forward to a JSP that creates the response.

 JSPs often include references to HTML resources such as images and style
sheets. The most convenient way to refer to these resources is through paths that
are relative to the JSP template. But when the Action forwards control, it does so

Listing 3.2 The JSP source for our welcome page (/pages/Welcome.jsp)

68 CHAPTER 3

Building a simple application
without alerting the browser. If the browser is given any relative references, it will
resolve them according to the Action URI, not the location of the JSP template.

 Depending on when you access the welcome page, its “location” is shown by
the browser:

� http://localhost:8080/logon/

� http://localhost:8080/logon/LogonSubmit.do

� http://localhost:8080/logon/Logoff.do

This is a common problem for dynamic applications. The HTML specification
[W3C, HTML] provides the base tag as a solution. Struts provides a companion
html-base tag that inserts the location of the JSP. If you look at the HTML source
for the logon page for each of its apparent locations, you will see that in every case
the base tag renders as:

<base href="http://localhost:8080/logon/pages/Welcome.jsp">

This lets the browser find the “Powered by Struts” image, which is also stored in
the pages folder.

 Now let’s take a look at this code:

<logic:present name="user">
<H3>Welcome <bean:write name="user" property="username"/>!</H3>
</logic:present>

You’ll remember that the welcome page customizes itself depending on whether
the user is logged in. This segment looks to see if we have stored a “user” bean in
the client’s session. If such a bean is present, then the user is welcomed by name.

 The following code shows why maintaining the user’s session is so important
(see section 3.3.1). Happily, the Struts tags and servlet container cooperate to
maintain the session automatically (regardless of whether the browser is set to use
cookies). To the developer, it feels as if the session has been built into HTTP—
which is what frameworks are all about. Frameworks extend the underlying envi-
ronment so developers can focus on higher-level tasks:

<logic:notPresent scope="session" name="user">
<H3>Welcome!</H3>
</logic:notPresent>

Conversely, if the user bean is not present, then we use a generic welcome. All of
the Struts logic tags use “this” and “notThis” forms. Else tags are not provided.
While this means that some tests need to be repeated, it simplifies the overall syn-
tax and implementation of tags. Of course, other tag extensions can also be used;

Dissecting the logon application 69
you are not constrained to what is offered in the Struts distribution. Several con-
tributor tag extensions are listed on the Struts resource page [ASF, Struts], even
one with an if/then/else syntax, if you prefer to use that instead.

 As mentioned in section 3.3.1, Struts automatically rewrites hyperlinks to main-
tain the user session. It also lets you give links a logical name and then store the
actual links in a configuration file. This is like referring to a database record with
a key. The name and address in the record can change as needed. Other tables
will find the updated version using the key. In this case:

<html:link forward="logon">Sign in</html:link>

we are using logon as the key for a record that stores the hyperlink to use for log-
ging on. If we need to change that link later, we can change it once in the config-
uration file. The pages will start using the new link when they are next rendered.

 This code combines the <logic:present> and the <html:link> tags to dis-
play the logoff link only when the user is already logged in:

<logic:present name="user">
<html:link forward="logoff">Sign out</html:link>
</logic:present>

3.3.3 The configuration source for the welcome screen

Struts uses a configuration file to define several things about your application,
including the logical names for hyperlinks. This is an XML document that Struts
reads at startup and uses to create a database of objects. Various Struts compo-
nents refer to this database to provide the framework’s services. The default name
of the configuration file is struts-config.xml.

 Since the configuration file is used by several different components, present-
ing the configuration all at once would be getting ahead of ourselves. For now,
we’ll provide the relevant portions as we go. Later, when we build the application
from scratch, we’ll present the configuration file in its entirety.

 In the initial welcome screen, we refer to a logon forward. This is defined in
the Struts configuration as such:

<forward
 name="logon"
 path="/Logon.do"/>

Here, logon is a key that is used to look up the actual path for the hyperlink. A
Struts action is referenced here, but the path could just as easily refer to a JSP
page, Velocity template, HTML page, or any resource with a URI [W3C, URI].

70 CHAPTER 3

Building a simple application
DEFINITION A uniform resource identifier (URI) is a short string that identifies a resource on
the Internet or other computer network. A resource could be a document,
image, downloadable file, or electronic mailbox, among other things. A URI
may correspond to a path on a server’s file system but is often an alias. Many
URIs in a Struts application are aliases for Java classes or Actions.

Since the path is defined in the configuration file, you can change your mind at
any time without touching the JSP source. If you update and reload the configura-
tion, the change will be reflected when pages next render.

3.3.4 The browser source for the logon screen

If we follow the sign-in link on the welcome page, it brings us to the logon screen,
shown earlier in figure 3.2. Listing 3.3 shows the browser source code for this
screen. Again, the part in bold is what prints on the screen.

<HTML>
<HEAD>
<TITLE>Sign in, Please!</TITLE>
</HEAD>
<BODY>
<form name="logonForm" method="POST" action="/logon/LogonSubmit.do">
<TABLE border="0" width="100%">
<TR>
<TH align="right">Username:</TH>
<TD align="left"><input type="text" name="username" value=""></TD>
</TR>
<TR>
<TH align="right">Password:</TH>
<TD align="left"><input type="password" name="password" value=""></TD>
</TR>
<TR>
<TD align="right"><input type="submit" name="submit" value="Submit"></TD>
<TD align="left"><input type="reset" name="reset" value="Reset"></TD>
</TR>
</TABLE>
</form>
<script language="JavaScript" type="text/javascript">
 <!--
 document.forms["logonForm"].elements["username"].focus()
 // -->
</script>
</BODY>
</HTML>

Listing 3.3 The browser source for our logon screen

Dissecting the logon application 71
Listing 3.4 shows the corresponding JSP source.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<HTML>
<HEAD>
<TITLE>Sign in, Please!</TITLE>
</HEAD>
<BODY>
<html:errors/>
<html:form action="/LogonSubmit" focus="username">
<TABLE border="0" width="100%">
<TR>
<TH align="right">Username:</TH>
<TD align="left"><html:text property="username"/></TD>
</TR>
<TR>
<TH align="right">Password:</TH>
<TD align="left"><html:password property="password"/></TD>
</TR>
<TR>
<TD align="right"><html:submit/></TD>
<TD align="left"><html:reset/></TD>
</TR>
</TABLE>
</html:form>
</BODY>
</HTML>

Let’s step through each block here as we did with the welcome page. First, as before,
this code makes the Struts html tag extension available to the rest of the page:

<%@ taglib uri="/tags/struts-html" prefix="html" %>

Like the Struts actions, the taglib URI is a logical reference. The location of the
tag library descriptor (TLD) is given in web.xml.

 You’ll remember that if we tried to submit the form without entering a logon, an
error message displayed. The following tag renders the error messages. When there
are no messages, the tag outputs nothing and disappears from the output page:

<html:errors/>

The <html:form> tag produces an HTML form for data entry. It also generates a
simple JavaScript to move the focus to the first field on the form. The action
property is a reference to an ActionMapping in the Struts configuration. This tells

Listing 3.4 The JSP source for our logon screen (/pages/logon.jsp)

72 CHAPTER 3

Building a simple application
the form which JavaBean helper to use to populate the HTML controls. The Java-
Bean helpers are based on a Struts framework class, ActionForm:

<html:form action="/LogonSubmit" focus="username">

The <html:text> tag creates an HTML input control for a text field. It will also
populate the field with the username property of the JavaBean helper for this form:

<TR><TH align="right">Username: </TH><TD align="left">
<html:text property="username"/></TD>

So, if the form were being returned for validation, and the last username submit-
ted was Ted, the tag would then output:

<input type="text" name="username" value="Ted">

Otherwise, the tag would use the initial default value for username as specified by
the JavaBean helper class. Usually, this is null, but it could be any value.

 Likewise, the <html:password> tag creates an HTML input control:

<TR><TH align="right">Password: </TH>
<TD align="left"><html:password property="password"/></TD>

The password control is like a text field but displays asterisks instead of the charac-
ters input. If the form is being returned for validation, by default the password tag
will rewrite the prior value so that it doesn’t need to be entered again. If you
would prefer that the password be input each time, you can turn off redisplay.

 If the initial logon attempt fails, this code keeps the password out of the browser’s
cache and require the password to be input again, even if it passed validation:

<html:password property="password" redisplay="false"/>

These tags create standard HTML Submit and Reset buttons:

<TD align="right"><html:submit/></TD>
<TD align="left"><html:reset/></TD>

When the form is submitted, two framework objects come into play: the Action-
Form and the Action. Both of these objects must be created by the developer to
include the details for their application. As shown in figure 3.6, the ActionServlet
uses the Struts configuration to decide which ActionForm or Action subclass to use.

 Let’s look at the Struts configuration for the logon screen’s ActionForm and
Action. Then we can look at the source for these classes.

Dissecting the logon application 73
3.3.5 The configuration source for the logon screen

The logon screen itself refers to only one element in the Struts configuration file:
the /LogonSubmit ActionMapping. This element in turn refers to two other
objects, app.LogonForm and app.LogonAction. All three elements are shown in
table 3.4. Let’s explore each element in turn.

3.3.6 The LogonSubmit source

In the previous section, we mentioned that the <html:form> tag works closely
with the Struts configuration to make HTML forms more useful:

<html:form action="/LogonSubmit" focus="username">

The action parameter tells the <html:form> tag which ActionMapping to use.
In this case, the Struts configuration mapping would look like this:

<action
 path="/LogonSubmit"
 type="app.LogonAction"
 name="logonForm"

Configuration

Action

Servlet

ActionForm

Figure 3.6
The configuration determines which
ActionForm and Action to use.

Table 3.4 The logon screen configuration elements

Element Description

/LogonSubmit ActionMapping Encapsulates several details needed when building and submit-
ting an HTML form with the Struts framework

app.LogonForm Describes properties used by the HTML form

app.LogonAction Completes the processing of the submitted form

74 CHAPTER 3

Building a simple application
 scope="request"
 validate="true"
 input="/pages/Logon.jsp"/>

Table 3.5 provides an index to what the settings on this mapping mean.

As we mentioned in chapter 2, many of the object and property names used by the
Struts framework are vague. For example, the name property is not the name of
the mapping; it’s the name of the JavaBean helper, or ActionForm bean, to be
used with this mapping.

 The same form beans are also specified in the configuration:

<form-bean
 name="logonForm"
 type="app.LogonForm"/>

This element relates the logical name logonForm with a specific Java class,
app.Logonform. This will be a subclass of a Struts ActionForm. The ActionForm
class provides standard methods for the framework to use, including the vali-
date method.

 Let’s take a look at the source for the LogonForm and then come back to the
LogonAction.

3.3.7 The LogonForm source

While HTML forms give users a place to enter data, they do not give applications a
place to put it. When the user clicks Submit, the browser collects the data in the
form and sends it up to the server as a list of name-values pairs (or couplets). So, if
a user enters a username and a password into the logon page and clicks Submit,
this is what our application sees:

Table 3.5 ActionMapping settings

Property Purpose

path A unique identifier for this mapping. It is included in the web address, as in http://local-
host:8080/logon/LogonSubmit.do.

type The Action object to call when the path is requested.

name The JavaBean helper (ActionForm) to use with an HTML form.

scope A property that specifies whether to store the helper in the request or the session.

validate A property that specifies whether to call the standard validate method on the form
bean helper (specified by name) before calling the Action object (specified by type).

input A property that specifies where to send control if the validate method returns false.

Dissecting the logon application 75
username=Ted
password=LetMeIn

The browser submits everything as a string of characters. You can put in JavaScript
validations to force people to enter only numerals into a given field or to use a
prescribed format for dates, but that’s just smoke and mirrors. Everything is still
going to be transferred to your application as a string—not as a binary object
ready to pass to a Java method.

 It’s important to remember that this is the way the browsers and HTML work.
Web applications cannot control this. Frameworks such as Struts exist to make the
best of what we have to work with. The Struts solution to HTTP data-entry snarls is
the ActionForm.

 In an environment like Swing, data-entry controls have a built-in text buffer that
can validate characters as they are entered. When the user leaves the control, the
buffer can be converted to a binary type, ready for delivery to the business layer.

 Unfortunately, the HTTP/HTML platform doesn’t provide a component that
can buffer, validate, and convert input. So, the Struts framework offers the Action-
Form (org.apache.struts.action.ActionForm) to bridge the gap between
web browser and business object. ActionForms provide the missing buffer/vali-
date/convert mechanism we need to ensure that users enter what they are sup-
posed to enter.

 When an HTML form is submitted, the name-value couplets are caught by the
Struts controller and applied to an ActionForm. The ActionForm is a JavaBean
with properties that correspond to the controls on an HTML form. Struts com-
pares the names of the ActionForm properties with the names of the incoming
couplets. When they match, the controller sets the property to the value of the
corresponding couplet. Extra properties are ignored. Missing properties retain
their default value (usually null or false).

 Here are the public properties from our LogonForm:

private String password = null;
public String getPassword() {
 return (this.password);
}
public void setPassword(String password) {
 this.password = password;
}

private String username = null;
public String getUsername() {
 return (this.username);
}

76 CHAPTER 3

Building a simple application
public void setUsername(String username) {
 this.username = username;
}

The properties of most Struts ActionForms look just like this. Thrifty developers
can create them with a macro that simply prompts them for the property name.
Others may use code skeletons and the search-and-replace feature of their code
editors. Struts code generators are also available that create ActionForms by pars-
ing HTML or JSPs.

NOTE In Struts 1.1, creating ActionForms is even simpler if you use a Dyna-
ActionForm or Map-backed ActionForm. See chapter 5 for details.

The base ActionForm also includes two standard methods—reset and validate.
The reset method is helpful when you are using ActionForms as part of a wizard
workflow. This method doesn’t need to be implemented if the mapping is set to
request scope.

 When the mapping is set to validate=true, the validate method is called
after the form is populated from the HTTP request. The validate method is
most often used as a prima facie validation. It just checks that the data “looks” cor-
rect and that all required fields have been submitted. Again, this is something that
a Swing control would do internally before passing the data along to the applica-
tion. You can do these checks by hand, or use something like the ValidatorForm
(see chapter 12), which can be programmed from a configuration file.

 Here’s the validate method from our LogonForm. It checks that both fields
have something entered into them. If your application had any rules regarding
the length of a username or password, you could enforce those rules here as well.

public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {

 ActionErrors errors = new ActionErrors();

 if ((username == null) || (username.length() < 1))
 errors.add ("username",

 new ActionError("error.username.required"));

 if ((password == null) || (password.length() < 1))
 errors.add("password",

 new ActionError("error.password.required"));

 return errors;

}

Dissecting the logon application 77
The ActionErrors object returned by validate is another framework class. If
validate does not return null, then the controller will save the ActionErrors
object in the request context under a known key. The <html:errors> tag knows
the key and will render the error messages when they exist, or do nothing when
they do not.

 The tokens error.username.required and error.password.required are
also keys. They are used to look up the actual messages from the Struts message
resources file. Each locale can have its own resource file, which makes the mes-
sages easy to localize.

 The Struts message resources file uses the common name-value format. The
entries for our messages look like this:

error.username.required=Username is required
error.password.required=Password is required

NOTE In Struts 1.1 there are ways to keep the markup out of the messages. A
new errors.prefix/error.suffix feature can be used to specify that
 and should wrap each message. A new set of message tags is
also available that can be used in place of the original <html:error>
tag. The message tags make it easy to keep the markup in the presenta-
tion page (where it belongs). See chapter 10 for more about the Struts
JSP tags.

Even when localization is not being used, the Struts application resource file col-
lects all the messages into a single place where they can be reviewed and revised,
without touching the Java source code.

3.3.8 The LogonAction source

After collecting the data entry into an ActionForm and performing any initial val-
idations, the controller passes the form along to the Action class given by the
mapping.

 The Struts architecture expects that you will use your own Java classes to do
most of the request processing. A JSP page may render the result, but the Action
obtains the result. As you saw in chapter 2, this is known as an MVC or Model 2
approach, where the Action serves as a request dispatcher.

 When a request for an Action is sent to the Struts servlet, it invokes (or dis-
patches) the Action by calling its perform (or execute) method.

78 CHAPTER 3

Building a simple application
NOTE There is an alternative entry method in Struts 1.1, named execute. This
method provides for better exception handling but is otherwise the same
as the Struts 1.0 perform method. We will refer to the perform method in
this chapter so the code will work with both versions. Other applications in
the book are based on Struts 1.1 and make good use of the new features.

Listing 3.5 contains the source in its entirety.

package app;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionServlet;

public final class LogonAction extends Action {

// Validate credentials with business tier
public boolean isUserLogon (String username,
 String password) throws UserDirectoryException {

return (UserDirectory.getInstance().
isValidPassword(username,password));

} // end isUserLogon

public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

// Obtain username and password from web tier
String username = ((LogonForm) form).getUsername();
String password = ((LogonForm) form).getPassword();

// Validate credentials
boolean validated = false;
try {
validated = isUserLogon(username,password);

Listing 3.5 The Java source for the LogonAction class
(/WEB-INF/src/java/app/LogonAction.java)

Dissecting the logon application 79
}
catch (UserDirectoryException ude) {
// couldn't connect to user directory
 ActionErrors errors = new ActionErrors();
 errors.add (ActionErrors.GLOBAL_ERROR,
 new ActionError("error.logon.connect"));
 saveErrors(request,errors);
 // return to input page
 return (new ActionForward (mapping.getInput()));
}

// Save our logged-in user in the session,
// because we use it again later.
HttpSession session = request.getSession();
session.setAttribute(Constants.USER_KEY, form);

// Log this event, if appropriate
if (servlet.getDebug() >= Constants.DEBUG) {
 StringBuffer message =
 new StringBuffer("LogonAction: User '");
 message.append(username);
 message.append("' logged on in session ");
 message.append(session.getId());
 servlet.log(message.toString);
}

// Return success
return (mapping.findForward (Constants.WELCOME));

} // end perform
} // end LogonAction

And now the blow by blow.
 The Action is at the top of the Struts food chain and so imports several

classes. We’ve specified each class used here, so that you can see where every-
thing comes from:

package app;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionServlet;

80 CHAPTER 3

Building a simple application
If we were lazy, this block could also be expressed as:

package app;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import org.apache.struts.action.*;

But that would not be as instructive. Like most Apache products, the Struts source
code follows best practices and doesn’t cut corners. We follow suit in our own
code. While we’ve omitted the JavaDoc here, both our code and the Struts code
are fully documented.

 Next, we use a helper method to call a business tier method. We could have
put this same code into the Action’s perform method, but it is always a good idea
to strongly separate the generic business code from the Struts controller code. If
you let even one line in, that soon turns into three, then five, and before long
your Actions are a big ball of mud [Foote]. The best way to avoid “code creep” is
to always encapsulate business tier code in a helper method before calling it from
an Action:

// Validate credentials with business tier
public boolean isUserLogon (String username,
 String password) throws UserDirectoryException {

return (UserDirectory.getInstance().
isValidPassword(username,password));

} // end isUserLogon

As we’ve mentioned elsewhere, Struts 1.1 prefers the new execute method over
the original perform method, but either one still works. We used perform in this
application so the code will work with either version:

public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

The purpose of an Action is to ferry input from the web tier to the business tier,
where the rest of your application lives. Here, we extract the username and pass-
word from the ActionForm (JavaBean helper) and save them as plain Strings:

// Obtain username and password from web tier
String username = ((LogonForm) form).getUsername();
String password = ((LogonForm) form).getPassword();

Dissecting the logon application 81
We can then pass the username and password Strings to a business tier function
to see if they validate. Here, we take care to encapsulate the call in a separate
method and not bury the code in the Action’s perform method. This call is to
another method in this class, but it could just as easily be to any method in any
Java class:

// Validate credentials
boolean validated = false;
try {
validated = isUserLogon(username,password);
}
catch (UserDirectoryException ude) {
// couldn't connect to user directory
 ActionErrors errors = new ActionErrors();
 errors.add (ActionErrors.GLOBAL_ERROR,
 new ActionError("error.logon.connect"));
 saveErrors(request,errors);
 // return to input page
 return (new ActionForward (mapping.getInput()));
}

The API for the isUserLogon method specifies that it return true if the creden-
tials match, false if they don’t, and throw an exception if it doesn’t know (say, for
instance, because it couldn’t connect to the directory to find out). Should the
exception occur, our Action catches it, converts the event into an ActionError,
and forwards back to the input page.

 If the business tier comes back and says the logon is no good, the Action posts
the error message and routes control back to the input page. This is the same
thing that happens when the validate method on the ActionForm fails (see sec-
tion 3.3.7):

if (!validated) {
 // post the error
 ActionErrors errors = new ActionErrors();
 errors.add (ActionErrors.GLOBAL_ERROR,
 new ActionError("error.logon.invalid"));
 saveErrors(request,errors);
 // return to input page
 return (new ActionForward (mapping.getInput()));
}

Since the error does not pertain to a particular property, we log the error under
the generic ActionErrors.GLOBAL_ERROR flag instead of a property name. To
indicate that the logon itself is invalid, we also specify a different error message
than validate. In the Struts application resources, this is shown as:

82 CHAPTER 3

Building a simple application
error.logon.invalid=Username/password combination is invalid

The presentation layer substitutes the error.login.invalid token for the
proper message when it is displayed. If there is a separate message for a user’s
locale, then the user will receive the localized version of this message.

 If the business tier says the logon is good, then we can tell the web tier to retain
the user’s credentials. The Java Servlet framework provides a user session for
exactly this purpose. Here we store the user’s logonForm in their session context.
Each user has a context, maintained by the servlet container. Users who have a
logonForm stored in their session context are logged in. Otherwise, the user is
not logged in:

// Save our logged-in user in the session,
// because we use it again later.
HttpSession session = request.getSession();
session.setAttribute(Constants.USER_KEY, form);

This strategy is known as application-based security. Many Java web applications
use this approach, since it is portable and easy to implement. Any approach to
authentication can be used in your own applications.

 The Struts framework relies on the container’s default logging system. Here,
we log an event only if the debug level for the servlet was set high enough in the
web deployment descriptor (web.xml):

// Log this event, if appropriate
if (servlet.getDebug() >= Constants.DEBUG) {
 StringBuffer message =
 new StringBuffer("LogonAction: User '");
 message.append(username);
 message.append("' logged on in session ");
 message.append(session.getId());
 servlet.log(message.toString);
}

We set this with an init-param, like this:

<init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
</init-param>

In a production application, you can set debug to 0, and entries like this one
won’t appear. To plug in another logging package, developers subclass the Struts
ActionServlet class and override the log method.

Dissecting the logon application 83
 NOTE In Struts 1.1, using alternate logging packages is made even easier
through support of the Jakarta Commons Logging Component [ASF
Commons].

When all is said and done, the perform method returns an ActionForward to the
controller (ActionServlet). Here, we send control to the success forward:

// return success
return (mapping.findForward (Constants.SUCCESS));
}

This is defined in the Struts configuration as:

<forward
 name="success"
 path="/pages/Welcome.jsp"/>

Now that we are logged in, the presentation of this page will vary slightly. A logoff
link will be available.

3.3.9 The LogoffAction source

Look back to figure 3.5 to see how the welcome page changes once the user is
logged in. In Welcome.jsp, the <logic:present> tag sees the user bean placed
into the session context by the LogonAction

<logic:present name="user">

and exposes an <html:link> tag that references the logoff forward:

<html:link forward="logoff">Sign out</html:link>

In the Struts configuration, the logoff forward is defined as:

<forward
 name="logoff"
 path="/logoff.do"/>

The path here refers to a .do file. There should be a corresponding /logoff
ActionMapping elsewhere in the Struts configuration:

<action
 path="/logoff"
 type="app.LogoffAction"/>

As you can see, /logoff is an extremely simple mapping; it simply passes control
to the LogoffAction class, without any special parameters or settings. The job of
the LogoffAction class is also very simple. It just removes the user’s logonForm

84 CHAPTER 3

Building a simple application
object from the session context. If there is no logonForm in the session context,
then the user is considered to be logged out. Let’s have a look at the LogoffAction
source, which is the last class remaining in our walkthrough (see listing 3.6).

public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 // Extract attributes we will need
 HttpSession session = request.getSession();
 LogonForm user = (LogonForm)
 session.getAttribute(Constants.USER_KEY);

 // Log this user off
 if (user != null) {

 if (servlet.getDebug() >= Constants.DEBUG) {
 StringBuffer message =
 new StringBuffer("LogoffAction: User '");
 message.append(user.getUsername());
 message.append("' logged off in session ");
 message.append(session.getId());
 servlet.log(message.toString());
 }
 }

 else {

 if (servlet.getDebug() >= Constants.DEBUG) {
 StringBuffer message =
 new StringBuffer("LogoffAction: User '");
 message.append(session.getId());
 servlet.log(message.toString());
 }
 }

 // Remove user login
 session.removeAttribute(Constants.USER_KEY);

 // Return success
 return (mapping.findForward (Constants.SUCCESS));

 }

} // end LogoffAction

Listing 3.6 The Java source for LogoffAction class
(/WEB-INF/src/java/app/LogoffAction.java)

Dissecting the logon application 85
First, we obtain the user’s logon object. The convention of this application is to
store the user’s logon object in the session context, under the key given by
Constants.USER_KEY, so that’s where we look:

// Extract attributes we will need
HttpSession session = request.getSession();
LogonForm user = (LogonForm)

// Log this user off
if (user != null) {

 if (servlet.getDebug() >= Constants.DEBUG) {
 StringBuffer message =
 new StringBuffer("LogoffAction: User '");
 message.append(user.getUsername());
 message.append("' logged off in session ");
 message.append(session.getId());
 servlet.log(message.toString());
 }
}

As before, we log some detail if the debug level has been set high enough in the
web deployment descriptor (web.xml).

 This is the core operation in the class. We remove any object stored under the
USER_KEY, and voila, the user is logged out:

// Remove user login
session.removeAttribute(Constants.USER_KEY);

If we wanted to remove everything from the session that might be stored for the
user, we could simply invalidate the session instead:

session.invalidate();

But this also destroys objects such as the user’s locale, which is used to display
localized messages.

 As with logon, when the operation completes, we return to the welcome page:

// Return success
return (mapping.findForward (Constants.SUCCESS));

In the next section, we will step back and show how this application would be built
from scratch. So far, we’ve been stepping through the guts of the pages and
classes. Now we will take a wider look at the application by moving the focus to the
Struts configuration file and the source code tree.

86 CHAPTER 3

Building a simple application
3.4 Constructing an application

We’ve taken the application for a drive, kicked the tires, and taken a good look
under the hood. We know what it is supposed to do and how it does it, but where
would you start building your own? In this section, we go back to square one and
show how you can build an application like this from beginning to end.

 Since we have a good grasp of what we need the application to do, we can start
with a practical set of requirements. From this, we can create a whiteboard plan
that includes the obvious objects and what we will call them. Then, we’ll start cod-
ing the objects, refining and expanding on the plan as we go. This type of plan/
code, refine-plan/refine-code approach to software development is often called a
“spiral” methodology.

 Of course, there are many other ways to approach software development. Any
methodology should work fine with Struts. But the goal of this section is not to
explore software methodologies. We’re here to demonstrate what it is like to con-
struct a simple Struts application. So, let’s have at it...

3.4.1 Defining the requirements

Requirements are the effects that the computer is to exert in
the problem domain, by virtue of the computer’s programming

—Practical Software Requirements, by Benjamin L. Kovitz

Although we have a sound working understanding of what the application needs
to do, it’s always a good practice to start from a set of requirements. Following
suit with the rest of this chapter, we’ll just draw up the simplest possible set of
useful requirements.

 Our simple requirements document will have three main sections: goal,
requirements, and specification, as shown in table 3.6.

Goal

� Allow privileged users to identify themselves to the application

Table 3.6 Headings in our requirements document

Heading Purpose

Goal What result we need to achieve within the problem domain

Domain requirements What we need to accomplish to realize the goal

Program specifications What we need to do to realize the requirements

Constructing an application 87
 Domain requirements

� Allow users to present their credentials (username and password)

� Verify that the credentials presented are valid

� Allow correction of invalid credentials

� Inform user when credentials are verified

� Allow validated users access to privileged features

� Allow user to invalidate access on demand

Program specifications

� Be accessible from a standard web browser, with or without JavaScript
enabled

� Offer logon to new visitors from a welcome page

� Allow entry of credentials (username and password) on a logon page

� Require that each credential contain 1 to 20 characters, inclusive

� Require that both username and password be entered

� Submit credentials to business tier method for validation

� Return invalid credentials to user for correction

� Log on user if credentials are valid

� Customize welcome page with username when logged on

� Allow validated users to log off from welcome page

Of course, this is very simple specification for a very simple application. Many
specifications consume reams of paper and are embellished with diagrams, data
tables, screen definitions, and detailed descriptions of the problem domain. For
more about writing specifications for your own applications, we recommend Prac-
tical Software Requirements, by Benjamin L. Kovitz [Kovitz].

3.4.2 Planning the application

With our requirements in hand, we can start to sketch the application and plan
which objects we will need to realize the program specification. One way to
approach this is to list the specifications and the components that would help
realize them. Often, a team will do something like this on a large whiteboard as
part of an initial design meeting.

88 CHAPTER 3

Building a simple application
NOTE An important point to note in this process is that there is often not a 1:1
correlation between the specification items and the components that re-
alize them. While both the specification and the program serve the same
goal, they approach the goal from different perspectives. So, a list like
this will not be “normalized.” Some specifications will appear more than
once, as will some components.

View
In practice, many applications start out as storyboards. JSPs define the visible
parts of our application. Table 3.7 outlines our requirements for the presenta-
tion layer.

Note that we added a specification of our own at the end of this list. A good trick
in a Struts application is to have the application’s welcome page redirect to a
Struts action. This puts the control flow into the framework as soon as possible
and helps to minimize change as the application grows.

Controller
In a strongly layered application (see chapter 2), all requests for pages or data
pass through the control layer. Table 3.8 outlines our requirements for the con-
troller (or “Front Controller” [Go3]).

Table 3.7 Our “whiteboard” view plan

Specification JavaServer Pages

Offers logon to new visitors from a welcome page Welcome.jsp

Allows entry of credentials (username and password) on a
logon page

Welcome.jsp

Returns invalid credentials to user for correction Logon.jsp

Customizes welcome page with username when logged on Welcome.jsp

Allows validated users to log off from welcome page Welcome.jsp

Is accessible from a standard web browser with or without
JavaScript enabled

Logon.jsp; Welcome.jsp

Directs users to welcome activity index.jsp

Constructing an application 89
Note that we added another specification of our own, “Document all internal con-
stants.” This is especially important in a layered application, where some of the
constants will be “loosely bound.” The Java compiler can’t validate tokens that we
use in an XML configuration file, so it’s important we carefully track whatever
tokens we use.

Model
We have only one requirement for our data access layer, shown in table 3.9.

Table 3.8 Our “whiteboard” controller plan

Specification ActionForms

Allows entry of credentials (username and password) on a
logon page

LogonForm

 Actions

Validates credentials with business tier method LogonAction

Returns invalid credentials to user for correction LogonForm; LogonAction

Logs on user if credentials are valid LogonAction

Allows validated users to log off from welcome page LogoffAction

 ActionForwards

Offers logon to new visitors from a welcome page welcome; logon

Allows validated users to log off from welcome page Logoff

 ActionMappings

Submits credentials to business tier method for validation LogonSubmit

 Utility

Documents all internal constants Constants

Table 3.9 Our “whiteboard” model plan

Specification Method interface

Submits credentials to business tier method for
validation

boolean isUserLogon(String username,
String password);

90 CHAPTER 3

Building a simple application
3.4.3 Planning the source tree

With a baseline plan for the application in place, we
can sketch a source tree for the application. Since our
application is very simple, we can use a single subdirec-
tory for the pages and a single package for Java classes.
Our tree is shown in figure 3.7.

NOTE Struts expects there to be an Application
Resources bundle on your classpath. The
logon application places its property file in
its own “resources” package. International-
ized applications will have several property
files. Giving them their own package helps
keep things organized. Our build file cop-
ies these to the classes folder so that they
will be on the classpath at runtime. Just be
sure to rebuild the application after any
change to a resource file.

If you are following along and building your own logon
application, a good way to get a jumpstart on the tree
and the Struts classes is to deploy the Blank application:

� Download the Blank application from the book
site [Husted].

� Copy the blank.war file as logon.war.

� Put the WAR in your container’s autodeployment
folder (usually webapps).

This is why the Blank application is provided. It’s meant
as a generic template for other applications. We
present the base Blank infrastructure in sections 3.4.4 through 3.4.8. Then, we
begin work on the source for our logon application.

 To modify and rebuild the application, you may need to install some develop-
ment tools.

3.4.4 Setting up your development tools

Aside from the Java Development Kit and a web container, you need two other
pieces to be able to create and deploy web applications: a build tool and a

 [logon]

index.jsp

|_pages

 |_Welcome.jsp

 |_Logon.jsp

 |_[...]

|_WEB-INF

 |_build.xml

 |_web.xml

 |_conf

 |_struts-config.xml

 |_[...]

 |_doc

 |_index.html

 |_[...]

|_lib

 |_struts.jar

 |_struts-bean.tld

 |_struts-html.tld

 |_struts-logic.tld

|_src

 |_java

 |_app

 |_Constants.java

 |_LogoffAction.java

 |_LogonAction.java

 |_LogonForm.java

 |_[...]

 |_resources

 |_application.properties

Figure 3.7 The source tree
for our logon application

Constructing an application 91
programmer’s editor. Like many development teams, the Struts Committers use
Jakarta’s Ant to build the Struts distribution and its sample applications. Other
tools could be used, but Ant is quickly becoming the de facto standard build tool
for Java applications.

 The choice of a programming editor is a still a subjective decision. Any pro-
gramming editor can be used with Struts (and probably is). If you do not have a
preference, a likely starting point is the open source programmer’s editor, jEdit.

Installing Ant
Deploying applications generally involves many steps. Automating those steps is
your best chance that things will go as planned. Ant is an Apache XML scripting
tool designed to ensure that deployments are quick and free from human error.
Ant uses an XML build file to run a series of tasks. Ant predefines the most common
tasks. If the predefined tasks don’t meet your needs, you can also create your own.

 To install Ant, you need to:

1 Download from Jakarta [ASF, Ant].

2 Unzip the download to the directory of your choice.

3 Set up three environment variables: ANT_HOME, JAVA_HOME, and PATH.

4 Set ANT_HOME=<location of the unzipped download>.

5 Set JAVA_HOME=<location of the JDK>.

6 Set PATH=%PATH%;%ANT_HOME%\bin.

As part of constructing our application, we provide a build.xml file to use with Ant.

Installing jEdit
If you do not already have a preferred programming editor, you can download
and install jEdit to get started with Struts. The Java-based installer bundled with
jEdit makes it as simple to install as the latest versions of the JDK and Tomcat (see
chapter 1).

 Let’s step through the installation process:

1 Download jEdit from SourceForge [jEdit].

2 If the installer doesn’t run automatically, you can start it from a DOS
prompt using:

java –jar <downloaded jar file>

3 The first screen you will see is a welcome screen.

92 CHAPTER 3

Building a simple application
4 Clicking Next will present you with the GNU General Public License.

5 Clicking Next will provide you with the opportunity to select an installa-
tion directory.

6 Clicking Next will present you with a list of components to install. We rec-
ommend that you select them all.

7 Clicking Next again will initiate the install.

8 After the installation completes, you can launch jEdit by navigating
through the Windows Start menu.

A number of jEdit plug-ins are available that allow you to edit over FTP, build Ant
projects, edit XML files, and much more.

3.4.5 Setting up the build.xml file

Like many Java products these days, Struts expects that the Jakarta Ant tool [ASF,
Ant] will be used as part of the build process. Ant also uses an XML configuration
file, named build.xml. Typically, you can set up a stock build file for your applica-
tion that does not change throughout. In chapter 4, we present the build file used
by the logon application.

3.4.6 Setting up the web.xml file

The Java 2 Servlet framework uses a configuration file to help set up your applica-
tion. The web deployment descriptor, or web.xml, identifies the servlets you’ll
need, and other settings for your application. The format is prescribed by the
servlet specification [Sun, JST]. Most Struts applications need to deploy only a sin-
gle servlet and the tag libraries, and tend to be relatively simple. We present the
web.xml file used by the logon application in chapter 4.

3.4.7 Setting up the struts-config.xml file

Much like the web deployment descriptor, Struts also has an XML configuration
file. This is where your application registers its ActionForms, ActionForwards, and
ActionMappings. Each class has its own section in the file where you can define
the default objects to be created at startup. Listing 3.7 shows our starter Struts
configuration file.

Constructing an application 93
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">
<struts-config>
 <form-beans>
 <!-- ... -->
 </form-beans>
 <global-forwards>
 <forward
 name="welcome"
 path=" /Welcome.do"/>
 <!-- ... -->
 </global-forwards>
 <action-mappings>
 <action
 path="/Welcome"
 type="org.apache.struts.actions.ForwardAction"
 parameter="/pages/Welcome.jsp"/>

 <!-- ... -->
 </action-mappings>
</struts-config>

When you set up your application, you can start with a blank configuration file,
like this one, and add the objects you need as you go along. We’ll do just that
through the balance of the chapter so you can see how the Struts configuration is
used in practice. Chapter 4 covers the Struts configuration files in depth. You may
have noticed that our starter configuration is not totally blank. A default welcome
forward has been provided for your convenience.

The welcome action
Usually, it’s helpful to route the page flow through the Struts controller as soon as
possible. This keeps the big picture in the Struts configuration. You can adjust the
control flow for the entire application from a single point. Unfortunately, the con-
tainers require a physical page for the welcome page. Listing a Struts action URI as
a welcome page in the web deployment descriptor (web.xml) doesn’t work.

 The best all-around solution is to put in a stub index.jsp that redirects to your
welcome action. The struts-blank provides one such stub. This is a very simple util-
ity page, with just two lines:

<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<logic:redirect forward="welcome"/>

Listing 3.7 The Struts configuration file (/WEB-INF/conf/struts-config.xml)

94 CHAPTER 3

Building a simple application
 The Blank application provides both the index.jsp forwarding page and a
default welcome page. We will continue to use the index.jsp as is but will be mak-
ing some changes to the welcome page. However, before we do anything else, let’s
test our deployment.

3.4.8 Testing the deployment

To be sure all is well before testing a new application, it’s helpful to open a work-
ing application as a baseline. The Struts Blank application is a good choice for a
baseline application. Its default welcome page includes some basic system checks
to see that configuration files are loading properly, that the tag extensions can be
found, and that the message resources are available.

 The WAR file for the Struts Blank application can be found in the Struts distri-
bution or on this book’s website. Just place the blank.war file in your container’s
autodeploy folder and restart it if necessary. You can then open the application’s
welcome page using a URL such as

http://localhost:8080/blank

If all is well, a page like the one shown in figure 3.8 should display.

The source for this page appears in listing 3.8.

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<html:html locale="true">
<head>
<title><bean:message key="welcome.title"/></title>
<html:base/>
</head

Listing 3.8 The default welcome page for the Blank application

Welcome!
To get started on your own application, copy the struts-blank.war to a new WAR
file using the name for your application. Place it in your container's "webapp"
folder (or equivalent), and let your container auto-deploy the application. Edit
the skeleton configuration files as needed, reload Struts or restart your
container, and you are on your way! (You can find the application.properties
file with this message in the /Web-INF/SCR/java/resources folder.)

Powered by
Struts

Figure 3.8 The welcome screen of the Blank application

Constructing an application 95
<body>
<logic:notPresent name="org.apache.struts.action.MESSAGE"

scope="application">

ERROR: Application resources not loaded -- check servlet container
logs for error messages.

</logic:notPresent>
<h3><bean:message key="welcome.heading"/></h3>
<p><bean:message key="welcome.message"/></p>
</body>
</html:html>

3.4.9 Constructing our welcome page

A basic tenet of most software methodologies is to get a working prototype up and
running as soon as possible. If we follow that advice, then the first thing we should
do is put up the welcome page called for by our specification. An early version of
our welcome page, without the conditional logic, might look like the one shown
in listing 3.9.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<html>
<head>
<title>Welcome World!!</title>
<html:base/>
</head>
<body>

<html:link forward="logon">Sign in</html:link

</body>
</html>

Since this refers to the logon ActionForward, we need to add that to our Struts
configuration. We can also change the default welcome page from Index.jsp to
Welcome.jsp:

 <global-forwards>
 <forward
 name="logon"
 path /Logon.do"/>
 <forward

Listing 3.9 An early version of the welcome page

96 CHAPTER 3

Building a simple application
 name="welcome"
 path /Welcome.do"/>
 <!-- ... -->
 </global-forwards

At this point, we can restart the container to reload the Struts configuration.
Some containers, like Tomcat, let you reload a single application.

1.0 vs 1.1 In Struts 1.0, there were number of administrative Actions available, in-
cluding one to reload the Struts configuration. These were removed in
Struts 1.1 because they conflicted with the support for multiple applica-
tion modules.

Once the new configuration is loaded, we can try opening our new welcome page:

http://localhost:8080/logon/

You should see the screen shown in figure 3.9.

However, if you were to try and click on the link, you wouldn’t get very far, as
shown in figure 3.10.

To fix this error, we need to move on to the next object and construct the logon
page.

3.4.10 Constructing the logon page

Looking back at our whiteboard in section 3.4.2, we see that our logon page
needs to collect the username and password, and submit them to a mapping
named /LogonSubmit. This means that we need to create a Struts form that
specifies the /LogonSubmit action, with input controls for a text field and a pass-
word field, as shown in listing 3.10.

• Sign in

Powered by
Struts

Figure 3.9
The welcome screen before logon

404 Not Found

/logon/pages/Logon.jsp was not found on this
server.

Figure 3.10
The file not found error

Constructing an application 97
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<html><head><title>Sign in, Please!</title></head>
<body>
<html:errors/>
<html:form action="/LogonSubmit" focus="username">
<table border="0" width="100%">
<tr>
<th align="right>"Username: </th>
<td align="left"><html:text property="username"/></td>
</tr>
<tr><th align="right">Password: </th>
<td align="left"><html:password property="password"/></td>
</tr>
<tr>
<td align="right"><html:submit property="submit" value="Submit"/></td
<td align="left"><html:reset/></td>
</tr>
</table>
</html:form>
</body>
</html>

The <html:form> tag refers to an ActionMapping object, which in turns refers to
other objects (org.apache.struts.action.ActionMapping). Let’s write the
ActionMapping first and then the objects that go with it:

<action-mappings
 <action
 path="/LogonSubmit"
 name="logonForm"
 scope="request"
 validate="true"
 input="/pages/Logon.jsp"/>
<!-- ... -->
</action-mappings>

The two related objects are the logonForm form bean and the LogonAction. We
also need to register the ActionForm beans in the Struts configuration. The name
we use becomes the default attribute name for the object when it is created in the
request or session context:

<form-beans
 <form-bean
 name="logonForm"
 type="app.LogonForm"/>
 <!-- ... -->
</form-beans

Listing 3.10 The JSP source for our logon page (/pages/logon.jsp)

98 CHAPTER 3

Building a simple application
This brings us to adding the two specified Java classes, LogonForm and
LogonAction.

3.4.11 Constructing the Constants class

While not strictly required, documenting the ActionForward names and other
magic tokens is strongly recommended. This is simple to do and can make your
codebase much easier to manage over time. When we present code, we usually
omit the JavaDoc comments. But in this case we will leave them in. Why? Because
the whole point of this class is to document the constants. So, in this case, the docu-
mentation is the code. Listing 3.11 contains the Java source for the Constants class.

package app;
public final class Constants {

/**
 * The session scope attribute under which the Username
 * for the currently logged in user is stored.
 */
public static final String USER_KEY = "user";

/**
 * The value to indicate debug logging.
 */
public static final int DEBUG = 1;

/**
 * The value to indicate normal logging.
 */
public static final int NORMAL = 0;
/**
* The token that represents a nominal outcome
 * in an ActionForward.
 */

public static final String SUCCESS= "success";

/**
 * The token that represents the logon activity
 * in an ActionForward.
 */
public static final String LOGON = "logon";

/**
 * The token that represents the welcome activity
 * in an ActionForward.
 */
public static final String WELCOME = "welcome";

}

Listing 3.11 Java source for Constants class (/WEB-INF/src/java/app/Constants.java)

Constructing an application 99
3.4.12 Constructing the other classes

We presented the source for the LogonAction and LogonForm classes in sec-
tions 3.3.8 and 3.3.9. We also need to include the UserDirectory and
UserDirectoryException classes introduced in chapter 1. We can add all of these
to our new application unchanged. Our source tree from section 3.4 places them
under /WEB-INF/src/java/app/, as shown in figure 3.11.

The LogonAction also refers to a Constants class. We need to add that before the
source will compile.

3.4.13 Creating the user directory

In chapter 1, we introduced a simple registration application that stored a user ID
and password. These logon accounts are stored in a standard Properties file
named user.properties. This can be brought over from that application or re-
created under WEB-INF/src/java/resources, as shown in figure 3.12.

Properties files are simple text files. Here’s an example that uses the first names of
this book’s authors as the user ID and their last names as a password:

TED=Husted
CEDRIC=Dumoulin

 [logon]

|_WEB-INF

 |_src

 |_java

 |_app

 |_LogonAction.java

 |_LogonForm.java

 |_[...]

Figure 3.11
The location of LogonAction,
LogonForm, and other Java files

 [logon]

|_WEB-INF

 |_src

 |_java

 |_app

 |_resources

 |_application.properties

 |_user.properties

Figure 3.12
The location of user.properties
and other resource files

100 CHAPTER 3

Building a simple application
GEORGE=Franciscus
DAVID=Winterfeldt
CRAIG=McClanahan

If you like, you can just type these, or the logins of your choice, into a text file and
save it under /WEB-INF/src/java/resources/user.properties. Just be sure to enter
the user IDs in all uppercase letters, since this is required by the business logic.

 Of course, your application can just as easily validate logins against a JNDI ser-
vice or a database, or use the container’s security realm. We cover using data ser-
vices with Struts in chapter 14.

3.4.14 Configuring the ActionErrors

As you will remember, both the LogonForm and LogonAction may generate error
messages. The ActionError system is integrated with the application messages.
Before putting LogonForm and LogonAction to the test, we need to add these
messages to the application.properties document:

errors.header=<H3>Validation Error</H3>You must
correct the following error(s) before proceeding:

errors.footer=<HR>
error.username.required=Username is required
error.password.required=Password is required
error.logon.invalid=Username and password provided not found in user

directory. Password must match exactly, including any lower or upper case
characters.

1.0 vs 1.1 New tags in Struts 1.1 allow you to omit markup from the message. See
chapter 10 for more about the Struts JSP tags.

As part of the build process, we copy the application resource documents from
/WEB-INF/src/java/resource to a resources package under the classes folder
where the ActionServlet can find them. Be sure to edit that copy and to launch
the build process before running any tests.

Constructing an application 101
3.4.15 Compiling and testing the logon page

In section 3.4.8, we created the JSP page for our logon form. But to make this
work, we need to add the related configuration elements and Java classes, as
shown in table 3.10.

Since these are now in place, we can compile the application and test the logon
page. There is a stock build.xml in the WEB-INF directory that you can use with Ant.
The default build target, compile, will build the Java classes from the Java source
files and copy the application resources message file into the classes directory.

 When the build is successful, you can enter the application and follow the link
to the logon page. (Depending on how well your container reloads Java classes,
you may need to restart the container after a build. When in doubt, restart.)

 The logon application should now behave much as it did during our original
tour (see sections 3.3.3 through 3.3.6). The difference is that the welcome page
does not change after we have logged in, nor does it offer the opportunity to log
out. We can fix that in the next section, and our initial application will be complete.

3.4.16 Amending the welcome page

Our original draft of the welcome page omitted the conditional logic regarding
whether the user was logged in. Now that people can log in, we can add that back
so it matches the version from section 3.3.2 (see listing 3.12). The lines we are
adding appear in bold.

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<html>
<head>
<title>Welcome!</title>
<html:base/>
</head>
<body>
<logic:present name="user">

Table 3.10 Logon page configuration elements

Configuration elements Java classes

LogonSubmit action-mapping
logonForm form-bean

LogonAction, subclass of Action
LogonForm, subclass of ActionForm

Listing 3.12 The revised source for the welcome page (/pages/Welcome.jsp)

102 CHAPTER 3

Building a simple application
<h3>Welcome <bean:write name="user" property="username"/>!</h3>
</logic:present>
<logic:notPresent scope="session" name="user"/>
<h3>Welcome World!</h3>
</logic:notPresent>
<html:errors/>

<html:link forward="logon">Sign in</html:link>
<logic:present name="user">
<html:link forward="logoff">Sign out</html:link>
</logic:present>

</body>
</html>

As shown in figure 3.13, this puts us back where we started. When guests arrive,
they are invited to sign in. Once they log on, they are greeted by name and can
then sign out. That’s progress for you!

3.4.17 The Struts ActionForward Action

If you’ve kept an eye on your browser’s location bar, you may have noticed that we
never reveal the location of our JSP pages. Many applications don’t bother with
this nicety, but if you would like to use a strict Model-View-Controller architecture
(as described in chapter 2), you may not want to expose any implementation
details regarding your View, including whether you are using JSP pages or where
you happen to store them. Ideally, all navigation should pass through .do Actions
that are managed by the controller.

Welcome World!

• Sign in

Welcome Ted!
• Sign in
• Sign outPowered by

Struts Powered by
Struts

Figure 3.13 The welcome screen before and after logon

Constructing an application 103
 Of course, many times there really isn’t anything for the controller to, well, do.
This was the case for our logon and welcome pages. They don’t require any infor-
mation from the model and can be displayed by linking directly to the JSP page.
But this allows people to bookmark the location of the page. Later, you may need
to perform some background action before displaying the logon page, or you may
want to move or rename the JSP pages. If people have bookmarked the JSP page,
they will try to go back to the old location and either bypass your logic or generate
a file not found error. In practice, this usually leads to putting legacy checks into
the server page and redirects into the web server—more ways for things to go
wrong and more code to maintain.

 The moral? We must “virtualize” as many navigation details as possible; other-
wise, we will be forced to continually compensate for what the browser may (or may
not) cache or store. Instead of linking directly to a “physical” JSP, we should always
link to a “virtual” Struts Action, which can then provide the appropriate page.

 Of course, writing a custom Action for every page, whether or not it needed
one, would be a lot of busy work. A more efficient solution is to deploy a single
utility Action that can be customized in the Struts configuration and reused when-
ever it is needed. Since Struts creates one multithreaded instance of each Action
class, this is a very efficient way to ensure that control stays with the controller. All
we need to do is pass the Action and the path to the page.

 Happily, you can do this using the standard ForwardAction bundled in the
struts.jar. You simply pass the target path as the parameter property of the
ActionMapping:

<action
 path=" /Welcome"
 type="org.apache.struts.action.ForwardAction"
 parameter="/pages/Welcome.jsp"/>

The ForwardAction will then look up the target path from the mapping and use it
to return an ActionForward to the servlet.

 The practical upshot is that instead of

http://localhost:8080/logon/pages/Welcome.jsp

appearing on the browser’s address bar, where it could be bookmarked for direct
access, the Action URI appears instead:

http://localhost:8080/logon/Welcome.do

Users can still bookmark this address, but you have much more control now and
can change the implementation of the logon activity without worrying about what

104 CHAPTER 3

Building a simple application
some browser has bookmarked. Before, you would have had to consider what
should happen if they try to go directly to the old server page.

 In a Model-View-Controller architecture, the actions are your API. The server
pages are an implementation detail. If the JSPs are exposed to the browser as part
of the navigation system, then the Controller and View layers become mixed, and
the benefits of MVC are diluted.

 We can add other instances of the ForwardAction whenever we want to go
directly to a page. Since only one ForwardAction will be instantiated for the appli-
cation, all we are really adding is an ActionMapping object. If the usual MVC rea-
sons for using ForwardAction weren’t enough, the modular application feature
introduced in Struts 1.1 requires that all JSP requests go through an Action. This is
because each module has its own configuration context and control has to pass
through the ActionServlet controller in order to select the configuration for the
JSP page. This is not a requirement if you are using a single, default application.
But if you follow this practice from the beginning, you can make your application
a module without making any changes.

3.5 Summary

Regardless of what role you play on a development team—engineer, designer,
architect, QA—it’s helpful to have the big picture of how the application works as
a whole. In this chapter, we took a comprehensive look at a small but useful appli-
cation. By touring, dissecting, and then constructing a logon application, we were
able to show you how the Struts framework actually works. As part of the construc-
tion phase, we created a design document to outline our goals, client require-
ments, and program specifications. Given a design to work from, we configured
the application’s web.xml, our Ant build.xml script, and the Struts config file.
With the right infrastructure in place, we built each component in the order they
were needed. Along the way, we pointed out some best practices and emphasized
the importance of separating the model, view, and controller.

 In chapter 4, we take a closer look at the Struts configuration file. As we have
seen here, the configuration plays a strong role in Struts and makes applications
easier to design and maintain.

4Configuring
Struts components

Co-authored by Ted Husted and George Franciscus
This chapter covers
� The Web application deployment descriptor
� The Struts configuration file
� The application resources file
� The Ant build file
105

106 CHAPTER 4

Configuring Struts components
Change alone is unchanging.
—Heraclitus (c 535–c 475 B.C.)

4.1 Three XMLs and a Properties file

In addition to Java classes and JavaServer Pages, a developer must create, or
change, several configuration files to get a Struts application up and running:

web.xml. The web application deployment descriptor required by the Java Serv-
let specification. The servlet/JSP container uses this file to load and configure
your application.

struts-config.xml. The framework’s deployment descriptor. It is used to load and
configure various components used by the Struts framework.

build.xml. A file used by the Jakarta Ant build tool to compile and deploy your
application. Using Ant is not a requirement, but it is a popular choice among
Struts developers.

application.properties. This file provides the message resources for your Struts
application. Like the build.xml file, it is not a strict requirement but is used by
most Struts applications.

While working with these files might not seem like “Java development,” using
them correctly is an essential part of getting a web application out the door. In
this chapter, we take a close look at how these files work and what they contribute
to the development and deployment of your application.

4.1.1 The rest of the family

In addition to the configuration files that every Struts application needs, there are
some others that many Struts applications will also want to use. Additional XML
configuration files are needed to utilize optional components, such as the Tiles
framework and the Struts Validator. If you elect to subdivide your application into
multiple modules, each module may also have its own Struts configuration and
message resource files.

 In this chapter, we focus on the core configuration files first and then turn to
configuring the standard options available in Struts 1.1.

The web application deployment descriptor 107
1.0 vs 1.1 When this book was written, Struts 1.1 beta release 2 was in circulation.
Some details may have changed between beta 2 and the final release. Be
sure to check the book’s site [Husted] for any errata.

4.2 The web application deployment descriptor

The core of the framework is the ActionServlet, which Struts uses as a controller.
Although it can be subclassed, most developers treat the ActionServlet as a black-
box. They configure it from the web application deployment descriptor
(web.xml) and leave it alone.

 The ActionServlet can accept a number of initialization parameters. Most have
reasonable default values and do not need to be set. Others must be set in order
for your application to work correctly.

 In this section, we examine a typical Struts web deployment descriptor and
take a close look at the initialization parameters for the ActionServlet.

4.2.1 The web.xml file

The purpose and format of the web application deployment descriptor are cov-
ered by the Sun Servlet Specification [Sun, JST]. Basically, it is used to tell the serv-
let container how to configure the servlets and other high-level objects your
application needs.

 The Struts framework includes two components that need to be configured
through your application’s deployment descriptor: the ActionServlet and, option-
ally, the tag libraries. While most Struts applications do make use of the tag librar-
ies, they are not strictly required. Applications using only XLST or Velocity
templates do not need to configure the tag libraries at all.

 Listing 4.1 shows the web.xml file from our logon application (see chapter 3).
The numbered comments correlate to annotations following the listing.

<!-- b -->
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <!-- c -->
 <servlet>
 <servlet-name>action</servlet-name>

Listing 4.1 The logon application’s web.xml file

108 CHAPTER 4

Configuring Struts components
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>Application</param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/conf/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <!-- d -->
 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

 <!-- e -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>

 <!-- f -->
 <taglib>
 <taglib-uri>/tags/struts-bean</taglib-uri>
 <taglib-location>/WEB-INF/lib/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-html</taglib-uri>
 <taglib-location>/WEB-INF/lib/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-logic</taglib-uri>
 <taglib-location>/WEB-INF/lib/struts-logic.tld</taglib-location>
 </taglib>
</web-app>

b Identify as web application deployment descriptor—The first two lines identify the file as
a web application deployment descriptor.

The web application deployment descriptor 109
c Configure the ActionServlet—This block tells the container to load the ActionServlet
under the name action. Four parameters are passed to the ActionServlet: appli-
cation, config, debug, and detail. (There are several other parameters that
the ActionServlet can accept; we cover those in the next sections.) The final set-
ting in this block, <load-on-startup>, gives the action servlet a weighting with
the container. Setting it to 2 allows other servlets to load first if needed. This
would be important if you subclassed the ActionServlet so that it could make use
of resources loaded by some other servlet.

Only one ActionServlet or ActionServlet subclass can be loaded for an applica-
tion. The ActionServlet is designed to share resources with other components in
the application. Loading more than one will cause contention; one ActionServlet
will overwrite resources posted by another ActionServlet. Struts 1.1 supports mod-
ular applications but still only one ActionServlet.

d Identify Struts requests—This block tells the container to forward any file requests
matching the pattern *.do to the action servlet. This is the ActionServlet that we
configured in block (2). Requests for files not matching this pattern are not han-
dled by Struts. Requests for *.html or *.jsp files are usually handed by services
built into the container.

e Create the welcome file—Unfortunately, putting an index.do file here won’t work.
The container expects a welcome file to also be a physical file. In chapter 3, we
showed you how to use the welcome file to forward to a Struts action.

f Configure tag libraries—Here we configure the tag libraries that our application
uses. The three core Struts taglibs—bean, html, and logic—will be used by most
applications. If your application uses other taglibs, they would be configured here
too. The first element, <taglib-uri>, gives the library a logical name. This will
usually look like a file path, but it’s not. The JSPs can refer to this URI when they
import the taglibs. The second element, <taglib-location>, provides the con-
text-relative path to the taglibs descriptor (*.tld). The TLD specifies the actual
type (Java class) for the library. When the library is needed, the container searches
the classpath for the taglib’s class file. In the case of the Struts taglibs, the con-
tainer will find these packaged in the struts.jar file.

For more about the web application deployment descriptor, see the Java Servlet
Specification [Sun, JST] and Web Development with JavaServer Pages [Fields].

110 CHAPTER 4

Configuring Struts components
4.2.2 ActionServlet parameters

The Struts ActionServlet accepts several parameters, which are summarized in
table 4.1. Most of these were deprecated in Struts 1.1 in favor of components in
the new config package, which provides support for modular applications.

Table 4.1 ActionServlet parameters

Parameter Default Description Notes

config /WEB-INF/struts-
config.xml

The context-relative path to the
XML resource containing our con-
figuration information.

config/${prefix} The context-relative path to the
XML resource containing the con-
figuration information for the appli-
cation module that will use the
specified prefix (${prefix}).
This can be repeated as many
times as required for multiple
application modules.

convertNull false A parameter that forces simula-
tion of the Struts 1.0 behavior
when populating forms. If it’s set
to true, the numeric Java wrapper
class types (such as java.lang.
Integer) will default to null
(rather than 0).

debug 0 The debugging detail level that
controls how much information is
logged for this servlet. Accepts
values 0 (off) and 1 (least serious)
through 6 (most serious). Most
Struts components use either
level 0 or 2.

detail 0 The debugging detail level for the
Digester that we use to process
the application configuration files.
Accepts the values 0 (off) and 1
(least serious) through 6 (most
serious).

validating true Specifies whether we should we
use a validating XML parser to
process the configuration file
(strongly recommended).

Since
Struts 1.1

Since
Struts 1.1

The web application deployment descriptor 111
Application No default value The name of the application
resource bundle, styled as a
classname. To refer to a file
named application.properties in a
package named resources, use
resources.application here. In this
case, resources can be a subdi-
rectory under classes (or a pack-
age in a JAR file).

Deprecated; configure
this using the parame-
ter attribute of the
<message-
resources> element.

bufferSize 4096 The size of the input buffer used
when processing file uploads.

Deprecated; configure
this using the buffer-
Size attribute of the
<controller> ele-
ment.

content text/html The default content type and char-
acter encoding that is to be set on
each response; may be overridden
by a forwarded-to servlet or JSP.

Deprecated; configure
this using the
contentType
attribute of the <con-
troller> element.

factory org.apache.struts
.util.PropertyMes-
sageResources-
Factory

The Java classname of the Mes-
sageResourcesFactory used to
create the application Mes-
sageResources object.

Deprecated; configure
this using the factory
attribute of the
<message-

resources> element.

formBean org.apache.struts
.action.Action-
FormBean

The Java class name of the Action-
FormBean implementation to use.

Deprecated; configure
this using the class-
Name attribute of each
<form-bean> ele-
ment.

forward org.apache.struts
.action.Action-
Forward

The Java classname of the Action-
Forward implementation to use.

Deprecated; configure
this using the
className attribute of
each <forward>
element.

locale true If set to true, and there is a user
session, identifies and stores an
appropriate java.util.Locale
object (under the standard key
identified by Action.LOCALE_KEY)
in the user’s session (if there is
no Locale object already there).

Deprecated; configure
this using the locale
attribute of the
<controller>
element.

Table 4.1 ActionServlet parameters (continued)

Parameter Default Description Notes

112 CHAPTER 4

Configuring Struts components
mapping org.apache.struts
.action.Action-
Mapping

The Java class name of the Action-
Mapping implementation to use.

Deprecated; configure
this using the
className attribute of
each <action> ele-
ment, or globally for an
application module by
using the type
attribute of the
<action-mappings>
element.

maxFileSize 250M The maximum size (in bytes) of a
file that is to be accepted as a file
upload. Can be expressed as a
number followed by a "K", "M", or
"G", interpreted to mean kilo-
bytes, megabytes, or gigabytes,
respectively.

Deprecated; configure
this using the
maxFileSize
attribute of the <con-
troller> element.

multipartClass org.apache.struts
.uploadDiskMulti-
partRequest-
Handler

The fully qualified name of the
MultiPartRequestHandler imple-
mentation class that is to be used
for processing file uploads. If set
to none, disables Struts multipart
request handling.

nocache false If set to true, adds HTTP headers
to every response. Intended to
defeat browser caching of any
response we generate or forward
to.

Deprecated; configure
this using the nocache
attribute of the
<controller>

element.

null True If set to true, sets our application
resources to return null if an
unknown message key is used.
Otherwise, an error message
including the offending message
key will be returned.

Deprecated; configure
this using the null
attribute of the <mes-
sage-resources>
element.

tempDir The working direc-
tory provided to
this web applica-
tion as a servlet
context attribute

The temporary working directory
to use when processing file
uploads.

Deprecated, configure
this using the tempDir
attribute of the
<controller>
element.

Table 4.1 ActionServlet parameters (continued)

Parameter Default Description Notes

The Struts configuration 113
4.3 The Struts configuration

The Struts configuration file (struts-config.xml) is used to load several critical
framework components. Together, these objects make up the Struts configura-
tion. The Struts configuration and Struts ActionServlet work together to create
the control layer of your application. In this section, we explore why we need the
Struts configuration. In the next section, we look at how Struts developers create
and maintain the configuration.

NOTE Since Struts 1.1, an application can be subdivided into multiple modules.
Each module has its own Struts configuration. Every Struts application
has at least one default, or “root,” module. If you are not using multiple
modules, or are using Struts 1.0, then when we refer to a module, you can
think application. We discuss configuring a Struts 1.1 application for mod-
ules at the end of this chapter.

4.3.1 Details, details

The Struts configuration is a living blueprint of your application. It knows what fields
are on your forms. It knows where your JSPs can be found. It knows about every action
your application performs and exactly what resources each of these actions need.

 This may seem like a lot of information to collect in one place. And it is. But by
keeping all these implementation details together, many developers find that
their applications are much easier to create and maintain.

 Every component in the Struts configuration is a Java object. The ActionForm
objects know about the fields and forms. The ActionForward objects know where
to find your JSPs. The ActionMapping objects know which forms and forwards are
used with each command your application understands.

 A very simple application could create all of these informational objects in
an initialization method and then set each object to the default values needed.
For example:

ActionForwards globals = new ActionForwards();
ActionForward logoff = new ActionForward();
logoff.setName("logoff");
logoff.setPath("/Logoff.do");
globals.addForward (logoff);
ActionForward logon = new ActionForward();
logoff.setName("logon");
logoff.setPath("/Logon.do");
globals.addForward (logon);

114 CHAPTER 4

Configuring Struts components
and so forth. But, in practice, initialization methods quickly become maintenance
burdens and can cause as many problems as they solve.

 Ironically, a class like this does not involve any real programming. It just instan-
tiates objects from existing classes. Heck, it almost doesn’t need to be in Java at all.

 And, in fact, it doesn’t. The Java language can create any given class by name.
Java also supports features such as reflection that can determine which methods a
class supports at runtime.

DEFINITION Reflection tells us what methods are provided by any Java class. Introspection
helps us deduce which of those methods are properties that can be used
to configure a JavaBean at runtime. Java tools and frameworks (like
Struts) use reflection and introspection to automate loading and config-
uring JavaBean objects. This eliminates the mindless, error-prone task of
writing and loading custom objects that simply load other objects.

Put these features together and you really don’t need a Java class. You need a doc-
ument that describes how to instantiate a Java class as a fully functioning object.

 Of course, frameworks like Struts are not the only ones that have this problem.
The servlet container needs to the same thing for the same reasons. Developers
have to tell the container what servlets and other objects are needed by their
applications. Rather than have you write a Java class and plug it into the container,
the Sun engineers chose to use an XML document instead. The container reads
the XML document and uses it to instantiate and configure whatever servlets an
application needs.

 The Struts configuration file is to Struts what the deployment descriptor is to
your container. The Struts controller reads the configuration file and uses it to
create and configure whatever objects the framework needs.

 Every web developer who has written a deployment descriptor (web.xml) file
has used an XML element to create a Java object. For example, here’s how we
might deploy a servlet in a web.xml:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <load-on-startup>2</load-on-startup>
 </servlet>

Here’s how we would deploy the forward objects from the previous Java code seg-
ment in a Struts configuration file:

The Struts configuration 115
<global-forwards>
 <forward
 name="logoff"
 path="/Logoff.do"/>
 <forward
 name="logon"
 path="/Logon.do"/>
</global-forwards>

Point in fact, the struts-config does not configure your application as much as it
deploys it. But for most developers, it is very natural to think of these objects as the
“configuration,” and so that is the term we tend to use.

4.3.2 Change management

Deploying preconfigured Java objects this way is a very powerful feature. And with
great power comes great responsibility. Because the Struts configuration file loads
the framework objects, it also becomes responsible for the framework objects.

 By describing how framework components interact, the Struts configuration
file becomes a very effective tool for managing change within your application. In
practice, the file transcends a simple object loader and is used as a dynamic
design document.

 It is not hard to imagine a tool that could read the Struts configuration file and
use it to create a Universal Modeling Language (UML) diagram. Several Struts
GUIs are now available that help you maintain the XML (see section 4.4). It may
not be long before a visual tool can help you maintain the architectural design
that is expressed by the Struts configuration file.

4.3.3 The principle of Protected Variation

The Struts configuration file helps your application react to change quickly with
minimal effort. If an object needs to be initialized to another value, you do not
have to edit, compile, and deploy a Java class. Many of the configuration details
involve the presentation layer. The members of your team working on that layer
may not be Java engineers. Using an XML document makes the configuration
accessible to page designers and project administrators. A Java engineer is needed
to create and modify the base objects for an application, but configuring these
objects can be delegated to other personnel.

 In practice, we are separating things that rarely change—the underlying Java
classes—from things that often change—how the Java objects are deployed at run-
time. This is known as the principle of Protected Variation [Larman].

116 CHAPTER 4

Configuring Struts components
DEFINITION Protected Variation is a design principle that encourages the encapsulation
of predicted points of variation by using a stable interface. Data-driven
design, service lookup, interpreter-driven design, and reflective design
are some of the mechanisms available to implement Protected Variation.

Protected Variation reminds us that a single point of change will yield a single
point of maintenance. By separating implementation details (which often
change) from the base objects (which rarely change), we reduce the effort it takes
to maintain an application.

4.4 The Struts configuration elements

As discussed in section 4.3, the Struts configuration file is an XML document that
is used to deploy Java objects. Each element in the configuration corresponds to a
Java object. When you insert an element in the Struts configuration file, you are
telling the Struts controller to create a Java object when the application initializes.

 By starting from a blank configuration file with some commented examples, it’s
easy to cobble together a configuration file for your own application. But it’s also
easy to miss an important feature if all you do is follow some generic examples.

 Most Java developers know to look for the JavaDocs if they want more infor-
mation about a Java class, but where do you go for more information about an
XML document?

 Every well-formed XML document, including the Struts configuration file,
includes a pointer to the document that describes the elements it can use. This is
the document type definition (DTD). If you look at the top of the struts-con-
fig.xml, you will find this element:

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

This tells us that the official reference copy of this document’s DTD can be found
at the indicated URL. Internally, Struts uses the Digester, from the Jakarta Com-
mons [ASF, Commons], to parse the Struts configuration file. The Digester uses
the struts-config DTD to validate the format of the document and creates the Java
objects the file describes. If the XML file contains undocumented elements or
uses the elements in an undocumented way, the Digester will not process the file.

The Struts configuration elements 117
 If for any reason XML validation causes a problem, you can turn it off using the
validating servlet parameter described in section 4.3. But we don’t recommend
doing this.

 Internally, Struts uses its own copy of the DTD to process the configuration. It
does not fetch the reference copy from the Internet every time your application
loads. (For some mysterious reason, however, a small number of developers have
reported that setting validating=false seems to help some applications load
when no Internet connection is available. In general, you should leave validat-
ing=true whether or not you are connected to the Internet.)

 Table 4.2 summarizes the struts-config elements that can be used with
Struts 1.1. We’ve indicated when elements have been added since Struts 1.1.

Table 4.2 The struts-config elements

Element Description

data-sources Contains a set of DataSource objects (JDBC 2.0 Standard Extension).

data-source Specifies a DataSource object that is to be instantiated, configured, and made
available as a servlet context attribute (or application-scope bean).

set-property Specifies the method name and initial value of an additional JavaBean configu-
ration property.

global-exceptions Describes a set of exceptions that might be thrown by an Action object.

exceptions Registers an ExceptionHandler for an exception type.

form-beans Describes the set of form bean descriptors for this application module.

form-bean Describes an ActionForm subclass that can be referenced by an <action> ele-
ment.

form-properties Describes a JavaBean property that can be used to configure an instance of a
DynaActionForm or a subclass thereof.

global-forwards Describes a set of ActionForward objects that are available to all Action objects
as a return value.

forward Describes an ActionForward that is to be made available to an Action as a
return value.

action-mappings Describes a set of ActionMappings that are available to process requests
matching the url-pattern our ActionServlet registered with the container.

action Describes an ActionMapping object that is to be used to process a request for
a specific module-relative URI.

controller Describes the ControllerConfig bean that encapsulates an application module’s
runtime configuration.

Since
Struts 1.1 [

Since
Struts 1.1

Since
Struts 1.1

118 CHAPTER 4

Configuring Struts components
For your convenience, appendix B presents the struts-config DTD in a standard
API format. In this section, we examine the elements and provide usage examples.
For the nuts-and-bolts detail of each element and the attributes it accepts, we
refer you to appendix B.

NOTE If you don’t like editing XML by hand, or you are using Struts in an inte-
grated development environment (IDE), visual tools are available to help
you maintain the Struts configuration. Scioworks Camino [Camino] and
Struts Console [Console] directly manage the Struts configuration file.
Other products, such as Adalon by Synthis [Adalon] and ObjectAssem-
bler by ObjectVenture [ObjectAssembler], help you design your applica-
tion visually and then write the initial Struts configuration, Java classes,
and JSPs for you. For a current listing of the latest Struts-related products,
visit the Struts Resources page [ASF, Struts].

As mentioned, many programming components are configured with XML files
these days, including the Java servlet container. For more about Java and XML, we
recommend J2EE and XML Development [Gabrick].

4.4.1 <global-exceptions>

In a Struts application, the ActionServlet is at the top of the call tree, but the work
is delegated to an Action object. This divide-and-conquer strategy works well in
most circumstances, the exception being exception handling. Many applications
like to handle exceptions in a consistent way, but that could mean replicating
exception-handling code throughout several Actions.

 To treat an exception in a consistent way throughout all your Action objects,
you can register an ExceptionHandler for it with the Struts configuration file. The
framework provides a default ExceptionHandler (org.apache.struts.action.
ExceptionHandler) that stores the exception under a request-scope attribute,
creates an ActionError for your exception message, and forwards control to the

message-resources Describes a MessageResources object with message templates for this
module.

plug-in Specifies the fully qualified class name of a general-purpose application plug-in
module that receives notification of application startup and shutdown events.

Table 4.2 The struts-config elements (continued)

Element Description

Since
Struts 1.1 [

Since
Struts 1.1

The Struts configuration elements 119
JSP or other URI of your choice. The Struts <html:errors> tag will automatically
print the localized version of your exception message. So, you can use the same
page to display an exception error that you would use to display a validation error.

 If you need to do something else as well, the ExceptionHandler can be sub-
classed to add new behavior. Each exception can specify its own handler class, if
need be.

 You can register a global handler for an exception as well as a local handler for
a specific ActionMapping. To register an exception, you need to provide the
Exception type, the message resource key, and the response path, as shown here:

<exception
 type="org.apache.struts.webapp.example.ExpiredPasswordException"
 key="expired.password"
 path="/changePassword.jsp"/>

See chapter 9 for more about writing your own exception handlers.

4.4.2 <form-beans>

The Struts ActionForm (org.apache.struts.action.ActionForm) provides a
handy place to store the input properties submitted with an HTTP request. But to
store the input properties, the controller must first create an ActionForm and
save it in the request or session context, where the rest of the framework compo-
nents—such as JSP tags—can find it.

 When there are several forms on an input page, each needs a different
attribute name for its ActionForm object. So, we can’t just use one standard name.
Since the bean’s attribute name is part of its public API, we should be able to pro-
vide developer-friendly names for the ActionForm—logonForm, for example.

 Some flavors of ActionForms, such as DynaActionForms (org.apache.
struts.action.DynaActionForm), need to be passed additional properties when
they are created. So, we need a place to put these elements as well.

 The ActionFormBean (org.apache.struts.action.ActionFormBean)
resolves all of these issues by serving as a descriptor for an ActionForm object. Each
ActionFormBean has properties that describe an ActionForm’s attribute name and
type. The ActionFormBean can also contain property attributes to use with
DynaActionForms.

 The Struts configuration file provides a <form-bean> element to catalog the
ActionFormBeans used by a module. Each ActionFormBean is created by a
corresponding <form-bean> element. At runtime, the controller calls up the
appropriate ActionFormBean to find out which ActionForm object to create,
where to store it, and what attribute name to use.

120 CHAPTER 4

Configuring Struts components
 Here’s an example of a <form-bean> element for a conventional ActionForm
and another for a DynaActionForm:

<form-bean
 name="menuForm"
 type="org.apache.struts.scaffold.MenuForm"/>

<form-bean
 name="logonForm"
 type="org.apache.struts.action.DynaActionForm">
<form-property
 name="username"
 type="java.lang.String"/>
<form-property
 name="password"
 type="java.lang.String"/>
 </form-bean>

The menuForm <form-bean> represents a conventional ActionForm subclass; it
requires that a corresponding Java class be maintained. The logonForm <form-
bean> does not require use of a specialized subclass, but can use the DynaAction-
Form as is. (DynamicActionForms were introduced in Struts 1.1.)

 See chapter 5 for more about ActionForms, including DynaActionForms.

4.4.3 <global-forwards>

By centralizing detail, the Struts configuration minimizes change. When circum-
stances change, most of the implementation detail can be changed through the
configuration without touching any of the Java or JSP code.

 One of the thorniest details in a web application is the Uniform Resource Iden-
tifiers (URI) [W3C, URI]. Most URIs map directly to physical files in the applica-
tion’s directory tree. This makes life easy for conventional websites. To “put a page
on the web,” you just need to save the page to one of the website’s directories. The
directories are already mapped to the site’s public URI, and there is nothing else
to configure. Publishing a web page is just a matter of transferring a file.

 This is great until you want to move the page or decide to use a different page
instead. When that happens (and it always does), you have to update all your ref-
erences to the page wherever they appear in your application.

 If you miss any, and there’s still a reference to the old page someplace, you’ve
created what our database friends call an “update anomaly.” Two facts that are
supposed to be the same are now different.

 The database solution to this problem is normalization. We put the fact in a
table and have everyone look it up from the table. If the fact changes, then we just
update the fact table, and everyone stays on the same page.

The Struts configuration elements 121
 The Struts answer to a URI table is the ActionForward. An ActionForward associ-
ates a logical name with an URI. Other components can refer to the name without
knowing anything about the URI. If the URI changes, we change its ActionFor-
ward. When other components ask for the ActionForward’s path, they then get
the updated URI. As usual, by encapsulating detail behind a logical name, we min-
imize change and reduce the potential for error.

 The major consumers of ActionForwards are the Action objects. When an
Action completes, it returns an ActionForward or null. If the Action does not
return null, the ActionServlet forwards control to whatever path is returned by
the ActionForward. Typically, the Action will look up the ActionForward by name
and does not need to know anything about URIs. You can deploy global Action-
Forwards within the <global-forwards> element, like these:

<global-forwards>
 <forward
 name="logoff"
 path="/logoff.do"/>
 <forward
 name="logon"
 path="/logon.do"/>
 <forward
 name="welcome"
 path="/welcome.do"/>
</global-forwards>

These forwards are available to all the Actions in your application. You can also
deploy local ActionForwards with the <action> element. These local forwards
are available only to that ActionMapping.

 See chapter 6 for more about ActionForwards.

4.4.4 <action-mappings>

ActionForms store data that the application needs to collect. ActionForwards cata-
log what URIs the application will use. ActionMappings describe what operations,
or commands, the application can undertake.

 The Action object handles the actual work of an operation. But a number of
administrative details are associated with an operation. The ActionMapping is
used to package those details.

 One important detail is what URI [W3C, URI] will be used to call the Action
object. The Action’s URI is used as the logical identifier, or path, for the
ActionMapping. When a web browser makes a request for an Action’s URI, the
ActionServlet first looks for a corresponding ActionMapping. The ActionMap-
ping tells the ActionServlet which Action object to use for its URI.

122 CHAPTER 4

Configuring Struts components
 Besides the URI path and Action type, an ActionMapping contains several
other properties that can be used to control what happens when an Action is
called. Changing these properties can change how the Action object behaves.
This helps developers get more use out of the same Action object. Without an
ActionMapping object, developers would need to create many more Action
classes than they do now.

 You can also use an ActionMapping to simply forward or redirect control to
another path. But most often they are used in connection with an Action object.

 The <action-mappings> element describes the set of ActionMapping objects
(org.apache.struts.action.ActionMapping) that our application will use to
process requests. For the request to reach our application and then our Action-
Servlet, it must match the context and url-pattern we registered with the con-
tainer. Since all the requests match this pattern, we do not need to use the context
or url-pattern to identify an ActionMapping. So if the URL is for

http://localhost/myApp/myAction.do

we only need to refer to

/myAction

as the ActionMapping path. Each ActionMapping is created by a corresponding
<action> element, nested with the <action-mappings> element, as shown here:

<action-mappings>
 <action
 path="/logoff"
 type="app.LogoffAction"/>
 <action
 path="/logonSubmit"
 type="app.LogonAction"
 name="logonForm"
 scope="request"
 validate="true"
 input="/pages/Logon.jsp"/>
 <action
 path="/logon"
 type="app.ContinueAction">
 <forward
 name="continue"
 path="/pages/Logon.jsp"/>
 </action>
 <action
 path="/welcome"
 type="app.ContinueAction">
 <forward
 name="continue"

The Struts configuration elements 123
 path="/pages/Welcome.jsp"/>
 </action>

An ActionMapping can refer to over a dozen properties. Next to the Action
objects, ActionMappings are probably the most important part of a Struts applica-
tion. For more about ActionMappings, see chapter 7.

4.4.5 <controller>

Struts allows multiple application modules to share a single controller servlet. Each
module has its own Struts configuration and can be developed independently of
the other modules. The <controller> element allows each module to specify a
different set of configuration parameters for the ActionServlet. Most of these were
originally <init-params> set in the deployment descriptor.

 The attributes set by the <controller> element are stored in a Controller-
Config bean (org.apache.struts.config.ControllerConfig). A Controller-
Config is created for every application module, including the default root
module. If the module’s struts-config provides a <controller> element, it is used
to set the properties on the module’s ControllerConfig bean.

 Since the modules share the ActionServlet, you can also plug in a different
RequestProcessor for each module. This lets each module process a request in its
own way without subclassing the shared servlet.

 Here’s a <controller> element that sets the nocache and null configuration
properties to true and loads a custom request processor:

<controller
 nocache="true"
 null="true"
 processorClass="com.myCompany.struts.RequestProcessor"/>

The RequestProcessor is the heart of the ActionServlet’s processing cycle. In most
cases, you should be able to write and load a RequestProcessor as an alternative to
creating your own ActionServlet subclass. See chapter 9 for more about the
ActionServlet and RequestProcessors.

4.4.6 <message-resources>

Each module should have a default message resource bundle. This is the bun-
dle that Struts components, like the JSP tags, will use when no other is speci-
fied. You may also want to load additional bundles with specialized message
templates. For example, many developers like to keep a separate bundle with
image-related messages.

Since
Struts 1.1

Since
Struts 1.1

124 CHAPTER 4

Configuring Struts components
 The <message-resources> element is used to deploy whatever bundles your
application may need to use. Here’s an example of a <message-resources> ele-
ment that deploys the default bundle for this module, and another that deploys a
bundle for image messages:

<message-resources
 parameter="resources.application"/>

<message-resources
 parameter="resources.image"/>

When needed, the framework will look for the default message bundle in a file
named application.properties in a package named resources. The package, or
file folder, can be anyplace on the container’s classpath. Typically, the bundles are
either in a JAR file or under the WEB-INF/classes folder.

 If a JSP tag, or other component, specifies the resources.image bundle, the
framework will look for a file named image.properties in the resources package.

 See section 4.5 of this chapter for more about message resources and chapter
13 for more about localizing applications.

4.4.7 <plug-in>

It’s not unusual for an Action to need special resources to get its job done. It may
need to use a connection pool that is not DataSource compliant. It may need to
create application beans for its forms to use. It may need to read its own configu-
ration file to create a series of objects, in the same way the struts-config does.

 In a conventional web application, these tasks would usually be delegated to a
special servlet. In a Struts application, we tend to delegate everything to Actions
instead. When an Action needs to initialize and destroy its own resources, it can
implement the PlugIn interface (org.apache.struts.action.PlugIn). This
interface declares init and destroy methods that the controller can call at the
appropriate times.

 The PlugIn Action can then be registered with the Struts configuration via the
<plug-in> element. Here’s the standard plug-in for initializing the Struts Validator:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property
 property="pathname"
 value="/WEB-INF/validator-rules.xml"/>
<set-property
 property="pathname"
 value="/WEB-INF/validation.xml"/>
</plug-in>

Since
Struts 1.1

The Struts configuration elements 125
See chapter 9 for more about the ActionServlet and PlugIn Actions.

4.4.8 <data-sources>

While the Struts framework is model-neutral (see chapter 2), it may still need to
interact with the business and even the data-access layers. It is not unusual for a
component to expect the caller to pass it a live SQL Connection (java.sql.
Connection). This then makes the caller (for example, Struts) responsible for
managing the connection’s life cycle.

 To provide applications more flexibility in the way they connect to data-access
components, the JDBC 2.0 Standard Extension package offers a factory-based
approach to acquiring connections. The preferred way for an application to con-
nect to a database, or other data service, is to go through an object that imple-
ments the DataSource interface (javax.sql.DataSource).

 In a web application, a DataSource object usually represents a pool of connec-
tions that can be shared by all users of the application. Acquiring a database con-
nection can be expensive, in terms of both time and other resources. Typically, a
web application logs on to the database under a single account and then manages
the security concerns for individual users on its own.

 To help developers work with connections, Struts provides a DataSource man-
agement component. You can use this component to instantiate and configure
any object that implements DataSource and that can be configured entirely from
JavaBean properties.

 If your database management system does not provide its own component that
meets these two requirements, you can use the Jakarta Commons DataBase Con-
nection Pool BasicDataSource class (org.apache.commons.dbcp.BasicData-
Source). In Struts 1.1, the Struts GenericDataSource (org.apache.struts.
util.GenericDataSource) is a wrapper around the BasicDataSource class. (The
Struts class is now deprecated and provided only for backward compatibility.)

 If your database management system provides its own DataSource that can be
used with Struts, you should consider using that implementation instead. Using the
BasicDataSource or GenericDataSource with Struts is no more efficient than using
any other class. Choose the implementation that will work best in your environment.

 You can also configure more than one DataSource and then select them by
name. This feature can be used to provide better security or scalability, or to com-
pare one DataSource implementation with another.

 Here’s a DataSource configuration that uses the Struts default with a MySQL
database:

126 CHAPTER 4

Configuring Struts components
<data-sources>
 <data-source>
 <set-property property="maxCount"
 value="4"/>
 <set-property property="minCount"
 value="2"/>
 <set-property property="description"
 value="Artimus:MySQL Data Source Configuration"/>
 <set-property property="driverClass"
 value="org.gjt.mm.mysql.Driver"/>
 <set-property property="url"
 value="jdbc:mysql://localhost:3306/artimus"/>
 <set-property property="autoCommit"
 value="true"/>
 <set-property property="user"
 value="root"/>
 <set-property property="password"
 value=""/>
 </data-source>
</data-sources>

Unlike the other struts-config elements, the <data-source> element relies
heavily on the <set-property> element. Since developers will often need to con-
figure their own DataSource subclass, fewer attributes were built into the <data-
source> element. The DataSource objects are a bridge between Struts and the
data-access layer. The other components in the configuration make up the Struts
control layer.

4.4.9 Rolling your own

If you subclass any of the struts-config objects, you can use the <set-property>
element to pass your own properties to your subclass. This lets you extend the
framework classes without changing how the configuration file is parsed. Here’s
an example of passing an XLS stylesheet reference to a (hypothetical) custom
implementation of the ActionForward object:

<global-forwards type="app.struts.XlsForward">
 <forward name="logon">
 <set-property property="styleName"
 value="default"/>
 <set-property property="stylePath"
 value=" /logon.xsl"/>
 </forward>
</global-forwards>

When the XlsForward object for the logon element is instantiated, the Digester
will also call the equivalent of

The Struts configuration elements 127
logon.setStyleName("default");
logon.setStylePath("/logon.xls");

You can use this approach with any of the Struts configuration elements, making
all the objects fully pluggable.

4.4.10 A skeleton Struts config

Listing 4.2 is a skeleton Struts configuration file showing the most commonly used
elements and attributes. This file is much like the one that ships with the Struts
Blank application.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">
<struts-config>

 <data-sources>
 <data-source>
 <set-property
 name="${}"
 value="${}"/>
 </data-source>
 </data-sources>

 <form-beans>
 <form-bean
 name="${}"
 type="${}">
 <form-property
 name="${}"
 type="${}"/>
 </form-bean>
 </form-beans>

 <global-exceptions>
 <exception
 type="${}"
 key="${}"
 path="${}"/>
 </global-exceptions>

 <global-forwards>
 <forward
 name="${}"
 path="${}"/>
 </global-forwards>

 <action-mappings>

Listing 4.2 A skeleton struts-config

128 CHAPTER 4

Configuring Struts components
 <action
 path="${}"
 type="${}"
 name="${}"
 scope="${}"
 validate="${}"
 input="${}">
 <forward
 name="${}"
 path="${}"/>
 <exception
 type="${}"
 key="${}"
 path="${}"/>
 </action>
 </action-mappings>

 <controller processorClass="${}" />

 <message-resources
 parameter="${}"/>

 <plug-in
 className="${}">
 <set-property
 property="${}"
 value="${}"/>
 </plug-in>
</struts-config>

For the complete listing of Struts configuration elements and attributes, see the
struts-config API in appendix B.

4.5 The application resources file

The Struts framework provides a capable and flexible messaging system. We
touched on this system in chapter 3, and chapter 13 covers it more extensively. In
this section, we discuss the configuration files needed to get the system up and run-
ning. In section 4.4.6, we looked at how you tell Struts where to find your resource
bundle. In this section, we look at how you create the resource bundle. The text for
the messages is stored in a standard Java Properties file (java.util.Properties).
In the Java and JSP code, a key for the message is given; the text of the message is
retrieved from the Properties file at runtime. The framework documentation refers
to the message Properties file as the application resources or message resource bundle.

 If you want to localize your application, you can include additional application
resources files for the locales you would like to support. This creates a resource bun-

The application resources file 129
dle (java.util.ResourceBundle). The framework maintains a standard Locale
object for each user (java.util.Locale). The best message for the user’s locale
will be automatically selected from the resource bundle. For more about localiz-
ing Struts applications, see chapter 13.

DEFINITIONS A Locale object is an identifier for a particular combination of language
and region.

ResourceBundle objects contain locale-specific objects. When you need a
locale-specific object, you fetch it from a ResourceBundle, which returns
the object that matches the end user’s locale. The Struts framework uses
a String-based bundle for text messages.

The Properties file itself is a plain-text file with a key-value pair on each line. You
can create one with any plain-text editor, including Windows Notepad.

 The default name for the application resources file is determined by passing
an initialization parameter to the Struts ActionServlet in your web.xml. As you can
see in this code snippet, the parameter’s name is application:

<init-param>
 <param-name>application</param-name>
 <param-value>application</param-value>
</init-param>

There is no default value for this parameter. It must be specified before you can
use a Struts application resources bundle in your application.

 The application resources file must be on your application’s CLASSPATH for
Struts to find it. The best thing is to place it with your application’s class files. This
would either be under WEB-INF/classes or in a JAR file under WEB-INF/lib if you
are deploying your binaries files that way.

 The param-value should be the fully qualified name of your file in package for-
mat. This means that if you’re putting your application resources file directly under
classes, you can just state the filename, as shown in the previous code snippet.

 If you are putting the file under a subdirectory, then that directory equates to a
Java package. If the application resources bundle is in a subdirectory named
resources, you would specify it like this:

<init-param>
 <param-name>application</param-name>
 <param-value>resources.application</param-value>
</init-param>

130 CHAPTER 4

Configuring Struts components
The system path to the physical file would then be

WEB-INF/classes/resources/application.properties

If you moved the classes to a JAR, nothing would need to be changed. Struts would
find it in the JAR instead, along with your other classes.

 To localize your application, add resource files for each supported local by
appending the locale identifier to the base name, as shown here:

WEB-INF/classes/resources/
 application.properties
 application_es.properties
 application_fr_CA.properties

The application name is only a convention. There is no framework default. You
can change the name to whatever works best for you. Another common default is
to use ApplicationResources as the base name, since that was used in some
early Struts examples.

 For more about Properties files and resource bundles, see the Sun Java Tuto-
rial, Internationalization Trail [Sun, i18n] along with chapter 13 of this book.

 The Ant build file presented later in this chapter helps you manage applica-
tion resources bundles by automatically copying them from your source tree to
the binary class folder when the application is built. This keeps the original files
with the rest of the source code.

4.6 The Ant build file

While not strictly a necessary part of using or configuring Struts, many develop-
ers now rely on Ant and its build file to assemble, deploy, and even test their
applications. The build.xml file from our logon application (see chapter 2) is
based on the pragmatic skeleton file provided with our blank Struts application.

 This build file is set up to use a project tree that stores the source code in a
subdirectory under WEB-INF. This puts the entire application, source and bina-
ries, together in the same subdirectory system. This can be the application’s
working directory on your development server. If your container is good about
reloading class files, you can rebuild your application and try the latest changes
without restarting.

 See section 4.3 for a schematic of the source tree this build.xml expects.
Listing 4.3 shows our simple build.xml file in its entirety.

The Ant build file 131
<!-- b -->
<project name="logon basedir="." default="dist">
<property name="project.title" value="Logon"/>
<property name="project.version" value="1.2"/>
<property name="dist.name" value="logon"/>

 <!-- c -->
 <path id="project.class.path">
 <pathelement path="lib/struts.jar"/>
 <pathelement path="./classes/"/>
 <pathelement path="${classpath}"/>
 </path>

 <!-- d -->
 <target name="prepare">
 <tstamp/>
 </target>

 <!-- e -->
 <target name="resources">
 <copy todir="classes" includeEmptyDirs="no">
 <fileset dir="src/resources">
 <patternset>
 <include name="**/*.properties"/>
 </patternset>
 </fileset>
 </copy>
 </target>

 <!-- f -->
 <target name="compile" depends="prepare,resources">
 <!-- property name="build.compiler" value="jikes"/ -->
 <javac srcdir="src" destdir="classes">
 <classpath refid="project.class.path"/>
 </javac>
 </target>

 <!-- g -->
 <target name="clean" description="Prepare for clean build">
 <delete dir="classes"/>
 <mkdir dir="classes"/>
 </target>

 <!-- h -->
 <target name="javadoc" description="Generate JavaDoc API docs">
 <delete dir="./doc/api"/>
 <mkdir dir="./doc/api"/>
 <javadoc sourcepath="./src/java"
 destdir="./doc/api"
 classpath="lib/struts.jar:"
 packagenames="app.*"

Listing 4.3 The logon application’s build.xml file

132 CHAPTER 4

Configuring Struts components
 author="true"
 private="true"
 version="true"
 windowtitle=" API Documentation"
 doctitle="<h1>${project.title} Documentation (Version

${project.version})</h1>"
 bottom="Copyright © 2002"/>
 </target>

 <!-- i -->
 <target name="dist" description="Create binary distribution">
 <delete dir="./dist"/>
 <mkdir dir="./dist"/>
 <war warfile="./dist/${dist.name}.war"
 webxml="../WEB-INF/web.xml"
 manifest="../META-INF/MANIFEST.MF"
 basedir="../"
 excludes="WEB-INF/dist,WEB-INF/web.xml,META-INF/MANIFEST.MF"/>
 </target>

 <!-- j -->
 <target name="project" depends="clean,prepare,compile,javadoc,dist"/>
</project>

b The project block gives the overall build file a name, and specifies the base direc-
tory and the default target. When Ant loads the file, the target is the first block it
calls. To use a different target, change the default and save the file or override the
target on the command line. The default base directory is set to be the build.xml’s
current directory. Other parts of the script assume that this is the WEB-INF folder,
and will look for the source code in a subdirectory under the base directory. Sev-
eral other properties are set in this block that are used later. To use this file for
another application, you can just change these properties and leave the rest of the
build file be.

c The path block builds the classpath Ant will use when building our application. It
is executed each time regardless of what target is selected. Generally, this would
be a list of whatever JARs are in the WEB-INF/lib folder.

d The prepare target helps minimize the classes Ant compiles by comparing the
timestamp of the class file against the source file.

e The resources target copies any Properties files (java.util.Properties) from
the source tree to the classes tree. This way, you can keep the original Properties
files with the rest of your source code.

f The compile target first calls the prepare and resources targets and then builds your
source files. Either Jikes [Jikes] or the standard javac compiler can be used.

Configuring the Struts core 133
g The clean target ensures that everything will be rebuilt from scratch by dropping
and restoring the classes folder.

h The javadoc target builds the JavaDocs for the application. Generally, you will
need to specify the same JARs on the JavaDoc classpath as we specified for the
project’s path. Note that this is a colon-separated list. The JavaDoc compiler will
complain if it cannot find a class but should still generate documentation for the
classes it does find.

i The dist target creates a Web Archive (WAR) file for your application. This can be
used to deploy your application on your production server.

j The project target builds everything from scratch and prepares a binary distribution.

For more about Ant, we highly recommend you read Java Development with Ant
[Hatcher].

4.7 Configuring the Struts core

So far, we’ve covered the four files that you need to create or customize to get
your Struts application up and running:

� The deployment descriptor (web.xml)

� The Struts configuration file (struts-config.xml)

� The application resources bundle (application.properties)

� The Ant build file (build.xml)

Now, let’s put it all together as a Struts configuration checklist.

4.7.1 Installing Java and a Java servlet container

The first step is to set up a servlet container, like Tomcat. We walked through this
in chapter 1, but here’s a quick checklist for Windows that starts you from scratch:

� Download and install Java 1.4 (or later) from the JavaSoft website [Sun,
Java].

� Download and install Tomcat 4 LE (or later) from Jakarta [ASF, Tomcat].

Of course, Struts works with other web containers and other Java Virtual Machines.
These are only suggestions. The documentation in the Struts distribution includes
the technical specifications and notes on configuring various servlet containers.

134 CHAPTER 4

Configuring Struts components
4.7.2 Installing a development environment

We touched on setting up a development environment in chapter 3. Struts works
well in most Java environments. If you don’t already have one, a good place to
start is with jEdit and Ant:

� Download and install Ant 1.4 (or later) [ASF, Ant].

� Download and install jEdit [jEdit].

� Install the Ant add-in for jEdit.

But again, these are only suggestions. If you are already using something else, it
should work just as well.

4.7.3 Installing the Struts core files

All the stock files that you need to run Struts are provided in the Struts library distri-
bution (jakarta-struts-1.1-lib.zip). These include several JARs, the tag library descrip-
tors, DTDs, and standard XML configuration files. This set of stock files, combined
with the four files you provide, create a complete core Struts configuration.

 Here’s the checklist:

� Download and unzip the Struts library distribution [ASF, Struts].

� Copy all the *.jar files to your application’s /WEB-INF/lib folder.

� Copy all the *.tld files to your /WEB-INF folder.

� Copy all the *.xml and *.dtd files to your /WEB-INF folder.

� Create your deployment descriptor (see 4.2).

� Create your Struts configuration file (see 4.4).

� Create your message resources bundle (see 4.5).

� Create your Ant build file (see 4.6).

4.8 Configuring the Tiles framework

Tiles, an optional component of the Struts framework, is a powerful page assem-
bly tool and really a framework in its own right. We cover using Tiles in
chapter 11. You do not need to use or configure Tiles to use the rest of the Struts
framework. But if you would like to use Tiles, here’s the drill.

Since
Struts 1.1

Configuring the Tiles framework 135
NOTE This Tiles setup example is based on Struts 1.1 beta release 2. The proce-
dure changed between beta 1 and beta 2 and could change again by
Struts 1.1 final. Please check the book’s website [Husted] for any errata.

All of the files you will need to use Tiles are provided with the Struts library distri-
bution (see section 4.7). If you based your application on the Struts Blank applica-
tion (see section 4.10) or have otherwise already installed everything from the
Struts library distribution folder to your application’s /WEB-INF or /WEB-INF/lib
folder, then the essential files should already be present.

 Here’s the Tiles checklist:

1 Copy the struts-tiles.tld and tiles-config.dtd files (if missing) from the Struts
lib folder to your /WEB-INF folder.

2 Insert the following block (if missing) in your /WEB-INF/web.xml file,
next to any other <taglib> elements:
<taglib>
 <taglib-uri>/tags/tiles</taglib-uri>
 <taglib-location>/WEB-INF/tiles.tld</taglib-location>
</taglib>

3 Create a blank tiles-defs.xml (if missing) in your /WEB-INF folder, like this
one:
<!DOCTYPE tiles-definitions PUBLIC
 "-//Apache Software Foundation//DTD Tiles Configuration//EN"
 "http://jakarta.apache.org/struts/dtds/tiles-config.dtd">

<tiles-definitions>
 <!-- skeleton definition
 <definition
name="${name}"
path="${path}">
 <put
name="${name}"
value="${value}"/>
 </definition>
 end blank definition -->
</tiles-definitions>

4 Insert this <plug-in> element into your struts-config.xml, just before the
closing </struts-config> element:
 <plug-in className="org.apache.struts.tiles.TilesPlugin" >
 <set-property
 property="definitions-config"
 value="/WEB-INF/tiles-defs.xml" />
 </plug-in>

136 CHAPTER 4

Configuring Struts components
For examples of working Tiles applications, see the Tiles example application that
is bundled with the Struts distribution as well as our Artimus 1.1 example applica-
tion from chapter 16. The Struts Blank application (see section 4.10) also ships
with Tiles enabled.

 For an example of a working Tiles application for Struts 1.0, see our
Artimus 1.0 example application in chapter 15.

4.9 Configuring the Struts Validator

Like Tiles, the Struts Validator is an optional component of the Struts framework.
We cover using the Struts Validator in chapter 12. You do not need to use or con-
figure the Validator to use the rest of the Struts framework. But if you would like
to use the Validator, here’s the drill.

NOTE This Validator setup example is based on Struts 1.1 beta release 2. The
procedure changed between beta 1 and beta 2 and could change again by
Struts 1.1 final. Please check the book’s website [Husted] for any errata.

All of the files you will need to use the Validator are provided with the Struts
library distribution (see section 4.7). If you based your application on the Struts
Blank application (see section 4.10) or have otherwise already installed every-
thing from the Struts library distribution folder to your application’s /WEB-INF or
/WEB-INF/lib folder, then the essential files should already be present.

 Here’s the Validator checklist:

1 Copy the struts-validator.tld and validator-rules.xml files (if missing) from
the Struts library distribution to your /WEB-INF folder.

2 Insert the following block (if missing) in your /WEB-INF/web.xml file,
next to any other <taglib> elements:
<taglib>
 <taglib-uri>/tags/validator</taglib-uri>
 <taglib-location>/WEB-INF/struts-validator.tld</taglib-location>
</taglib>

3 Create a blank validations.xml (if missing) in your /WEB-INF folder, like
this one:
<form-validation>
 <formset>
 <!-- skeleton form
 <form name="${}">

Since
Struts 1.1

Getting started with the Struts Blank application 137
 <field
 property="${}"
 depends="${}">
 <arg0 key="${}"/>
 </field>
 </form>
 end skeleton form -->
 </formset>
</form-validation>

4 Insert this <plug-in> element at the end of your /WEB-INF/struts-
config.xml immediately before </struts-config>:
 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
 </plug-in>

For examples of working Validator applications, see the Validator example appli-
cation that is bundled with the Struts binary distribution as well as our Artimus 1.1
example application from chapter 16. The Struts Blank application (see
section 4.10) also ships with Validator enabled.

 For an example of a working Validator application for Struts 1.0, see our Arti-
mus 1.0 example application in chapter 15.

4.10 Getting started with the Struts Blank application

The Struts Blank application in the Struts binary distribution provides a skeleton
configuration that new applications can adopt and adapt. It contains all the base
files from the distribution and starter versions of the four configuration files that
developers provide (see section 4.7), along with skeleton configurations for Tiles
and the Validator.

 Struts Blank is distributed as a WAR file. To get started all you need to do is

1 Copy the struts-blank.war file from the webapps folder in the Struts binary
distribution to the WAR deployment directory for your container (usually
webapps).

2 Rename struts-blank.war to the name you want to use for your application.

3 Start or restart your servlet container.

The Struts Blank application will deploy under the name for your new applica-
tion. If you access the default page

http://localhost/myApp

138 CHAPTER 4

Configuring Struts components
your new blank application will display a simple welcome page.
 The Blank application does not ship with any Java source files—that’s your

job—but it does include the files and pages that we’ve summarized in table 4.3.

The Struts Blank application is designed to make it easy for you to get started on a
Struts project. If you deploy it on a local copy of a servlet container, like Tomcat or
Resin, you can start working on it right away. The build file is designed so that you
can work on the application “in place” and just restart the container, or reload the
application as you go.

 If you are working on a team, you may need to use a different layout since you
may need to check files in and out. But the simple things can still be simple, and
the Struts Blank application makes getting started with Struts very simple indeed!

Table 4.3 The Struts Blank starter files

Filename Purpose

/index.jsp A stock welcome page that forwards to a Struts Wel-
come action.

/pages/Welcome.jsp A Welcome JSP reached through the Welcome
action.

/classes/resources/application.properties The deployed ApplicationResource files. This is a
working copy; the original is kept with the other
source code files.

/WEB-INF/struts-config.xml A starter Struts configuration file with commented
examples of common elements.

/WEB-INF/tiles-def.xml A starter Tiles configuration file with commented
examples of some definitions.

/WEB-INF/validator-rules.xml The standard Validator configuration file that sets up
the basic validators.

/WEB-INF/validations.xml A starter Validations configuration file where you
would describe your own forms.

/WEB-INF/*.tld The tag library descriptor files for the Struts taglibs.

/WEB-INF/lib/*.jar The JARs upon which the framework classes
depend.

/WEB-INF/src/build.xml A working Ant build file.

/WEB-INF/src/java/ A starter directory for your Java source files.

/WEB-INF/src/resources/application.properties The original application.properties file. Edit this one
and then rebuild.

Configuring modular applications 139
 The one thing to note is that the build.xml file refers to some paths on your
local system that may or may not exist:

<property name=" jdbc20ext.jar"
value="/javasoft/lib/jdbc2_0-stdext.jar"/>
<property name="servlet.jar"
value="/javasoft/lib/servlet.jar"/>
<property name="distpath.project"
value="/projects/lib"/>

The jdbc2_0-stdext.jar and servlet.jar are needed to generate the JavaDocs. The
Blank build.xml will look for these under a /javasoft/lib folder on your default
drive. If necessary, you can change the path setting in build.xml to point to wher-
ever you keep these JARs:

� Your container should include a servlet.jar for the servlet API it supports
(for example, 2.2 or 2.3). Tomcat 4 keeps its servlet.jar in the $TOMCAT/
common/lib folder.

� The jdbc2_0-stdext.jar is included with the Struts library distribution. It is
not bundled with the Struts web applications. Many containers, like Tomcat,
will share a copy of this JAR. Putting another in the WEB-INF/lib folder
could possibly cause conflicts.

The other directory is a location to hold a distribution WAR for your application.
This can be used to deploy your application on a production server when develop-
ment is complete or when you are ready for testing. Again, you can change the
path or create the directory. The Blank build.xml factory setting is /projects/lib
on your default drive.

4.11 Configuring modular applications

A key benefit of the Struts architecture is that you can guarantee that all requests
flow through a single point of control. Developers can centralize functionality
that should be applied to every request and avoid repeating code throughout the
application. Since Java is a multithreaded platform, Struts’ use of a single control-
ler servlet also provides the best possible performance. Developers write less code
and the machine runs faster on fewer resources. Pretty good deal all around.

 In Struts 1.0, the singleton mindset ran all the way down to the Struts config-
uration files. They came one to a customer. If several developers were working
on an application, they needed to find a way to manage updates to the Struts
configuration.

140 CHAPTER 4

Configuring Struts components
 In practice, developers working on teams tend to divide their work up into log-
ical units, much the same way we divvy up Java code into packages. It’s not
unusual for team members to have their own “namespace” within the application.
In an online auction application, one team might be working on the registration
module; another team may be working on the bidding module. The first team
might have a /reg folder for their JSP pages and an app.reg package for their Java
code. Likewise, team 2 might have a /bid folder for their JSP pages and an app.bid
package for their Java code. In the message resource file, each team might also
prefix their message keys with reg. or bid.

 Of course, you don’t need to be on a large team to want to organize a large
project in this way. Many solo developers do the same thing. Limiting the number
of files in a folder or classes in a package is considered good project management.
Many developers will organize an application into logical modules whether or not
they need to share files.

4.11.1 Divide and conquer

In Struts 1.1, the idea of dividing an application into modules became more than
a convention—it’s now built into the framework. Let’s step back and take a look at
how Struts organizes an application into modules.

 The web application container lets us share use of the server by creating a con-
text for each application. This context maps to a subdirectory in the server’s
webapp directory. In the same way, Struts 1.1 lets you share use of an application by
creating a prefix for each application. Multiple modules can run within the same
application space, each under its own prefix, in much the same way that multiple
applications can run in the same server space—each under its own context.

 When we write web applications, we often refer to a context-relative URI. This
is a path that does not include the name, or context, of our application. Likewise,
when we write Struts applications, we often refer to a module-relative URI. Not
surprisingly, this is a path that does not include the module-name, or prefix, of
our module. Table 4.4 shows the absolute, context-relative, and module-relative
portions of the same URI.

Configuring modular applications 141
Just as you can write a web application and configure it to run under any context,
you can write a Struts application module and configure it to run under any pre-
fix. Writing a module is not much different than writing a stand-alone application.
All the real configuration takes place in the deployment descriptor. If you move a
module from the prefix to the root, or from the root to the prefix, or to another
prefix, none of the JSPs, Java code, or XML code in the module needs to change.

 To set up an application to use separate reg and bid modules, we could config-
ure our servlet descriptor like this:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <!-- The default (or "root") module -->
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>

 <!-- The register module -->
 <init-param>
 <param-name>config/reg</param-name> <-- Includes prefix! -->
 <param-value>/WEB-INF/struts-config-reg.xml</param-value>
 </init-param>

 <!-- The bidding module -->
 <init-param>
 <param-name>config/bid</param-name> <-- Includes prefix! -->
 <param-value>/WEB-INF/struts-config-bid.xml</param-value>
 </init-param>

 <!-- ... other servlet elements ... -- >
 </servlet>

In this example, the reg team can now work with the sturts-config-reg.xml and the
bid team can now work with the struts-config-bid.xml. Each can work on their
module just as if they were working alone on a single-module application. The

Table 4.4 Absolute, context-relative, and module-relative portions of the same URI

Portion URI

absolute URL http://localhost/myApp/myModule/myAction.do

domain-relative /myApp/myModule/myAction.do

context-relative /myModule/myAction.do

module-relative /myAction.do

142 CHAPTER 4

Configuring Struts components
framework makes all the adjustments for the module prefix, just as the container
can make adjustments for the application context.

 Well, almost all the adjustments…

4.11.2 Prefixing pages

When the framework adjusts the URIs for a module prefix, it adjusts all the URIs,
whether they are to an ActionMapping or some other resource in the module’s
namespace, such as a JSP. Inside the struts-config-reg.xml, we might have a
module-relative URI, like /input.do. The context-relative version of this becomes
/bid/index.do. Likewise, we might have a reference to /pages/Index.jsp, and the
context-relative rendition of this will be /bid/pages/Index.jsp.

 Moving the ActionMappings around is easy enough; they’re virtual anyway. But
many of the URIs reference JSPs, which correlate to physical files. Other URIs may
also refer to HTML pages, image files, and so forth.

 This means that while the bid team can omit the module prefix from the URIs
in the Struts configuration, they still need to know which prefix they are using, so
they know where to store their pages. And if the prefix changes, they need to
rename that directory. They will not need to change any of the JSP, Java, or XML
coding, however, although they will have to synchronize the name of their pages
directory with the module name.

 This really isn’t any different than what we have to do with applications. If we
are uploading files to an application, we need to know what context-directory it is
under. And if we are uploading files to a module, we need to know what module-
directory it is under.

4.11.3 Retrofitting a configuration

If you already have a Struts 1.0 application set up like a modular application, the
only real trick is to take the module-prefix out of the module’s configuration file.
If the pages are already under a subdirectory keyed to the module name, they can
stay where they are, and you’re done. If not, you should be able to move them
under the module-directory without making any other changes (unless of course,
some nasty hardcoded links snuck in where <html:link> tags should have been).

4.12 Sharing the Struts JAR

The Struts JAR can be shared by all the applications in your web container, if your
container supports this functionality. (Most do or soon will.) Consult your con-
tainer’s documentation to learn how to install shared JARs. In most cases, you

Summary 143
simply place the Struts JAR in a shared lib folder and then remove it from all the
/WEB-INF/lib folders.

 For Tomcat 4, the shared library folder is at

$TOMCAT/common/lib

For a default Windows installation, that would map to \Program Files\Apache
Tomcat 4\common\lib.

 Of course, this means that all Struts applications sharing this JAR must be using
the same version.

4.13 Summary

No application is an island. To get all the components of an application working
together, you have to create and maintain several configuration files. To get a
Struts application up and running, most developers need to provide a Struts con-
figuration file, an application resources file, the web application deployment
descriptor file, and an Ant build file. This chapter stepped through the nuts and
bolts of creating these files.

 A key benefit of the Struts configuration is that it embraces change. Since the
implementation details are centralized, a Struts application can be completely
rewired from the Struts configuration, without making any changes to Action
classes or the presentation pages.

 The components initialized by the Struts configuration—ActionForms, Action-
Forwards, and ActionMappings—form the core of the Struts controller. Taken
together, these objects represent the external and internal API of the applica-
tion—the rest is implementation detail. These core components map out the
input to accept, the places to go, and the things to do in your application.

 So what’s next?
 In part 2 of this book, we drill down on each of the core components to help

you get the most out of them. In part 3, we focus on the visible portions of your
application: the pages. Part 4 puts it all back together again by presenting several
case studies using techniques introduced in parts 1 through 3.

 But if you are itching to get started, at this point you should have enough
knowledge at your fingertips to get started on your own application. Then, if you
like, as the rest of the book unfolds, you can refactor, improve, and extend your
application as new techniques are introduced.

Part 2

Raising your framework

Part 2 zooms in on each of the core framework components. Our goal is to
brief you on how each component works and show you how the component is
used by working developers. In most cases, we present several alternative ways
to use the components, since we know that different developers and different
applications have their own needs.

5Coping with ActionForms
Co-authored by Ted Husted and George Franciscus
This chapter covers
� Understanding the ActionForm life cycle
� Examining the responsibilities of an ActionForm
� Discussing ActionForm design characteristics
� Using ActionForm best practices
� Populating and debriefing ActionForms
� Introducing the Scaffold BaseForm
147

148 CHAPTER 5

Coping with ActionForms
The sweat of hard work is not to be displayed. It is much
more graceful to appear favored by the gods.

—Maxine Hong Kingston,
The Woman Warrior: Memoirs of a Girlhood among Ghosts

5.1 Garbage in, treasure out

People who use web applications often spend a lot of time submitting data
through HTML forms. Sometimes it’s new data being submitted through a blank
form. Other times, it’s data that’s being updated and submitted again.

 HTML forms provide the web developer with two challenges: capturing the
data when it submitted and prepopulating a form with any data the user may have
to revise. If the user selects an address record that has to be updated, we need to
copy the data from that record into an HTML form. This means we must be able
to change the page for each request by passing the form dynamic values.

 HTML does not have a built-in facility for prepopulating a control with
dynamic values. A page that needs customization is written to the response at run-
time by a component that mixes the static and dynamic HTML together in its own
proprietary way.

 There are several ways to write dynamic HTML in a Java web application, the
most common being JavaServer Pages. The Struts distribution includes a set of JSP
tags that you can use to write dynamic HTML controls. Like many taglibs, the
Struts tags are designed to work with JavaBeans. As we saw in chapter 1, JavaBeans
are simple but powerful objects that follow a set of design guidelines.

 Unlike the HTML elements, the Struts tags provide a standard way to populate
a control. Each HTML tag corresponds to a standard HTML element. Each JSP tag
has a property attribute that provides the name of a property on the bean. The
return value of the JavaBean property is used as the value attribute of the control.

 So, if there is an element like this:

<input name="address"/>

it can be substituted for a Struts JSP tag like this:

<html:input property="address"/>

Garbage in, treasure out 149
The tag retrieves the address property from the JavaBean and inserts it as the
HTML element’s value. When the browser gets the markup, it looks something
like this:

<input name="address" value="6 Lost Feather Drive"/>

where calling the ActionForm’s getAddress() method returns the String "6 Lost
Feather Drive".

NOTE In some programming contexts, the word “property” is synonymous with
an attribute, field, or variable. In these cases, a property represents a stor-
age location. JavaBean properties will most often use a field to store a val-
ue, but the JavaBean “properties” are actually the methods that are used to
retrieve the value. When we talk about public properties, we are not talk-
ing about fields on the JavaBean object. We are talking about the meth-
ods that are used to retrieve or set a value. Sometimes these values are
stored in a field. Other times, they may be calculated from several fields
or retrieved from other objects. The power of JavaBeans is that the object
can control how the value is stored but still make it publicly accessible
through the mutator and accessor methods.

To complete the process, when the form is submitted to the Struts controller, it
converts the HTTP parameters back into a JavaBean. Most of the input from an
HTML form will have to be validated before it can be passed to the business tier. If
a field is supposed to contain a number, it’s our job to make sure it is indeed a
number. When validation checks fail, we can pass the JavaBean back to the page.
The JSP tags populate the HTML elements from the JavaBean properties, and the
user can correct the input and try again.

 Any JavaBean can be used with the Struts JSP tags to populate a control. But to
provide automatic validation of the input, Struts uses its own JavaBean subclass,
called the ActionForm.

 Once the input from an HTML form is transformed into an ActionForm bean
and the properties are validated, the form’s input is delivered to the Action as a
nice, tidy JavaBean. The Struts Action object uses the form bean while it conducts
the business operation, handles any errors, and selects the response page. Chap-
ter 8 covers the Action object in depth.

150 CHAPTER 5

Coping with ActionForms
5.1.1 ActionForm requirements

Creating an ActionForm subclass is not difficult, but your class must meet some
simple requirements:

� An ActionForm must extend from org.apache.struts.ActionForm. The
base ActionForm class cannot be instantiated.

� An ActionForm must define a public property for each HTML control it
should harvest from the request. (Struts 1.0 requires both a mutator and
accessor for each property. Struts 1.1 is not so strict.)

The ActionForm may also meet the following optional requirements:

� If you want the ActionForm to validate the input before passing it to the
Action, you can implement the validate method.

� If you want to initialize properties before they are populated, you can imple-
ment the reset method, which is called before the ActionForm is populated.

Listing 5.1 shows a simple ActionForm class.

import org.apache.struts.action.*;
public class MyForm extends ActionForm {
 protected String name;
 protected String address;

 public String getName()
 {return this.name;};
 public String getAddress()
 {return this.address;};

 public void setName(String name)
 {this.name = name;};
 public void setAddress(String address)
 {this.address = address;};

};

In Struts 1.1, you can also use the DynaActionForm class and declare your proper-
ties in the Struts configuration file. Listing 5.2 shows the same simple ActionForm
as a DynaActionForm.

Listing 5.1 MyForm.java

The many faces of an ActionForm 151
<form-bean
 name="myForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property
 name="name"
 type="java.lang.String"/>
 <form-property
 name="address"
 type="java.lang.String"/>
</form-bean>

For more about the Struts configuration file, see chapter 4.
 While the requirements for ActionForms start out simply, they play a surpris-

ingly strong role in the development of many applications. ActionForms may be
the most misunderstood aspect of the Struts framework. These hardworking Java-
Beans play the role of field harvester, firewall, data buffer, data validator, type
transformer, and transfer object.

 Sometimes they seem redundant, sometimes they seem invaluable, but at every
turn, ActionForms are a focal part of the framework—a key part of what makes
Struts Struts.

 In this chapter, we explore the ins and outs of the ActionForm so that your
application can get the most from this Struts cornerstone class.

5.2 The many faces of an ActionForm

ActionForms are versatile objects. As we explained earlier, they can play the role
of field harvester, data buffer, type transformer, and transfer object—all within
the span of a single request. Let’s step through some of the responsibilities an
ActionForm may have in your application.

5.2.1 The ActionForm as a field harvester

Most applications need data from their users. Many applications need a lot of
data. In a web environment, collecting data presents its own set of challenges.
HTML defines a barely adequate set of data-entry controls. HTTP defines a barely
adequate protocol for data transfer. Struts uses ActionForms to help compensate
for the shortcomings of HTML and HTTP.

 HTTP is a surprisingly simple protocol that transfers everything in the most
basic way possible. As protocols go, it’s easy to implement and even efficient in its

Listing 5.2 myForm form bean

152 CHAPTER 5

Coping with ActionForms
own way. But when used for applications, HTTP leaves many implementation
details as an exercise for the developer.

Submitting fields via HTTP
When an HTML form is submitted via HTTP, everything is reduced to text. The
form elements a web server receives come in as name-value pairs. These are text-
only strings, not binary data.

 Figure 5.1 shows a simple form, with two fields, Name and Amount. Figure 5.2
shows the URI that a browser would submit for this form.

The POST method, shown in Figure 5.3, can be used to hide what is submitted,
but the result is the same: whatever is typed into the form is submitted as pairs of
URL-encoded name-value strings.

DEFINITION The HTTP specification allows form data to be submitted as part of the
URI, but not every character can be used in a URI. If other characters are
needed by the form data, they must be encoded. URL encoding of a char-
acter consists of a % symbol, followed by the two-digit hexadecimal

Name:

Amount: $

Submit Reset

Ted

1.00

Figure 5.1 A simple form with two fields

http://localhost/app/submit.do?name=ted&amount=1.00

Figure 5.2 A GET request from a form

POST /app/submit.do HTTP/1.0
Content-Type: application/x-www-form-URL-encoded
Content-Length: 22

name=ted
&amount=1.00

Figure 5.3 A POST request from a form (simplified)

The many faces of an ActionForm 153
representation (not case-sensitive) of the ISO-Latin code point for the
character. For more, see RFCs 1738 and 2396 [W3C URL; W3C URI] and
the HTML 4.01 specification at 17.13.4 [W3C HTML4].

Submitting files via HTTP
Some forms allow you to attach a file that users can upload. In that case, the
attachment is specially encoded so that only text characters are submitted. This
workaround lets us transmit binary files via HTTP, but only because the files have
been converted to a stream of text characters and then converted back again.

Submitting blank fields via HTTP
If a text field is blank, most browsers will submit a blank parameter. But if a check-
box is blank, the browser may not submit anything at all. The application must
deduce that since the checkbox is absent, it must be false or null. In practice, this
applies only to checkboxes, but the specification allows a browser to omit any
empty field.

Receiving it all via HTTP
Parsing the HTTP text stream looking for name-value pairs is not a pleasant task.
The Servlet API provides several useful methods to help you discover what was
submitted and pull out just what you need. But a lot of tedious coding can still
be involved.

The ActionForm solution
The Struts solution to HTTP parameter handling is to transform the input fields
into JavaBean properties. When a property on the ActionForm matches a parame-
ter in the request, the framework automatically sets the property to the value of
the parameter. A Struts developer can work with a trusty JavaBean and leave the
HTTP rigmarole to the framework.

 To harvest request parameters, all the Struts developer needs to do is provide
an ActionForm with JavaBean properties that match the names of the HTTP
parameters. The rest is automatic.

5.2.2 The ActionForm as a data buffer

In a conventional (non-web) user interface, controls have an internal buffer that
captures the user’s input so it can be validated. If validation fails, the user can’t
leave the control. If validation succeeds, the data is transferred to another field of

154 CHAPTER 5

Coping with ActionForms
the appropriate type. The developer does not usually “see” the internal buffer, but
it’s there.

 HTML controls do not have a built-in buffer or any reliable way to ensure a field
is validated before it is submitted. There are things you can do with JavaScript, but
JavaScript can be disabled.

 The ActionForm serves as the missing buffer for HTML controls. It preserves
the input until it can be validated and transferred to another field of the appro-
priate type. If the user enters letters in an Integer field, the original input should
be returned, including the invalid characters. A user can see what went wrong,
correct the data, and try again. This also means that the ActionForm properties
should be Strings so that any input can be captured, valid or not.

 ActionForm fields are not the destination of the input, but a buffer to be vali-
dated before the input is committed.

5.2.3 The ActionForm as a data validator

While existing projects will often already have JavaBeans that perform validation,
few if any of these beans will be able to buffer invalid input so it can be corrected.
The ActionForm’s validate method is an extension point where you can insert
calls to business-tier methods (that know how to validate the data). When valida-
tion fails, the ActionForm can ferry the whole shebang back to the web page,
where the user can try again.

 But ActionForms are not about validation as much as they are about correction.
Many fields must be the correct type before they can be processed by the business
logic. Data on its way to an Integer field must not contain alphabetic characters. If
it does, you can have the user correct the data before moving forward.

 Usually, this is just a prima facie validation. Knowing that a field is an Integer
doesn’t tell us that it is the right Integer. Many applications perform validation in
two phases. First, they use the ActionForm validate method to determine
whether the input is the right type and whether it can even be used with the busi-
ness process. Once that phase is completed, the Action may perform additional
validation to determine whether the input matches other requirements of the
business tier. If the business validation fails, you can return control to the input
page just as if it had failed the ActionForm validate method.

 The Struts framework gives you the flexibility of handling data validations in
the ActionForm, in the Action, or in both, as your needs dictate.

 In chapter 12, we explore the Struts Validator, which extends the use of the
ActionForm validate method.

The many faces of an ActionForm 155
5.2.4 The ActionForm as a type transformer

A sticky point of ActionForms is that they should use only String and boolean
properties. In practice, this means that properties must be converted from one
type to another. Most applications also require that some properties, such as tele-
phone numbers or amounts, be formatted in specific ways. The core Java pack-
ages provide tools for doing this sort of thing, but cleanly integrating these
features into a web application is still a challenge.

 Struts developers often include helper methods on ActionForms to help with
type conversions and transformations. The helper methods are implemented in
various ways, which we cover in section 5.6.

5.2.5 The ActionForm as a transfer object

An ActionForm is a carrier for data to be used by another bean or process—which
is to say, an ActionForm is a transfer object. Like other transfer objects, the data it
carries often maps to more than one entity in the persistent store (for example, a
database table). But unlike with conventional transfer objects, the individual
properties of an ActionForm must be mutable. HTTP will represent each property
as a separate name-value pair. It is much simpler if each property can be set inde-
pendently. By contrast, other transfer objects are often set only when instantiated
and cannot be changed afterward.

DEFINITIONS Transfer objects (also known as value objects [Go3]) are designed to effi-
ciently commute fine-grained data by sending a coarse-grained view of
the data. Often used in remote applications, a transfer object can group
several related properties so that they can be serialized and sent to the re-
mote server in a single operation.

Mutable means “capable of or subject to change or alteration.” Computer
programs may contain both mutable and immutable elements. Some ob-
jects are designed so that they cannot be changed and are referred to as
immutable. Most objects are designed so that they can be changed and are
referred to as mutable.

STRUTS TIP Use coarse-grained ActionForms to reduce class maintenance. In prac-
tice, the forms in your application will often share properties. It is often
easier to create a base ActionForm with all the properties needed by your
forms. If necessary, you can subclass the coarse-grained properties bean
and provide specialized validate and reset methods.

156 CHAPTER 5

Coping with ActionForms
5.2.6 The ActionForm as a firewall

When a request is submitted, the ActionServlet uses an autopopulation mecha-
nism to set the request’s ActionForm properties from the request parameters.
This lets you control which request parameters are accepted by controlling which
ActionForm properties are exposed. It also means that you can lose control of
which parameters are accepted if your ActionForm design is careless. An Action-
Form must not include methods that look like JavaBean properties but are not
meant to be set from an HTTP request.

 You should keep in mind the automatic aspect of the population mechanism
when you’re designing ActionForms. The autopopulation mechanism will happily
set from the request whatever public properties are on an ActionForm, whether
or not they came from one of the HTML forms. So if you were to reuse a bean as
an ActionForm, any public property on that bean—and its super classes—can be
set from an HTTP request. Since the references can be nested and chained, any
bean that is a member property is also exposed, along with any of its super classes
and any of their member properties. If any of these beans can make some imme-
diate change in the system state, then a spoofer could affect that state change—
even though it was not an intended use of the program.

 If you are creating ActionForms from scratch for their intended purpose, you
should have nothing to fear from autopopulation. But some developers like to
place business objects on ActionForms so they can pass through values from the
request. If you do this, any method that looks like a JavaBean property, and
accepts a String value, can be invoked from an HTTP request.

 An example is the upload buffer size in the ActionServlet. In Struts 1.0, the
ActionServlet was exposed as a member property on the ActionForm. This means
in Struts 1.0, you could call ActionServlet.setBufferSize from any HTTP
request to a Struts application. Fortunately, doing that had no effect, since the
ActionServlet uses the value only on initialization. However, if the servlet did
refer to it at runtime, a spoofer could have set the buffer size to 0, creating a
denial-of-service exploit.

 Using a bean that can affect the system state as an ActionForm, or part of an
ActionForm, is like passing input fields straight through to a shell script. There is
no telling what hijinks clever but misguided people may come up with. The
ActionForm is like a demilitarized zone (DMZ) in a firewall system: it lets you
examine the input being offered before that data is allowed through to the rest of
the application.

ActionForm design consequences 157
5.3 ActionForm design consequences

The design of ActionForms yields several consequences. An ActionForm may:

� Share property names with business logic beans

� Minimize custom code

� Encapsulate helper methods

� Contain other JavaBeans

5.3.1 ActionForms may share names

Since they interact with business logic beans, ActionForms may often use the same
set of property names found on a corresponding business logic bean. Usually
there is no correlation between the properties, so this is generally a good practice
to follow. While the form and logic beans may ultimately represent the same data,
they represent the data at different points of its life cycle. The logic beans repre-
sent the state of the model. The form beans represent a proposed change to that
state. ActionForm beans collect and validate input (“in the wild”). The business
logic beans then process the captured data (“back in the office”) and incorporate
the new data into the model.

 So while the beans may share property names and create a common protocol,
they really do not share data. Data that has been accepted into the model is one
thing; data that may be accepted into the model is another.

DEFINITION A message protocol (or message interface) is a technique based on reflec-
tion that allows objects to share information by observing a common
naming convention in lieu of a sharing common hierarchy. Two Java-
Beans share the same message protocol if they have properties of the
same name that return comparable values. Whether the JavaBeans are of
the same class or super class doesn’t matter. A message protocol oper-
ates by reflection and cares only about the property (or “message”)
names. Different JavaBeans can use the same Struts JSP as long as the
beans follow the same protocol. If the beans have properties of the same
name, the Struts tags can find the right methods to call. Many Struts ap-
plications will return a bean directly from the business tier and pass it to
an HTML form. When that page is submitted, an ActionForm bean shar-
ing the same protocol is used to catch and validate the parameters. If val-
idation fails, control may be returned to the same page. The tags will
now use the properties from the ActionForm bean. Each bean was of a

158 CHAPTER 5

Coping with ActionForms
different class, but since the JSP tags are based on reflection, the tags do
not care as long as the beans use the same message protocol (or set of
method names). [Johnson]

5.3.2 ActionForms may minimize custom code

In a typical deployment, the code used in an ActionForm is directly related to the
presentation layer and often specific to an HTML presentation layer. Custom
helper methods, with business-specific outputs, are usually found in the business
logic beans, where they can be reused in another environment. Both ActionForms
and Action classes are designed to be adaptors, to encourage keeping the business
code on the business tier and the presentation code on the presentation tier. See
chapter 1 for more about the importance of layers and tiers.

5.3.3 ActionForms may encapsulate helpers

In practice, developers find it helpful for an ActionForm to format or validate
data according to specific business rules used by their application. Since the
ActionForm is a JavaBean, it can pass the input to a business helper method to
perform that actual formatting and validating, and then pass the result back to
the presentation tier.

 Static methods are useful here since the operation is usually a simple filtering
process:

public String getTelephoneText() {
 return ContactBean.formatTelephone(
 this.telephoneText,getLocale());
}

Here, the ActionForm imported a ContactBean from the business layer. Most
developers agree that the control layer can import from the business layer (but
not the other way around!).

5.3.4 ActionForms may nest other beans

Both the Struts tag extensions and the autopopulation mechanism support a dot-
ted syntax to access beans with the ActionForm beans. This can be a convenient
way to populate an existing bean via an ActionForm. In a JSP page, you can refer
to a nested bean like this:

<html:text
 property="values.telephoneText"
 size="14"
 maxlength="14"/>

ActionForm design consequences 159
This the calls the equivalent of

aForm.getValues().getTelephoneText()

The browser will then submit the parameter via HTTP as

values.telephoneText=555-1234

and the autopopulate mechanism will then call the equivalent of

aForm.getValues().setTelephoneText(
 (String) request.getAttribute(valueBean.telephoneText);

Protecting yourself from the Nesting Exploit
When nesting beans, do remember that your ActionForm must be prepared to
handle any type of HTTP request, not just the ones submitted from the forms you
control. HTTP requests are very easy to spoof. If your nested bean has any meth-
ods that accept a String parameter and look like a JavaBean property, that
method can be passed a value from an HTTP request.

 In Struts 1.0, the base ActionForm exposed a servlet property linked to the
application’s ActionServlet. Access to the servlet was needed to process a multi-
part Multipurpose Internet Mail Extension (MIME) request. A side effect was that
this query string could be sent to any Struts 1.0 Action to change the TempDir
property on the ActionServlet at runtime:

?servlet.setTempDir=/whatever

which calls the equivalent of

ActionForm.getServlet().setTempDir("/whatever")

In practice, this usually has no effect, since the property is used only at instantia-
tion. In Struts 1.0.1 and later, a wrapper class is used to protect the ActionServlet
object:

public class ActionServletWrapper {
 protected transient ActionServlet servlet = null;

 public void log (String message, int level) {
 servlet.log(message,level);
 }

 public void log(String message) {
 servlet.log(message);
 }

 public String getMultipartClass() {
 return servlet.multipartClass;
 }

160 CHAPTER 5

Coping with ActionForms
 public void setServletFor(MultipartRequestHandler object) {
 object.setServlet(this.servlet);
 }

 public ActionServletWrapper (ActionServlet servlet) {
 super();
 this.servlet = servlet;
 }
}

The wrapper discloses only the properties the framework needs. Other properties
of the ActionServlet are protected from tampering.

 The Nesting Exploit stresses the fundamental design principle that an object
should expose only what it expects to be changed. This is a good principle for
designing not only ActionForms but any JavaBean.

 Nesting beans is a powerful technique but must be used with care.

5.4 ActionForm flavors

In Struts 1.1, two standard alternatives are available to the base ActionForm: map-
backed ActionForms and DynaActionForms.

5.4.1 Map-backed ActionForms

Many large web applications need to use hundreds of properties. Developers of
these applications chaff at creating and maintaining ActionForm beans that do lit-
tle more than declare a field, a getter, and a setter. These applications often hook
up with a mature business-tier component that is being used with other platforms
and is now being adapted to a web application. Since the bean protocol is already
well defined, all these applications really want to do is store whatever fields are
submitted with a minimum of fuss.

 Of course, at the same time, not every property on the form is a simple prop-
erty—maybe just eight out of ten.

 In Struts 1.1, ActionForms can support mapped properties. Among other
things, this makes it possible to mix using a Map with conventional JavaBean
properties on the same ActionForm. The Map can be used to trap whatever
parameters are submitted without defining any of the properties in advance. Each
field is just another entry on the Map.

 From the ActionForm, you can define these methods to access the entries of
your Map:

public void setValue(String key, Object value)
public Object getValue(String key)

Since
Struts 1.1

ActionForm flavors 161
 Then you can use this notation in the JSP:

<html:text property="value(key)"/>

and

<bean:write name="formBean" property="value(key)"/>

This lets you use a Map for simple properties that do not need to be helped along
in any way. The Map still has an accessor, so if a property needs special handling,
you can watch for it and interject a helper method. In this code:

public Object getValue(String key) throws Exception {

 // telephone number needs to be reformatted.
 if ("telephone".equals(key)) {
 return (Object) getTelephone();
 }

 return getMap().get(key);

 }

you need to define an accessor for the telephone property, but everything else can
just pass through and be stored in the Map. Transparently calling the telephone
property takes a bit more work. But a lot more work is saved by not having to
define whatever other properties the ActionForm uses. Since ActionForms may
have dozens of simple properties, the savings can be significant.

 The trade-off is that the page reference for a mapped value is different than
the reference to a standard property. If the pages were already using the standard
JavaBean property notation, the JSP code needs to be revised to use the mapped
notation instead.

 Whereas an HTML tag referred to

<html:text property="telephone"/>

you would now refer to

<html:text property="value(telephone)"/>

instead.
 The fields stored in the Map are also not exposed as normal JavaBean proper-

ties. Some Java development tools let you work directly with JavaBeans. These
tools would not see these fields as distinct properties, and you may not get full use
of the tools’ capabilities.

162 CHAPTER 5

Coping with ActionForms
 If seeing each field as a JavaBean property is important, and you also need to
minimize property maintenance, then the next thing to consider is the Dyna-
ActionForm class.

5.4.2 DynaActionForms

Declaring simple properties in the usual way can add up to a lot of work in a
larger application. To create a conventional JavaBean property, you need to code
a field, a getter, and a setter—a lot of infrastructure just to say get this and set that. It
would be much faster and safer if we could just declare the JavaBean properties
instead of having to code each one.

 The DynaActionForm (org.apache.struts.action.DynaActionForm) is
designed so that you can specify simple JavaBean properties through the Struts
configuration file, as we saw back in listing 5.2. The DynaActionForm is based on
the DynaBean component of the Jakarta Commons [ASF, Commons]. This is a
clever object that stores the fields in an internal map but exposes them as stan-
dard JavaBean properties.

 You can use a DynaActionForm anywhere an ActionForm can be used. You can
also substitute a DynaActionForm for a conventional ActionForm without chang-
ing any of the existing Java or JSP code.

But watch that reset
There’s one caveat: By default, the reset method of a DynaActionForm will set all
of the fields to their initial value. With a conventional ActionForm, the developer
determined which fields were affected by reset. Many developers reset them all
anyway, so in most cases the behavior will be consistent if you change from an
ActionForm to a DynaActionForm.

5.5 Why isn’t an ActionForm...

In the open source community, few designs go unchallenged. Here are some
popular questions that developers raise regarding the design of the Struts
ActionForm class.

Since
Struts 1.1

Why isn’t an ActionForm... 163
5.5.1 Why isn’t an ActionForm just a Map?

There are several design justifications for using a JavaBean rather than a Map, as
you can see in table 5.1.

Struts 1.1 provides the best of both worlds. You can define your own Map to store
your fields or just use a DynaActionForm to declare the properties automagically
(see section 5.4.2).

5.5.2 Why isn’t an ActionForm a plain JavaBean?

While any JavaBean can be used with the Struts JSP tags to populate an HTML
form, a class with known methods is needed to manage the input after it is submit-
ted. When accepting input over HTTP, validation is critical. Any data coming up
from the web tier must be carefully examined before use and rejected if inappro-
priate. The ActionForm has a validate method that is called by the ActionServlet
to help ensure data is entered correctly. Other validations may occur later, but
having the initial validation part of the ActionForm makes for a robust design.

 Another issue is checkboxes. If a checkbox is not checked, then the browser
does not send anything. Present is true; absent is false. The workaround is to reset
a checkbox to false before populating it. This way, the present checkboxes turn
the property true. Otherwise, it stays false. To help with issues like this, the Action-
Form has a built-in reset method. Since these methods are needed to properly
handle the incoming data, any old JavaBean won’t do. The form bean has to pro-
vide these two methods for the framework’s use.

5.5.3 Why isn’t an ActionForm an interface?

Good question. After all, using a base class rather than an interface means we
have to extend the class rather than reuse a preexisting class. An ActionForm will
most often expose properties from a business object. If it were an interface, we

Table 5.1 Design justifications for JavaBeans versus Maps

Justification Explanation

Encapsulation Most often, a property will return a simple value, but sometimes values do need to be
generated instead.

Extensibility A Map can’t be extended to provide related methods, like the validate and reset
methods.

Introspection A bean with clearly defined properties can be adopted into a GUI interface and other
tools.

164 CHAPTER 5

Coping with ActionForms
might be able to use our business objects directly and avoid passing everything
through a separate ActionForm object.

 This sounds good, but in practice, there are several showstoppers. Table 5.2
summarizes some of the issues.

Here’s another good question: “Why isn’t your business bean an interface?” The
ActionForm can implement your business interface and, once validated, be
passed up to the business tier.

 Transferring data from ActionForms to the business tier is an important step
that we explore in the next section.

5.6 Debriefing ActionForms

The Struts tag extensions help you populate HTML controls from an ActionForm.
The ActionServlet handles populating the ActionForm from an HTTP request.
But, as shown in figure 5.4, we still need to traverse “the last mile.” For our data to

Table 5.2 Why an ActionForm is not an interface

Reason Explanation

Extensibility Adding a new method to an ActionForm interface (in some future version of Struts) will
break an application’s form bean if it relied solely on the prior version’s interface. As a
base class, we can add a new method with a default behavior. Existing subclasses
will simply inherit the default behavior.

Correct use If an ActionForm were an interface, developers would be tempted to use existing data
beans as ActionForms. The ActionForm should be considered part of the control layer,
and the provided APIs should encourage using it as such. The core API contract for an
ActionForm is that it must faithfully represent the input that a user submits, whether
or not that input is semantically valid. This allows the user to correct the input and try
again. Most value objects are not designed to buffer incorrect data, and many are
immutable.

Performance Some data beans, especially Enterprise JavaBeans, may be designed to start trans-
actions and lock resources in the underlying database when used. Applications will
scale better if database transactions are delayed until semantically valid input is
available.

Security The Struts autopopulation mechanism works by setting the property first and validat-
ing it second. An existing object may be designed to change the system state when a
new value is passed to one of its properties. In this case, a hostile user could pass a
property to your Action from a browser and make unauthorized state changes, even if
you never intended for that property to be set from a browser. The ActionServlet
doesn’t know whether a property is used in an HTML form; it only knows that it was
found in the request.

Debriefing ActionForms 165
complete its life cycle, we have to transfer values between the ActionForms and
business objects.

 Struts developers use several strategies to transfer values between tiers. In this
section, we examine the most popular strategies. The requirements of your busi-
ness layer will often determine which approach is best for your project. Many web
developers are required to use a preexisting layer of business methods, which can
limit their options. Sometimes the entire application is being created at once, and
developers have the luxury of choosing their favorite solution

 In our discussion, we use the term transfer object to describe a JavaBean whose
main purpose is to carry data from one place to another. This approach is often
used in Enterprise JavaBean environments to reduce the number of calls an appli-
cation needs to make on a remote database. The idea is that several properties are
bundled together into a single JavaBean. The properties on the bean may relate
to more than one table, but that is handled on the remote side.

 Your own application may not use transfer objects per se, but some type of
“data bean” that might be used to access a local data system. The approach works
the same in either case. The strategies we’ll cover are summarized in table 5.3.

Table 5.3 Strategies for populating and debriefing ActionForms

Strategy Description

Implementing a business layer interface The ActionForm implements a business-layer interface
so it can be used directly.

Nesting a mutable value object A value object with individual properties is a member
property of the ActionForm.

Setting an immutable value object A bulk constructor or setter is called by the Action.

Setting a mutable value object One or more setters are called by the Action.

Using a factory method A helper method encapsulates, instantiates, and popu-
lates a business tier bean.

Data bean or
value object

ActionForm

ServletJSP

Figure 5.4 The cycle of data: Data beans
populate ActionForms; ActionForms populate
JSPs; the ActionServlet populates ActionForms;
ActionForms populate data beans.

166 CHAPTER 5

Coping with ActionForms
To help in your selection process, we’ve included a “Consequences” and a “Con-
verting data types” section for each strategy.

5.6.1 Implementing a business-layer interface

Business layers often define interfaces for their beans (and those that don’t
should consider doing so). When a business-layer interface is available, you can
have your ActionForm implement that interface so it can be passed directly to
business methods:

 public class ArticleForm extends ActionForm
 implements ArticleBean {

 // ...
}

Then, in your Action, you could pass the validated ActionForm directly to any
method expecting the business-layer type:

articleModel.save((ArticleBean) form);

Converting data types
At some point, much of the String-based input submitted by a web client must be
converted to native types needed by the business tier. Unfortunately, the JavaBean
specification does not allow property getters and setters to be overloaded. If you
attempt such a thing on an ActionForm, the ActionServlet’s autopopulation
mechanism will throw an exception.

 One useful technique is to use a helper method with a predictable name to
convert the property on demand:

private String keyDisplay = null;
public String getKeyDisplay {
 return keyDisplay;
}

Passing a Map A Map of the data is passed by the Action to a busi-
ness layer entity.

Transferring values by reflection Data is transferred from one bean to the other by
matching the property names.

Using an adaptor class A specialized class copies properties from one Action-
Form to several business layer entities.

Table 5.3 Strategies for populating and debriefing ActionForms (continued)

Strategy Description

Debriefing ActionForms 167
public Integer getKey() {
 return new Integer(getKeyDisplay());
}

The tag extensions would refer to the keyDisplay version:

<html:text property="keyDisplay"/>

But the Action or a business-tier method can simply refer to the original method:

ArticleBean articleBean = (ArticleBean) form;
articleModel.update(articleBean.getKey(),articleBean);

Consequences

� ActionForms become a seamless part of the business API.

� Care must be taken that input is validated before being used in business
methods.

� Non-String properties will be converted on the fly.

5.6.2 Nesting a mutable value object

If you are fortunate enough to be using a value object with only String and bool-
ean properties, then you can make your value object a property on the Action-
Form. The properties on the value object can then be referred to using a dotted
syntax, like this:

values.telephone

This calls the equivalent of

getValues().getTelephone();

and

getValues().setTelephone(values.telephone);

Converting data types
Not applicable. This strategy requires String and boolean values that do not need
conversion.

Consequences

� This strategy is quick and easy to implement.

� This strategy does not apply to nontext types, such as Integer or Date.

� This strategy may not work well if the value object rejects badly formatted data.

168 CHAPTER 5

Coping with ActionForms
� This strategy binds the presentation layer to specific value objects. If values
are moved between objects, the presentation code would need to reflect
that change.

NOTE The first two strategies, implementing a business-tier interface and nest-
ing a mutable value object, transfer data automatically. The other strate-
gies require the assistance of the Action to trigger the transfer. The code
snippets in the remaining strategies would be found in an Action class.

5.6.3 Setting an immutable value object

If you’re provided with an immutable value object that uses a bulk constructor,
then populating it boils down to this:

ArticleForm aForm = (ArticleForm) form;
ArticleBean aBean = new ArticleBean(
 aForm.getArticleKey(),
 aForm.getContributor(),
 aForm.getCreator(),
 aForm.getTitle(),
 aForm.getContent()
);

A bulk setter would look the same, except the bean would be created and then the
setter called. If a good number of parameters are involved, it can help to break
them into groups and define a setter for each group (if that’s an option). Classic
divide and conquer:

ArticleForm aForm = (ArticleForm) form;
ArticleBean aBean = new ArticleBean();
aBean.setRecordHeader(
 aForm.getArticleKey(),
 aForm.getEditor());
aBean.setPeople(
 aForm.getContributor(),
 aForm.getCreator());
aBean.setText(
 aForm.getTitle(),
 aForm.getContent());

Of course, for this to be worthwhile, each block would take several more parame-
ters, but you get the idea. Sometimes, multiple setters can correlate to partial
updates, where, say, the text fields are being updated but the people fields are not
touched. If the data is being sent over a remote connection, sending only the data
you mean to change can be important.

Debriefing ActionForms 169
Converting data types
If the property types need to be converted, you can do that as data is being trans-
ferred or put a helper method in your ActionForm. Since the fields would have
already been validated and prequalified for conversion, the ActionForm helpers
can be optimistic and assume that the conversion will succeed. For example:

Integer getArticleKeyInteger() {
 return new Integer(this.getArticle())
}
ArticleBean aBean = new ArticleBean(
 aForm.getArticleKeyInteger(),
 aForm.getContributor(),
 aForm.getCreator(),
 aForm.getTitle(),
 aForm.getContent()
)

Of course, you can also use try … catch with this segment and throw an exception
if something unexpected happens:

try {
 ArticleBean aBean = new ArticleBean(
 aForm.getArticleKeyInteger(),
 aForm.getContributor(),
 aForm.getCreator(),
 aForm.getTitle(),
 aForm.getContent())
}
catch (Throwable t) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.conversion"));
}

Consequences

� This strategy can provide type checking.

� This strategy works with any value object.

� This strategy involves high maintenance if properties are changing.

� This strategy strongly couples an Action class with a particular ActionForm.

� Value objects with dozens of properties are difficult to manage this way.

5.6.4 Setting a mutable value object

If your value objects don’t have bulk setters and new methods can’t be added for
some reason, then it gets messy:

170 CHAPTER 5

Coping with ActionForms
ArticleBean aBean = new ArticleBean();
aBean.setArticleKey(aForm.getArticleKeyInteger());
aBean.setContributor(aForm.getContributor());
aBean.setCreator(aForm.getCreator());
aBean.setTitle(aForm.getTitle());
aBean.setContent(aForm.getContent());

Consequences and data-type conversion considerations are the same as for immu-
table value objects.

5.6.5 Using a factory method

If ActionForm values are being transferred to another value object, you can
encapsulate the transfer in the ActionForm rather than expose the process to the
Action class.

 If the value object has to be created anyway, a good approach is to use a factory
method that instantiates, populates, and returns the value object. Here’s a sample
method that would be found on an ActionForm:

public ArticleBean getArticleBean() {

 ArticleBean aBean = new ArticleBean(
 this.getArticleKey(),
 this.getContributor(),
 this.getCreator(),
 this.getTitle(),
 this.getContent()
);

 return aBean;
}

Alternatively, you can pass an existing value object:

public void setArticleBean(ArticleBean aBean) {

 aBean.set (
 this.getArticleKey(),
 this.getContributor(),
 this.getCreator(),
 this.getTitle(),
 this.getContent()
);
}

Converting data types
The same considerations apply to this strategy as for the setting a mutable object
and setting an immutable object strategies. This strategy simply moves the code
from the Action to the ActionForm.

Debriefing ActionForms 171
Consequences

� This strategy binds the ActionForm to the business-tier type.

� This strategy simplifies the ActionForm.

� This strategy allows more than one Action to transfer data without replicat-
ing code.

5.6.6 Passing a Map

It is not uncommon for value objects to pass properties through a Map
(java.util.Map). If the ActionForm properties and the value object properties
match, then transferring the data can be very easy.

 If you have a value object that accepts Maps, there are two approaches for
using Maps with ActionForms, depending on whether you are using Struts 1.0 or
Struts 1.1 and later.

Struts 1.0
The BeanUtils class includes a describe method that returns a Map of a Java-
Bean’s public properties. It also offers a corresponding populate method that will
set the public properties of a JavaBean from a Map. In the following example, let’s
assume that our hypothetical value object has setMap and getMap properties that
represent its values.

 Here we’re going from the form to the value object

Map map = BeanUtils.describe(form);
bean.setMap(map);

and from the value object to the form:

Map map = bean.getMap();
BeanUtils.populate(form,map);

(For clarity, we showed the Map as an intermediate variable. In your own code,
you can combine the statements.)

 If the property names do not match for some reason, the ActionForm can be
given alias properties

public String getKey() {
 return getArticle();
}
public String getAuthor() {
 return getCreator();
}

or the ActionForm can be given a custom method to return the appropriate Map:

172 CHAPTER 5

Coping with ActionForms
public class ArticleForm extends ActionForm {

// ...
 public Map describe() {
 map = new HashMap();
 map.add("key",this.getArticle());
 map.add("author",this.getCreator());
 // ...
 return map;
 }
}

In the latter case, you would call the ActionForm’s describe method instead of
BeanUtil’s:

bean.setMap(form.describe());

Struts 1.1
If your model accepts incoming data in a Map (java.util.Map), then most likely it
can also return data as a Map. Since Struts 1.1, you can combine the enhanced
capabilities of the Commons BeanUtils [ASF, Commons] class with the Struts dot-
ted syntax. This makes it easy to use a Map to store your ActionForm properties.

 The technique is quite simple. First, add a property to your ActionForm to
access the Map:

private Map map = null;
public void setMap(Map map) {
 this.map = map;
}
public Map getMap() {
 return this.map;
}

Then add a property to access an element of the Map:

public void setValue(String key, Object value) throws Exception {
 getMap().put(key,value);
}

public Object getValue(String key) throws Exception {
 return getMap().get(key);
}

In the Struts 1.1 JSP tags (see chapter 10), you can access the elements of the Map
like this:

<html:text property="value(key)"/>

and

Debriefing ActionForms 173
<bean:write name="formBean" property="value (key)"/>

where key is the name of the property.
 If your business-tier value objects are already using Maps, you can just transfer

the data by using the respective getMap and setMap methods (or equivalent):

form.setMap(bean.getMap());

bean.setMap(form.getMap());

For more on using Maps with Struts 1.1 ActionForms, see section 5.7.

Converting data types
If the business tier expects a Map of native types rather than Strings, an Action-
Form helper method may be required to convert the Strings to native types and
return a modified Map:

public Map getTypedMap() {
 Map map = this.getMap();
 String keyString = (String) map.get("key");
 Integer keyInteger = new Integer(keyString);
 map.put("key",keyInteger);
 return map;
}

Consequences

� This strategy results in good integration with the business tier when Maps
are already used for data transfer.

� Since a Map will return null if the entry is not present, some extra validation
code may be needed to watch for missing parameters.

5.6.7 Transferring values by reflection

If you are using a modern JVM, an excellent way to get ActionForm data into
another JavaBean is to use reflection. Initially, reflection carried a performance
penalty, but each JVM release reduced that penalty. In Sun’s Java 1.3 and later, the
difference is moot.

 You can add some simple methods to an ActionForm base class to make it easy
to transfer data to and from any other bean using reflection, like those methods
shown in listing 5.3. The methods are just wrappers around the BeanUtils class
methods used elsewhere in the framework. The ActionServlet uses BeanUtils to
populate the ActionForm from the HTTP request.

174 CHAPTER 5

Coping with ActionForms
public Map describe() throws Exception {
 try {
 return BeanUtils.describe(this);
 } catch (Throwable t) {
 throw new PopulateException(t);
}

public void set(Object o) throws Exception {
 try {
 BeanUtils.populate(this,BeanUtils.describe(o));
 } catch (Throwable t) {
 throw new PopulateException(t);
 }
}

public void populate(Object o) throws Exception {
 try {
 BeanUtils.populate(o,this.describe());
 } catch (Throwable t) {
 throw new PopulateException(t);
 }
}

1.0 vs 1.1 The Commons BeanUtil package used by Struts 1.1 provides much bet-
ter type conversion than the original Struts 1.0 version. If you are using
reflection to transfer your own data, we recommend importing the Com-
mons BeanUtil package, regardless of what version of Struts you are
using. The best all-around data transfer method is BeanUtils.copy-
Properties. Here's how to use copyProperties to populate your bean
from any other bean:

 BeanUtils.copyProperties(this,source);

The copyProperties method will automatically apply any String to na-
tive type conversions in either direction. The new copyProperties
makes it very easy to "round-trip" your ActionForms and business beans:

 BeanUtils.copyProperties(myBusinessBean,myActionForm);
 myBusinessOperation(myBusinessbean);
 BeanUtils.copyProperties(myActionForm,myBusinessBean);</code>

The code in this snippet transfers the String properties in myAction-
Form to native types in myBusinessBeans, allows the business operation

Listing 5.3 Data-transfer methods

Debriefing ActionForms 175
to update the values, and then transfers the native types back to the all-
String myActionForm. Sweet!

You can also register custom converters with BeanUtils to handle your
own types. See the Commons site for details [JSF, Commons].

Converting data types
The BeanUtils methods can convert data between Strings and native types, so you
do not need to write as many “bridge” methods as you might when implementing
another interface (though non-native types become more of a problem).

 When using the BeanUtils methods to transfer data, everything has to pass
through a native type. This is not an issue on the ActionForm side since it uses
only Strings or booleans. It is a problem on the business bean side since trying to
transfer data between

String setCurrent();

and

Date getCurrent() ;

or any other non-native type is not supported by the Struts 1.0 BeanUtils class.
 One solution is to provide transformation methods on the business side that

can move the Date into a String and back again.
 Here’s a set of business methods for converting a String into a Timestamp and

back. These methods should be members of the business-layer bean—not the
ActionForm. By putting them on the business tier, we make them available to any
other component that may also need to deal in Strings:

public String getTicklerDisplay() {
 Timestamp tickler = getTickler();
 if (ConvertUtils.isNull(tickler)) return null;
 return tickler.toString();
}
public void setTicklerDisplay(String ticklerDisplay) {
 if (ticklerDisplay==null)
 setTickler(null);
 else try {
 setTickler(Timestamp.valueOf(ticklerDisplay));
 } catch (Throwable t) {
 setTickler(null);
 }
}

176 CHAPTER 5

Coping with ActionForms
Elsewhere on the business-layer bean are a getter and setter for the actual Time-
stamp that is stored in a database:

private Timestamp tickler = null;
public Timestamp getTickler() {
 return (this.tickler);
}
public void setTickler(Timestamp tickler) {
 this.tickler = tickler;
}

On the ActionForm side, we can just use simple String properties but named with
the Display suffix:

private string ticklerDisplay = null;
public String getTicklerDisplay() {
 return this.ticklerDisplay;
 };
public void setTicklerDisplay(String ticklerDisplay)
 this.ticklerDisplay = ticklerDisplay;
 };

When set or populated with reflection, the mechanism calls the equivalent of

bean.setTicklerDisplay(form.getTicklerDisplay());

or

form.setTicklerDisplay(bean.getTicklerDisplay());

depending on which direction we are going. The business method handles the
conversion between String and Timestamp, so that the ActionForm can just use
String properties as usual.

STRUTS TIP Use display helpers on your business beans to automatically convert com-
plex types. By letting the business bean handle the conversions to and
from a String, you ensure that the business requirements stay on the
business tier and can also be reused on other platforms.

In practice, your application would probably need these methods anyway, since we
can rarely display data in its native form. Even without the conversion issue,
something like the getDateDisplay method shown in listing 5.4 is usually needed
to render the value in a localized or user-friendly format.

Debriefing ActionForms 177
public String getDateDisplay() {

 if (this.dateDisplay==null) return null;

 DateFormat dateFormatter = DateFormat.getDateInstance(
 DateFormat.DEFAULT,
 this.getLocale()
);

 return dateFormatter.parse(this.dateDisplay);
}

For something like a timestamp, you might need to decompose a single value into
several fields so that each component can be selected from a drop-down box on
an HTML form.

 The setTicklerDisplay in listing 5.5 extracts components from a Timestamp
string so they can be used in different controls.

public void setTicklerDisplay(String ticklerDisplay) {

 this.ticklerDisplay = ticklerDisplay;

 boolean longEnough = ((this.ticklerDisplay!=null) &&
 (this.ticklerDisplay.length()>11+2));

 if (longEnough) {

 // Snag components: YYYY-MM-DD HH:MM
 setTicklerYear(this.ticklerDisplay.substring(0,0+4));
 setTicklerMonth(this.ticklerDisplay.substring(5,5+2));
 setTicklerDay(this.ticklerDisplay.substring(8,8+2));
 setTicklerHour(this.ticklerDisplay.substring(11,11+2));

 // Parse AM/PM/EV
 Integer hour = null;
 try {
 hour = Integer.valueOf(getTicklerHour());
 }
 catch (Throwable t) {
 hour = null;
 }
 int tod = 0;
 if (hour!=null) tod = hour.intValue();
 setTicklerTod(AM);
 if (tod>12) setTicklerTod(PM); // after 1pm
 if (tod>16) setTicklerTod(EV); // after 5pm
 }
 }

Listing 5.4 A method for displaying a date

Listing 5.5 A method for decomposing a timestamp

178 CHAPTER 5

Coping with ActionForms
In many cases, the Display methods will just be doing double duty. They format
the value as Strings to transfer it to the ActionForm. The ActionForm methods
can then display the value in whatever format may be required.

Consequences

� The size of the codebase is reduced.

� Overall maintenance is reduced.

� Coupling between the Action class and other components is reduced.

� This strategy may require creating some bridge methods or classes.

� Some developers relying on dated information may hesitate to use reflection.

5.6.8 Using an adaptor class

Often the ActionForm beans and model beans are very much alike. Other times,
they may have little in common. The fields in a single ActionForm may need to be
transferred to several different model beans. Or the property names of the
ActionForms may need to differ from the property names used on the business
object. In this case, an adaptor class may be helpful to map the business object
methods to the ActionForm properties.

 An adaptor and an ActionForm will share one or more methods with the same
signature. The adaptor class is designed as a wrapper around one or more of the
business objects. The getters and setters on the adaptor call the corresponding
methods on the business object. The adaptor can then be used in place of the
business bean (as a proxy or delegate):

// Get data into ActionForm
DataBean dBean = new DataBean();
dBean.execute(something);
AdaptorBean aBean = new AdaptorBean(dBean);
aBean.populate(form);

// Fetch data from ActionForm
AdaptorBean adaptor = new AdaptorBean(new DataBean());
BaseForm actionForm = (BaseForm) form;
adaptor.set(actionForm);
DataBean model = (DataBean) adaptor.getBean();
data.execute();

Any of the data-transfer techniques we’ve already discussed can be used within an
adaptor class. The main point of the adaptor is that it encapsulates differences
between the ActionForm and business classes. This can be especially useful when

BaseForm 179
the business model is complex, since the adaptor can cleanly decouple the Action
from the business implementation.

Converting data types
An adaptor can encapsulate any existing data conversion methods or implement
new conversions as needed.

Workarounds
If you need your value objects to be immutable elsewhere, you may be able to
have the same object implement both mutable and immutable interfaces. The
business and data layers would use the object via the read-only interface. The
Action could use the mutable interface, but both would share the same underly-
ing data field.

Consequences

� Classes are often application specific, with little reuse.

� This strategy increases the number of objects in the application.

� This strategy is sensitive to changes in both the business and presentation
layers.

� This strategy can shield each layer from changes in the other (helps to
decouple layers).

5.7 BaseForm

The Scaffold package provides a base ActionForm that implements several tech-
niques discussed in this book (org.apache.struts.scaffold.BaseForm). This class
includes methods for handling locales, dispatching control, and managing auto-
population. Table 5.4 shows the BaseForm methods.

STRUTS TIP If your application uses several ActionForm classes, define a base object
to include any properties or utilities that may be common to the forms in
your application. Once you start to look, you may be surprised at how
many you find.

180 CHAPTER 5

Coping with ActionForms
5.7.1 SessionLocale

By default, the ActionServlet will automatically create a Locale object for users in
their session context. These methods are designed to help you manage that
Locale object:

public void setSessionLocale(Locale locale);
public Locale getSessionLocale();
protected void resetSessionLocale(HttpServletRequest request);

The resetLocale method is called by the BaseForm’s reset method. It retrieves
the Locale object from the session so that it is available to your ActionForm. If you
provide an HTML control to change the locale, you can make the change in the
validate method. Since the Locale object here refers to the session object, any
changes will persist through the user’s session.

 For more about the Struts localization features, see chapter 13.

5.7.2 Dispatch

Struts developers often have the same Action handle related operations. One pop-
ular technique to select the operation is to use a hidden property on an HTML
form. The dispatch property on BaseForm can be used for this purpose:

public void setDispatch(String dispatch);
 public String getDispatch();

For other ways of dispatching operations within an Action, see chapter 8.

Table 5.4 BaseForm methods

Category Methods

SessionLocale public void setSessionLocale(Locale locale);
public Locale getSessionLocale();
protected void resetSessionLocale (HttpServletRequest request);

Dispatch public void setDispatch(String dispatch);
public String getDispatch();

Mutable public void setMutable(boolean mutable);
public boolean isMutable();

Autopopulation public Map describe() throws Exception;
public void set(Object o) throws Exception;
public void populate(Object o) throws Exception;
public Map merge(Object profile) throws Exception;

BaseForm 181
5.7.3 Autopopulation

The ActionServlet handles the default autopopulation of an ActionForm. This set
of utility methods is designed to help Action objects perform other data-transfer
tasks. The describe method returns a Map of the ActionForm bean. The set
method populates this ActionForm from another JavaBean. The populate
method sets another JavaBean’s properties to match this bean:

public Map describe() throws Exception;
public void set(Object o) throws Exception {
public void populate(Object o) throws Exception {
protected Map merge(Object profile) throws Exception {

The merge method is a trifle more complicated. The underlying idea is that your
application may have a profile bean in session scope that overrides the application
defaults with user-specific settings. The merge method lets you combine the user-
specific settings with the standard settings in an ActionForm into a unified Map.
So, if the ActionForm had a sessionLocale property and the profile bean also had
a sessionLocale property, the profile bean’s setting would be returned in the
Map. If the profile bean did not have a sessionProfile property, or the property
was null, then the property from this ActionForm would be returned in the Map
instead.

5.7.4 BaseMapForm

With Struts 1.1 and later, we can use Maps as ActionForm properties. A value from
a Map is referenced differently than a regular JavaBean property:

 // form.getValue(key);
<html:text property="value(key)"/>

But this is often a fair trade-off for the flexibility that Maps can bring to your
ActionForms.

 The BaseMapForm in Scaffold (org.apache.struts.scaffold.BaseMapForm)
provides a standard method for storing and retrieving fields using a Map property.
It extends BaseForm and so also offers all the functionality of that class. Table 5.5
shows the BaseMapForm methods.

Since
Struts 1.1

182 CHAPTER 5

Coping with ActionForms
Value Map
To initialize the ActionForm with a prepopulated Map, use the setValues
method. To return the Map representing the current BaseMapForm values, call
the getValues method. To add or change a specific value, use the setValue and
getValue methods as shown in table 5.5.

5.8 Summary

Traditionally, ActionForms have been a source of aggravation for many Struts
developers. This may begin to change in Struts 1.1, where Maps and DynaBeans
can reduce ActionForm maintenance.

 In this chapter, we explored the design principles behind ActionForms to help
crystallize their role in the framework. We also explored various ways to transfer
data between ActionForms and your business objects.

 The Scaffold BaseForm class supports many of the data-transfer strategies cov-
ered by this chapter and can be an excellent choice as the base for your own
ActionForms.

 ActionForms describe what people can enter into your application. In the next
chapter, we look at ActionForwards, which describe where people can go in your
application.

Table 5.5 BaseMapForm methods

Category Methods

Value Map public void setValue(String key, Object value);
public Object getValue(String key);
public void setValues(Map values);
public Map getValues();

6Wiring with
ActionForwards
This chapter covers
� Understanding ActionForward best practices
� Using runtime parameters
� Using dynamic forwards
183

184 CHAPTER 6

Wiring with ActionForwards
Inanimate objects are classified scientifically into three major
categories—those that don’t work, those that break down

and those that get lost.
—Russell Baker

6.1 What ActionForwards do

Throughout an application, many components, such as Action objects, will ask
questions like “OK, the operation succeeded, now what?” The Struts configuration
will respond with an ActionForward linked to “success” for that operation. The
ActionForward is passed back to the ActionServlet. The ActionServlet uses the
path inside to send control to one place or another. None of the other compo-
nents know anything about the path; they only know that the ActionForward says
this is where we go next.

NOTE Technically, the path is only one part of the URI that the ActionForward
stores. The URI can also contain a query component with any parameters
that your application might use. But here when we say path, we mean the
complete URI.

If every hyperlink goes through a forward, the ActionForwards document an
application’s workflow. Ideally, ActionForwards should be used at every entry
point to an application—any place where one page links to another.

1.0 vs 1.1 In Struts 1.1, ActionForward subclasses ForwardConfig (org.apache.
struts.config.ForwardConfig) and adds API methods required for
backward compatibility. ActionForward is not deprecated, and how the
hierarchy will be handled in future releases has not been determined.
For now, we will refer to the ActionForward class, but you should note
that, in Struts 1.1, all of the forward properties are actually defined by the
ForwardConfig super class. ActionForward otherwise works the same way
in both versions.

ActionForwards represent a URI [W3C, URI] to the application. Although the
property is called a path, the ActionForwards can contain any complete URI and
can also include a query component. This means you can also use strings like

path="/do/item?dispatch=edit"

How ActionForwards work 185
in your ActionForward paths. If /do/item is an Action class, and its ActionForm
has a property named dispatch, this URI will have Struts set the dispatch property
to edit. Of course, more complex query strings work just as well. The URI

path="/do/item?dispatch=edit&key=17"

would have Struts set the dispatch property to edit and a key property to 17.

NOTE Since the path is a URI, we encoded the ampersand as &. Amper-
sands are a restricted character in the query component of a URI. See
“Uniform Resource Identifiers (URI): Generic Syntax” [W3C, URI] for
more about the syntax expected here.

6.2 How ActionForwards work

The ActionForward is a simple but effective wrapper. The base class is just storage
space for four properties: name, path, redirect, and className, which are summa-
rized in table 6.1.

6.2.1 Forward versus redirect

Very little stands still on the web. The HTTP protocol even has a built-in “redirect”
command that a server can use to send control from one page to another. Java
web developers have a similar command at their disposal, called a forward. Both
are useful in their own way.

� Forward Retains everything in the HTTP request and request context. Can
be used only within the same application.

Table 6.1 The ActionForward properties

Property Description

name Specifies a logical name for this ActionForward. Other components refer to the ActionFor-
ward by name so that the other properties can be easily changed.

path Specifies the URI for this ActionForward. URIs are an important way that web applications
communicate.

redirect If true, control is redirected instead. The default is false and is almost always the better
choice. We take a closer look at a forward versus a redirect in the next section.

className Optionally specifies a subclass of org.apache.struts.action.ActionForward
when instantiating this forward [Struts 1.1].

186 CHAPTER 6

Wiring with ActionForwards
� Redirect Instructs the web client to make a new HTTP request. The
resource may be in the same application or elsewhere.

Forwarding requests
Java Servlet containers have an internal mechanism that enables a request to be
passed along to another component, or forwarded. This allows a request to be han-
dled by several different components before the response is generated. Along the
way, components can add and update objects in the request context and even
amend the request parameters.

 When an Action object returns an ActionForward, the servlet creates a Request-
Dispatcher for the ActionForward’s path. If the path includes a query string com-
ponent, the query string parameters become part of the forwarded request. You
can then retrieve the parameters using a method on the request object:

Object parameter = request.getParameter("parameterName");

If it is a new parameter, it is also passed to any subsequent forwards. If the parame-
ter already exists, the new value overrides the original for the duration of the for-
ward. After that, the old parameter surfaces again. For more about how servlets
handle requests, see “Dispatching Requests” in the Servlet Specification [Sun, JST].

 Parameters should not be confused with request attributes. The parameters are
part of the HTTP request. The attributes are stored in the request context, which is
something Java provides. The elements of the HTTP request are made available
from the Java request context, so they sometimes seem like the same thing.

 The parameters of the HTTP request are used to populate the ActionForm (see
chapter 5). Typically, the ActionForm will contain all the input an application
expects. Struts developers do not need to work directly with request parameters.
Struts developers do most of their work through request attributes. A request
attribute will be available throughout a forwarded request but disappears if the
request is redirected.

Redirecting requests
When an ActionForward’s redirect property is set to true, the ActionServlet sends
the browser an HTTP response that tells the browser to submit a new request to
this path. The original request parameters are not retained; the original request
context disappears. The new HTTP request contains only the parameters con-
tained in the ActionForward’s path property, if any. The URI is encoded before it is
sent to the client, and the user’s session context is maintained if the path is within
the same application. But a redirect always clears the request context.

Global and local forwards 187
6.3 Global and local forwards

The Struts configuration provides two levels of nesting for ActionForwards:

� Global ActionForwards are available to any Action object throughout the
application.

� Local ActionForwards are defined within the ActionMapping element.
These are only available to the Action object when it is called from that
ActionMapping.

From within an Action object, a forward is usually chosen like this:

ActionForward forward = mapping.findForward("continue");

An Action’s mapping object is passed to it when the ActionServlet invokes the
Action. The mapping object includes a list of its local forwards and a link to the
global forwards. The mapping’s findForward method will check its local forwards
first. A failure to find a local forward will trigger a search through the global for-
wards. If a forward is not found in either scope, the findForward method will
return null. Should that happen accidentally, because the Action class and Struts
configuration disagree, the Action object could return a null ActionForward, leav-
ing the browser to report the error.

 Ideally, whatever globals you use should be defined as String constants to
avoid any misunderstandings or typographical errors. This also makes them avail-
able to the JSPs (but, sadly, not to the XML configuration file). The Jakarta Com-
mons Scaffold [ASF, Scaffold] package defines several constants for commonly
used globals in its Tokens class:

public static final String CANCEL = "cancel";
public static final String CONTINUE = "continue";
public static final String DONE = "done";
public static final String EMPTY = "empty";
public static final String ERROR = "error";
public static final String EXIT = "exit";
public static final String FORWARD = "forward";
public static final String LOGON = "logon";
public static final String LOGOFF = "logoff";
public static final String MENU = "menu";
public static final String NEXT = "next";
public static final String PREVIOUS = "previous";
public static final String TOKEN = "token";
public static final String WELCOME = "welcome";

188 CHAPTER 6

Wiring with ActionForwards
6.4 Runtime parameters

Of course, the driving force behind a web application is that it is supposed to be
dynamic and allow changes to be made at runtime. There are two points at which
ActionForwards can be adjusted at runtime to add or amend its query compo-
nent: in the page and in the Action class.

6.4.1 Adding parameters in the page

If you use ActionForwards with the <html:link> tag (org.apache.struts.taglib.
html), you can also add runtime parameters to the query component:

<html:link
 forward="article"
 paramId="key"
 paramProperty="key"
 name="articleForm">
 <bean:write name="articleForm" property="name">
</html:link>

Given an articleForm bean with the method getKey, the tag will retrieve the key
property and append its value to the URI. Given an ActionForward like this:

<forward
 name="article"
 path="/do/article?dispatch=view"/>

an <html:link> tag like this:

<html:link forward="article" paramName="articleForm"
paramProperty="articleKey" paramId="key">
News from the edge
</html:link>

would generate an HTML tag like this:

News from
the edge

Note that the tag is smart enough to append additional parameters if there is an
existing query string.

 For more information about tag extensions, see chapter 10.

6.4.2 Adding parameters in the Action class

You can also add parameters to an ActionForward within an Action class, using a
fragment like this:

ActionForward forward = mapping.findForward("article");

Dynamic forwards 189
StringBuffer path = new StringBuffer(forward.getPath());
boolean isQuery = (path.indexOf("?")>=0);
if (isQuery)
 path.append("&dispatch=view");
else
 path.append("?dispatch=view");
return new ActionForward(path.toString());

The Scaffold ConvertUtils class (org.apache.scaffold.text.ConvertUtils) pro-
vides a method to help automate this—the addParam method, as shown here:

 // Base path and one parameter
aForward.setPath(
 ConvertUtils.addParam("/do/article","dispatch","view"));
 // Current path and an additional parameter
aForward.setPath(
 ConvertUtils.addParam(aForward.getPath(),"key","17"));

This resolves to

/do/article?dispatch=view&key=17

Unless the ActionForward is set to redirect, the parameters are merged with any
parameters in the current request. If any of the new parameters use the same name
as an existing parameter, the new one is used for the duration of the new forward.

6.5 Dynamic forwards

While it may be better to document your ActionForwards by defining them in the
Struts configuration, if necessary you can even create an ActionForward from
scratch, setting its path and any parameters:

ActionForward forward = new ActionForward("/do/itemEdit?action=edit");

Once you’ve created the ActionForward, you can use the runtime parameter tech-
niques from the previous section to help build your ActionForward path.

 If you’re interested in learning more about setting runtime parameters and
dynamic forwards, see chapter 8 (section 8.4).

NOTE If you find yourself continually creating dynamic forwards and chaining
Actions, it may be a warning sign that too much business logic is being ex-
pressed within an Action class. Ideally, you should be able to reuse busi-
ness objects between Action classes, so that you do not need to “pass the
baton” this way. For more about keeping business logic out of Action
classes, see chapter 8.

190 CHAPTER 6

Wiring with ActionForwards
6.6 Why doesn’t the address bar change?

Something that confuses new developers is why an Action URI, such as /do/
article/View, remains on the browser’s address bar, even though a presentation
page, such as /pages/article/View.jsp, is displayed in the window.

 The address bar displays the last URL the browser was given. After the URL is
submitted, your application may forward the request several times before one of
the components returns a response to the browser. All this happens server-side
without the browser knowing that it happens. When an HTTP response is
returned, it does not include a value for the address bar. The browser displays
only the address it used for the initial request.

NOTE Of course, usually this is what you want anyway. The name or location of
the page being presented is immaterial. Often, it is not even useful. The
presentation of a dynamic page typically relies on data provided by the
Action object. If the page is accessed directly, data may be missing.

The only way to change what is displayed on the address bar is to use a redirect
rather than a forward (see section 6.2.1). This sends a standard response to the
browser instructing it to submit a new request. Accordingly, the browser
will update its address bar to reflect the new URL. Unfortunately, this also means
that data cannot be passed to a page through the request context. It must be
passed in the URI.

6.7 Rolling your own ActionForward

Developers may also provide their own ActionForward subclass with additional
properties or methods. In Struts 1.0, you configure this in the deployment
descriptor (web.xml) for the ActionServlet, as shown here:

<init-param>
<param-name>forward</param-name>
<param-value>app.MyActionForward</param-value>
</init-param>

In Struts 1.1, you configure this in the Struts configuration file as an attribute to
the <global-forwards> element:

<global-forwards type="app.MyActionMapping">

Summary 191
Individual forwards may also be set to use another type through the className
attribute:

<forward className="app.MyActionMapping">

For more about configuring Struts, see chapter 4.
 The framework provides two base ActionForward classes, shown in table 6.2.

These can be selected as the default or used as a base for your own subclasses.

The framework default is ForwardingActionForward (redirect=false).
 Subclasses that provide new properties may set them in the Struts configura-

tion file using a standard mechanism:

<set-property property="myProperty" value="myValue" />

This trick avoids subclassing the ActionServlet just to recognize the new proper-
ties when it digests the file.

6.8 Summary

Although very simple objects, ActionForwards play a vital role in the design of a
Struts application. Used correctly, they can make it much easier to see the forest
and the trees. A web application is a morass of arcane URIs that ActionForwards
can reduce to neat, logical boxes—like the flowchart on your wall.

 In the next chapter, we get closer to the bone of the application with our look
at ActionMappings. ActionForms describe what people can enter. ActionForwards
describe where people can go. ActionMappings tell us what the application can
actually do.

Table 6.2 The default ActionForward classes

Object name Description

org.apache.struts.action.ForwardingActionForward Defaults the redirect property to
false

org.apache.struts.action.RedirectingActionForward Defaults the redirect property to
true

7Designing with
ActionMappings
This chapter covers
� Understanding ActionMappings
� Defining ActionMapping properties
� Using local and global ActionForwards
193

194 CHAPTER 7

Designing with ActionMappings
Decide what you want, decide what you are willing to exchange for it.
Establish your priorities and go to work.

—H. L. Hunt

7.1 Enter ActionMappings

The Model 2 architecture (see chapter 1) encourages us to use servlets and Java-
Server Pages in the same application. Under Model 2, we start by calling a servlet.
The servlet handles the business logic and directs control to the appropriate page
to complete the response.

 The web application deployment descriptor (web.xml) lets us map a URL pat-
tern to a servlet. This can be a general pattern, like *.do, or a specific path, like
saveRecord.do.

 Some applications implement Model 2 by mapping a servlet to each business
operation. This approach works, but many applications involve dozens or hun-
dreds of business operations. Since servlets are multithreaded, instantiating so many
servlets is not the best use of server resources. Servlets are designed to handle any
number of parallel requests. There is no performance benefit in simply creating
more and more servlets.

 The servlet’s primary job is to interact with the container and HTTP. Handling
a business operation is something that a servlet could delegate to another compo-
nent. Struts does this by having the ActionServlet delegate the business operation
to an object. Using a servlet to receive a request and route it to a handler is known
as the Front Controller pattern [Go3].

 Of course, simply delegating the business operation to another component
does not solve the problem of mapping URIs [W3C, URI] to business operations.
Our only way of communicating with a web browser is through HTTP requests and
URIs. Arranging for a URI to trigger a business operation is an essential part of
developing a web application.

 Meanwhile, in practice many business operations are handled in similar ways.
Since Java is multithreaded, we could get better use of our server resources if we
could use the same Action object to handle similar operations. But for this to
work, we might need to pass the object a set of configuration parameters to use
with each operation.

 So what’s the bottom line? To implement Model 2 in an efficient and flexible
way, we need to:

Enter ActionMappings 195
� Route requests for our business operations to a single servlet

� Determine which business operation is related to the request

� Load a multithreaded helper object to handle the business operation

� Pass the helper object the specifics of each request along with any configu-
ration detail used by this operation

This is where ActionMappings come in.

7.1.1 The ActionMapping bean

An ActionMapping (org.apache.struts.action.ActionMapping) describes how
the framework handles each discrete business operation (or action). In Struts,
each ActionMapping is associated with a specific URI through its path property.
When a request comes in, the ActionServlet uses the path property to select the
corresponding ActionMapping. The set of ActionMapping objects is kept in an
ActionMappings collection (org.apache.struts.action.ActionMappings).

 Originally, the ActionMapping object was used to extend the Action object
rather than the Action class. When used with an Action, a mapping gives a specific
Action object additional responsibilities and new functionality. So, it was essen-
tially an Action decorator [Go4]. Along the way, the ActionMapping evolved into an
object in its own right and can be used with or without an Action.

DEFINITION The intent of the decorator pattern is to attach additional responsibilities to
an object dynamically. Decorators provide a flexible alternative to sub-
classing for extending functionality [Go4].

The ActionMappings are usually created through the Struts configuration file.
For more about this file, see chapter 4.

7.1.2 The ActionMappings catalog

The ActionMappings catalog the business logic available to a Struts application.
When a request comes in, the servlet finds its entry in the ActionMappings catalog
and pulls the corresponding bean.

 The ActionServlet uses the ActionMapping bean to decide what to do next. It
may need to forward control off to another resource. Or it may need to populate
and validate an ActionForm bean. At some point, it may have to pass control to an
Action object, and when the Action returns, it may have to look up an Action-
Forward associated with this mapping.

196 CHAPTER 7

Designing with ActionMappings
 The ActionMapping works like a routing slip for the servlet. Depending on
how the mapping is filled out, the request could go just about anywhere.

 The ActionMappings represent the core design of a Struts application. If you
want to figure out how a Struts application works, start with the ActionMappings. If
you want to figure out how to write a new Struts application, start with the Action-
Mappings. The mappings are at the absolute center of every Struts application.

 In this chapter, we take a close look at the ActionMapping properties and
explore how they help you design the flow of a Struts application.

1.0 vs 1.1 In Struts 1.1, ActionMapping subclasses ActionConfig (org.apache.
struts.config.ActionConfig) and adds API methods required for
backward compatibility. ActionMapping is not deprecated, and how the
hierarchy will be handled in future releases has not been determined.
For now, we refer to the ActionMapping class, but you should note that
in Struts 1.1 all of the action properties are actually defined by the Ac-
tionConfig super class. The ActionMapping class otherwise works the
same way in both versions.

7.2 ActionMapping properties

Table 7.1 describes the base ActionMapping properties. As with other configura-
tion components, developers may extend ActionMapping to provide additional
properties.

Table 7.1 The base ActionMapping properties

Property Description

path The URI path from the request used to select this mapping. (API command)

forward The context-relative path of the resource that should serve this request via a for-
ward. Exactly one of the forward, include, or type properties must be specified.

or

include The context-relative path of the resource that should serve this request via an
include. Exactly one of the forward, include, or type properties must be
specified.

or

type Optionally specifies a subclass of org.apache.struts.action.ActionMapping

that should be used when instantiating this mapping.

className The fully qualified name of the Action class used by this mapping.

Since
Struts 1.1

ActionMapping properties 197
In the sections that follow, we take a look at each of these properties.

7.2.1 The path property

The ActionMapping URI, or path, will look to the user like just another file on
the web server. But it does not represent a file. It is a virtual reference to our
ActionMapping.

 Because it is exposed to other systems, the path is not really a logical name, like
those we use with ActionForward. The path can include slashes and an exten-
sion—as if it referred to a file system—but they are all just part of a single name.
The ActionMappings themselves are a “flat” namespace with no type of internal
hierarchy whatsoever. They just happen to use the same characters that we are
used to seeing in hierarchical file systems.

name The name of the form bean, if any, associated with this action. This is not the class
name. It is the logical name used in the form bean configuration.

roles The list of security roles that may access this mapping.

scope The identifier of the scope (request or session) within which the form bean, if any,
associated with this mapping will be created.

validate Set to true if the validate method of the form bean (if any) associated with this
mapping should be called.

input Context-relative path of the input form to which control should be returned if a vali-
dation error is encountered. This can be any URI: HTML, JSP, VM, or another Action-
Mapping.

parameter General-purpose configuration parameter that can be used to pass extra informa-
tion to the Action selected by this ActionMapping.

attribute Name of the request-scope or session-scope attribute under which our form bean is
accessed, if it is other than the bean's specified name.

prefix Prefix used to match request parameter names to form bean property names, if any.

suffix Suffix used to match request parameter names when populating the properties of
our ActionForm bean, if any.

unknown Can be set to true if this mapping should be configured as the default for this appli-
cation (to handle all requests not handled by another mapping). Only one mapping
can be defined as the default unknown mapping within an application.

forwards(s) Block of ActionForwards for this mapping to use, if any.

exception(s) Block of ExceptionHandlers for this mapping to use, if any.

Table 7.1 The base ActionMapping properties (continued)

Property Description

Since
Struts 1.1

Since
Struts 1.1

198 CHAPTER 7

Designing with ActionMappings
 Of course, it can still be useful to treat your ActionMappings as if they were
part of a hierarchy and group related commands under the same "folder." The
only restriction is that the names must match whatever pattern is used in the
application’s deployment description (web.xml) for the ActionServlet. This is usu-
ally either /do/* or *.do, but any similar pattern can be used.

 If you are working in a team environment, different team members can be
given different ActionMapping namespaces to use. Some people may be working
with the /customer ActionMappings, others may be working with the /vendor
ActionMappings. This may also relate to the Java package hierarchy the team is
using. Since the ActionMapping URIs are logical constructs, they can be orga-
nized in any way that suits your project.

 With Struts 1.1, these types of namespaces can be promoted to application
modules. Each team can work independently on its own module, with its own set
of configuration files and presentation pages. Configuring your application to use
multiple modules is covered in chapter 4.

DEFINITION The web runs on URIs, and most URIs map to physical files. If you want to
change the resource, you change the corresponding file. Some URIs, like
Struts actions, are virtual references. They do not have a corresponding
file but are handled by a programming component. To change the re-
source, we change how the component is programmed. But since the
path is a URI and interacts with other systems outside our control, the
path is not a true logical reference—the name of an ActionForward, for
instance. We can change the name of an ActionForward without consult-
ing other systems. It’s an internal, logical reference. If we change the
path to an ActionMapping, we might need to update other systems that
refer to the ActionMapping through its public URI.

7.2.2 The forward property

When the forward property is specified, the servlet will not pass the request to an
Action class but will make a call to RequestDispatcher.forward. Since the opera-
tion does not use an Action class, it can be used to integrate Struts with other
resources and to prototype systems. The forward, include, and type properties
are mutually exclusive. (See chapter 6 for more information.)

7.2.3 The include property

When the include property is specified, the servlet will not pass the request to an
Action class but will make a call to RequestDispatcher.include. The operation

ActionMapping properties 199
does not use an Action class and can be used to integrate Struts with other compo-
nents. The forward, include, and type properties are mutually exclusive. (See
chapter 6 for more information.)

7.2.4 The type property

Most mappings will specify an Action class type rather than a forward or include.
An Action class may be used by more than one mapping. The mappings may spec-
ify form beans, parameters, forwards, or exceptions. The forward, include, and
type properties are mutually exclusive.

7.2.5 The className property

When specified, className is the fully qualified Java classname of the ActionMap-
ping subclass that should be used for this object. This allows you to use your own
ActionMapping subclass with specialized methods and properties. See also
section 7.4.

7.2.6 The name property

This property specifies the logical name for the form bean, as given in the form-
bean segment of the Struts configuration file. By default, this is also the name to
be used when placing the form bean in the request or session context. Use the
attribute property of this class to specify a different attribute key.

7.2.7 The roles property

This property is a comma-delimited list of the security role names that are allowed
access to this ActionMapping object. By default, the same system that is used with
standard container-based security is applied to the list of roles given here. This
means you can use action-based security in lieu of specifying URL patterns in the
deployment descriptor, or you can use both together.

 The security check is handled by the processRoles method of the Request-
Processor (org.apache.struts.action.RequestProcessor). By subclassing
RequestProcessor, you can also use the roles property with application-based
security. See chapter 9 for more about subclassing RequestProcessor.

7.2.8 The scope property

The ActionForm bean can be stored in the current request or in the session scope
(where it will be available to additional requests). While most developers use
request scope for the ActionForm, the framework default is session scope. To
make request the default, see section 7.4.

Since
Struts 1.1

Since
Struts 1.1

200 CHAPTER 7

Designing with ActionMappings
7.2.9 The validate property

An important step in the lifecycle of an ActionForm is to validate its data before
offering it to the business layer. When the validate property for a mapping is true,
the ActionServlet will call the ActionForm’s validate method. If validate returns
false, the request is forwarded to the resource given by the input property.

 Often, developers will create a pair of mappings for each data entry form. One
mapping will have validate set to false, so you can create an empty form. The
other has validate set to true and is used to submit the completed form.

NOTE Whether or not the ActionForm validate method is called does not re-
late to the ActionServlet’s validating property. That switch controls
how the Struts configuration file is processed.

7.2.10 The input property

When validate is set to true, it is important that a valid path for input be pro-
vided. This is where control will pass should the ActionForm validate method
return false. Often, this is the address for a presentation page. Sometimes it will
be another Action path (with validate set to false) that is required to generate
data objects needed by the page.

NOTE The input path often leads back to the page that submitted the request.
While it seems natural for the framework to return the request to where
it originated, this is not a simple task in a web application. A request is of-
ten passed from component to component before a response is sent back
to the browser. The browser only knows the path it used to retrieve the
input page, which may or may not also be the correct path to use for the
input property. While it may be possible to try and generate a default in-
put page based on the HTTP referrer attribute, the Struts designers
deemed that approach unreliable.

inputForward
In Struts 1.0, the ActionMapping input property is always a literal URI. In
Struts 1.1, it may optionally be the name of an ActionForward instead. The
ActionForward is retrieved and its path property is used as the input property.
This can be a global or local ActionForward.

 To use ActionForwards here instead of literal paths, set the inputForward
attribute on the <controller> element for this module to true:

Since
Struts 1.1

ActionMapping properties 201
<controller inputForward="true">

For more about configuring Struts, see chapter 4. For more about ActionFor-
wards, see chapter 6.

7.2.11 The parameter property

The generic parameter property allows Actions to be configured at runtime. Sev-
eral of the standard Struts Actions make use of this property, and the standard
Scaffold Actions often use it, too. The parameter property may contain a URI, the
name of a method, the name of a class, or any other bit of information an Action
may need at runtime. This flexibility allows some Actions to do double and triple
duty, slashing the number of distinct Action classes an application needs on hand.

 Within an Action class, the parameter property is retrieved from the mapping
passed to perform:

parameter = mapping.getParameter();

Multiple parameters
While multiple parameters are not supported by the standard ActionMappings
class, there are some easy ways to implement this, including using HttpUtils, a
StringTokenizer, or a Properties file (java.util.Properties).

HttpUtils. Although deprecated as of the Servlet API 2.3 specification, the
HttpUtils package (javax.servlet.http.HttpUtils) provides a static method
that parses any string as if it were a query string and returns a Hashtable
(java.util.Hashtable):

Hashtable parameters = parseQueryString(parameter);

The parameter property for your mapping then becomes just another query
string, because you might use it elsewhere in the Struts configuration.

stringTokenizer. Another simple approach is to delimit the parameters using the
token of your choice—such as a comma, colon, or semicolon—and use the
StringTokenizer to read them back:

StringTokenizer incoming =
 new StringTokenizer(mapping.getParameter(),";");
int i = 0;
String[] parameters = new String[incoming.countTokens()];
while (incoming.hasMoreTokens()) {
 parameters[i++] = incoming.nextToken().trim();
}

202 CHAPTER 7

Designing with ActionMappings
Properties file. While slightly more complicated than the others, another popular
approach to providing multiple parameters to an ActionMapping is with a stan-
dard Properties files (java.util.Properties). Depending on your needs, the
Properties file could be stored in an absolute location in your file system or any-
where on your application’s CLASSPATH.

 The Commons Scaffold package [ASF, Commons] provides a ResourceUtils
package (org.apache.commons.scaffold.util.ResourceUtils) with methods for
loading a Properties file from an absolute location or from your application’s
CLASSPATH.

7.2.12 The attribute property

From time to time, you may need to store two copies of the same ActionForm in
the same context at the same time. This most often happens when ActionForms
are being stored in the session context as part of a workflow. To keep their names
from conflicting, you can use the attribute property to give one ActionForm
bean a different name.

 An alternative approach is to define another ActionForm bean in the configu-
ration, using the same type but under a different name.

7.2.13 The prefix and suffix properties

Like attribute, the prefix and suffix properties can be used to help avoid
naming conflicts in your application. When specified, these switches enable a
prefix or suffix for the property name, forming an alias when it is populated
from the request.

 If the prefix this was specified, then

thisName=McClanahan

becomes equivalent to

name=McClanahan

for the purpose of populating the ActionForm. Either or both parameters would call

getName("McClanahan");

This does not affect how the properties are written by the tag extensions. It affects
how the autopopulation mechanism perceives them in the request.

Nested components 203
7.2.14 The unknown ActionMapping

While surfing the Web, most of us have encountered the dreaded 404— page not
found message. Most web servers provide some special features for processing
requests for unknown pages, so webmasters can steer users in the right direction.

 Struts offers a similar service for ActionMapping 404s—the unknown ActionMap-
ping. In the Struts configuration file, you can specify one ActionMapping to
receive any requests for an ActionMapping that would not otherwise be matched:

<action
 name="/debug"
 forward="/pages/debug.jsp"/>

When this option is not set, a request for an ActionMapping that cannot be
matched throws

400 Invalid path /notHere was requested

Note that by a request for an ActionMapping, we mean a URI that matches the prefix
or suffix specified for the servlet (usually /do/* or *.do). Requests for other URI
patterns, good or bad, will be handled by other servlets or by the container:

/do/notHere (goes to the unknown ActionMapping)
/notHere.txt (goes to the container)

7.3 Nested components

The ActionMapping properties are helpful when it comes to getting an Action to
run a business operation. But they tell only part of the story. There is still much to
do when the Action returns.

 An Action may have more than one outcome. We may need to register several
ActionForwards so that the Action can take its pick.

7.3.1 Local forwards

In the normal course, an ActionMapping is used to select an Action object to han-
dle the request. The Action returns an ActionForward that indicates which page
should complete the response.

 The reason we use ActionForwards is that, in practice, presentation pages are
either often reused or often changed, or both. In either case, it is good practice to
encapsulate the page’s location behind a logical name, like “success” or “failure.”
The ActionForward object lets us assign a logical name to any given URI.

204 CHAPTER 7

Designing with ActionMappings
 Of course, logical concepts like success or failure are often relative. What rep-
resents success to one Action may represent failure to another. Each Action-
Mapping can have its own set of local ActionForwards. When the Action asks for a
forward (by name), the local set is checked before trying the global forwards. See
chapter 6 for more about ActionForwards.

 Local forwards are usually specified in the Struts configuration file. See chap-
ter 4 for details.

7.3.2 Local exceptions

Most often, an application’s exception handlers (org.apache.struts.action.
ExceptionHandler) can be declared globally. However, if a given ActionMapping
needs to handle an exception differently, it can have its own set of local exception
handlers that are checked before the global set.

 Local exceptions are usually specified in the Struts configuration file. See
chapter 4 for details.

7.4 Rolling your own ActionMapping

While ActionMapping provides an impressive array of properties, developers may
also provide their own subclass with additional properties or methods. In
Struts 1.0, this is configured in the deployment descriptor (web.xml) for the
ActionServlet:

<init-param>
 <param-name>mapping</param-name>
 <param-value>app.MyActionMapping</param-value>
</init-param>

In Struts 1.1, this is configured in the Struts configuration file as an attribute to
the <action-mappings> element:

<action-mappings type="app.MyActionMapping">

Individual mappings may also be set to use another type through the className
attribute:

<action className="app.MyActionMapping">

For more about configuring Struts, see chapter 4.

Since
Struts 1.1

Summary 205
 The framework provides two base ActionMapping classes, shown in table 7.2.
They can be selected as the default or used as a base for your own subclasses.

The framework default is SessionActionMapping, so scope defaults to session.
 Subclasses that provide new properties may set them in the Struts configura-

tion using a standard mechanism:

<set-property property="myProperty" value="myValue" />

Using this standard mechanism helps developers avoid subclassing the Action-
Servlet just to recognize the new properties when it digests the configuration file.
This is actually a feature of the Digester that Struts simply inherits.

7.5 Summary

Sun’s Model 2 architecture teaches that servlets and JavaServer Pages should be
used together in the same application. The servlets can handle flow control and
data acquisition, and the JavaServer Pages can handle the HTML.

 Struts takes this one step further and delegates much of the flow control and
data acquisition to Action objects. The application then needs only a single servlet
to act as a traffic cop. All the real work is parceled out to the Actions and the
Struts configuration objects.

 Like servlets, Actions are efficient, multithreaded singletons. A single Action
object can be handling any number of requests at the same time, optimizing your
server’s resources.

 To get the most use out of your Actions, the ActionMapping object is used as a
decorator for the Action object. It gives the Action a URI, or several URIs, and a
way to pass different configuration settings to an Action depending on which URI
is called.

 In this chapter, we took a close look at the ActionMapping properties and
explained each property’s role in the scheme of things. We also looked at extend-
ing the standard ActionMapping object with custom properties—just in case your
scheme needs even more things.

Table 7.2 The default ActionMapping classes

ActionMapping Description

org.apache.struts.action.SessionActionMapping Defaults the scope property to session

org.apache.struts.action.RequestActionMapping Defaults the scope property to request

206 CHAPTER 7

Designing with ActionMappings
 In chapter 8, the real fun begins. The configuration objects covered so far are
mainly a support system. They help the controller match an incoming request
with a server-side operation. Now that we have the supporting players, let’s meet
the Struts diva: the Action object.

8 Working with
Action objects
This chapter covers
� Understanding Action best practices
� Using a base Action
� Chaining Actions
� Relying on standard Actions
� Leveraging helper Actions
207

208 CHAPTER 8

Working with Action objects
I will work harder!
—Boxer (Animal Farm, by George Orwell)

8.1 Ready, set, action!

If the Struts configuration is an application’s brain, the Action classes are its
brawn. These are the workhorses of a Struts application and where the web devel-
opers spend most of their time.

 Actions are the most flexible classes in the Struts framework. These chimeras
can be used to create whatever functionality you need whenever you need it.

 The core responsibilities of a Struts Action are to:

� Access the business layer

� Prepare data objects for the presentation layer

� Deal with any errors that spring up in between

But this list does not begin to touch on everything that an Action can do. When
the ActionServlet dispatches the request to the Action, it also “deputizes” the
object so that it can do whatever a servlet might usually do. For example, an
Action can:

� Create its own response to the request

� Access or create other objects in any servlet scope

� Include or forward to another servlet via a RequestDispatcher

While many Actions are customized to a particular task, others can be well-factored
utilities, configured by their mapping, and reused throughout your application.

 In this chapter we take a close look at the standard Action classes bundled with
Struts, the standard Action classes in the Scaffold package, and reusable coding
techniques for Actions.

8.2 Getting it done with Action objects

Most of the other components in a Struts application simply provide infrastruc-
ture so that an Action object can do whatever the application does.

 If the application needs to save a record to a database:

� The ActionForward provides a link to the input page.

� The ActionForm captures the input.

Getting it done with Action objects 209
� The ActionMapping configures the Action.

� The Action sends the input up to the database.

NOTE In practice, most developers will send the data to a business delegate (see
chapter 14) rather than the actual database. But that’s up to you, not
Struts. The framework delegates the business operation to the Action
and lets the Action do the job in its own way.

In this section, we describe the basics of this vital class: what Actions are, when
they are called, what they do, and what they look like.

8.2.1 What are Actions?

Compared to a conventional web application, the Struts Action classes work like
mini-servlets. In most Java applications, such tasks as accessing the business layer
and error handling are handled by a servlet. In a Struts application, the servlet
acts as a dispatcher. It’s the Action objects that do the actual work. Like servlets,
Action objects are multithreaded. Only one instance of an Action class is used per
application.

 Although they do the work of a servlet, Action objects are not themselves serv-
lets. The Action is a simple, lightweight Java class to which the ActionServlet dele-
gates the handling of the request and its response. The Action class is connected
to the ActionServlet and can call any of its public properties but without the over-
head of instantiating another servlet.

 The servlet refers to the list of ActionMappings (see chapter 7) to select an
Action to handle a request. The servlet then calls an entry method on the Action
and passes in several useful objects. When the Action’s entry method completes, it
returns an ActionForward. The ActionServlet uses the ActionForward to deter-
mine where control should next pass to complete the request.

 Typically, the ActionForward directs control to a presentation component,
such as a JSP or Velocity template. The ActionForward could also refer to another
Action, an HTML page, or any resource with a URI [W3C, URI]. To signal that it has
already generated the response and completed the request, the Action can just
return a null value.

 From the outside, an Action looks like a mini-servlet that returns an ActionFor-
ward. In the rest of this chapter, we explore what Actions look like from the inside.

210 CHAPTER 8

Working with Action objects
Thread safety
Actions are multithreaded; there is a single instance of any given Action subclass
per application. This means that Actions must be written to be thread-safe. When
you’re writing an Action subclass, the most important thing to remember is that
class properties cannot be used to share values between member methods. If
member methods are used, then all values must be passed through the method’s
signature. This passes the values through the stack, which is thread-safe.

DEFINITION The term thread-safe means that a given library function is implemented
in such a manner that it can be executed by multiple concurrent threads
of execution. For more about thread safety and multithreading, see chap-
ter 7 of The Java Language Environment [Gosling, JLE].

Member methods are an important design element and will often be found in
well-written Action subclasses (including several Actions we present later in this
chapter). Just be sure to pass all shared values through the method signatures as
you would if the methods were on separate objects.

8.2.2 When are Actions called?

When an Action is needed, it is called by the ActionServlet through the Action’s
perform or execute method.

STRUTS 1.1 The execute method was added in Struts 1.1 to improve exception han-
dling. It is otherwise used in the same way as the original perform meth-
od. The perform method is deprecated in Struts 1.1 but still supported
to provide backward compatibility with Struts 1.0.

The perform or execute method is the only entry point to the Action. The meth-
ods accept four parameters, as shown in table 8.1.

Table 8.1 Parameters passed to the Action perform or execute method

Parameter Description

mapping The ActionMapping used to invoke this Action

form The ActionForm specified by the mapping, if any

request The request context

response The response we are creating

Getting it done with Action objects 211
The mapping and form parameters are passed as a matter of convenience. At this
point, they have already been placed in the request and could be retrieved from
there:

ActionMapping mapping =
 (ActionMapping) request.getAttribute(MAPPING_KEY);
ActionForm form =
 (ActionForm) request.getAttribute(mapping.getName());

But since nearly every Action class will need to use these objects, it’s simpler for
the servlet to pass them along in the signature. By contrast, the servlet does not
pass the session object since most Action classes do not need to use the session
context. When the session is needed, it can be retrieved from the request:

HttpSession session = request.getSession();

It is important to remember that the ActionForm passed to an Action class may
differ between requests. The ActionMapping determines which ActionForm sub-
class is passed to the Action. The ActionServlet will use whatever ActionForm type
is in the request. This lets you create flexible Action classes that can be used with a
variety of ActionForms.

 However, in practice, many Action classes are designed to use a particular
ActionForm type and will cast it to access the properties it expects:

MyActionForm myForm = (MyActionForm) form;

If the form passed were not a MyActionForm or subclass, a runtime exception
would be thrown. But as long as the proper type is specified in the ActionMap-
ping, this technique works well.

8.2.3 What do Actions do?

The general responsibilities of a typical Action are to:

1 Validate preconditions or assertions.

2 Call any needed business logic methods.

3 Detect any other processing errors.

4 Route control to the appropriate view.

This list is not meant to restrict what an Action can do. An Action can do nearly
anything a full-fledged servlet can do. If it wants to write a response back to the cli-
ent, the Action can. If it wants to forward to another servlet, the Action can. But,
in practice, most developers write Actions that do these four things and then let
the controller forward the request on to another component to render the view.

212 CHAPTER 8

Working with Action objects
Actions validate assertions
The primary role of an Action is to serve as an adaptor between the web and busi-
ness tiers. The Action takes what we can get from the web tier and passes it off to
the business operation. But business operations can be finicky and web operations
can be vague. Given the loosely coupled nature of the web, most Actions need to
validate the data as to form and check other assertions before conducting the
requested business operation.

 Many times data validation can be delegated to the ActionForm. So, all the
Action needs to do is confirm that the ActionForm is of the expected type. Usually
this is done with a casual cast of the incoming ActionForm into the expected class
(as shown in the prior section):

 MyActionForm myform = (MyActionForm) form;

Other assertions may include whether the user is logged in and has the appropri-
ate clearance. In Struts 1.1, this can be handled automatically using the roles
property of the ActionMapping (see chapter 7). In some cases, there may be other
assertions, such as whether the user has performed another step in the workflow.

 If any of the preconditions fail, the Action can generate a list of localized mes-
sages and route control to an error page. We’ll come back to error handling shortly.

 The Action’s first responsibility is to confirm any preconditions. Job two is to
call the business logic.

Actions call business logic
Business logic, in a very broad sense, is the set of guidelines to
manage a specific business function. Taking the object-oriented

approach enables the developer to decompose a business function into
a set of components or elements called business objects.... The

business-specific rules that help us identify the structure and behavior
of the business objects, along with the pre- and post-conditions that

must be met when an object exposes its behavior to other objects in the
system, is known as business logic.

— Taken from the J2EE Blueprints at 5.1 [Sun, Blueprints]

An Action class is an adaptor between HTTP and the rest of your application. It is
important to avoid placing any business logic in the Action class itself. The Action
class should simply gather whatever data the business methods need and pass it
along. If you are writing the business classes and the Action classes at the same
time, it is tempting to put them together. You should avoid this and put the busi-
ness methods in a separate class that the Action can call. The Java Virtual Machine

Getting it done with Action objects 213
(JVM) is optimized for calling methods; the performance penalty is slim to nonex-
istent. Meanwhile, you gain several design advantages, described in table 8.2.

Actions detect errors
Struts has a well-developed error-handling system that allows you to:

� Catch several errors at once

� Pass the error packet in the request

� Display a localized message

The process involves two objects (ActionErrors and ActionError) and a utility
method (saveErrors) to register errors. Two other objects (MessageResources
and a custom tag) display the message on the other end. We cover the objects and
servlet method here. For more about displaying the error messages using JSP tags,
see chapter 10.

Registering errors
The overall process boils down to:

� Creating an empty ActionErrors instance

� Adding keys for error messages as they occur

� Checking to see if any messages have been added

� Saving the ActionErrors collection to the request

Table 8.2 Why we decouple business logic from Actions

Reason Explanation

A more robust design If your business methods are in another class, you don’t have to worry
about breaking them while you are writing the Action class.

A simpler design It is easier to see how your Action class works if the business methods
are encapsulated behind a method call rather than buried in another
paragraph of code.

A broader design Today they just want a Struts web application. Tomorrow, they refactor
the requirements and want something else. If the business logic is
not embedded in your Action classes, then it can be reused in another
environment.

A more flexible design Eventually, you may find yourself wanting to use the same business logic
in another Action class. Some developers then start forwarding requests
between Actions. If the business methods are in a separate class, you
have the flexibility of calling them from more than one Action.

214 CHAPTER 8

Working with Action objects
� Forwarding control to an error page to display the messages

� Otherwise, continuing normally

 Or, for example:

ActionErrors errors = new ActionErrors();
try {
 // * call a business object *
}
catch (ModelException e) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.detail",e.getMessage()));
}
if (!errors.empty()) {
 saveErrors(request, errors);
 return (mapping.findForward("error"));
}
// * continue normally *

Of course, error.detail is not what the user sees. This is a key to the message
resources. The message associated with the key will be merged with any replace-
ment parameters and the result displayed to the user. There can be different mes-
sage resources for different locales. The messages will differ, but each resource
will usually have the same set of keys.

 The example just sends the message from the exception to the error page. In
the resource file, the key error.detail is just one big replacement parameter:

error.detail={0}

Typically, you may want to use a user-friendlier message like this:

error.database=An error occurred while accessing the database

You can send both the friendly error and the actual exception message with

 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.database"));
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.detail",e.getMessage()));

Struts messages can accept up to four replacement parameters. You can use these
to customize the message with record numbers or other specifics. For more about
the message resources and internationalizing your application, see chapter 13.

 In the JSP, you can print the errors using the trusty Struts 1.0 tag:

<html:errors/>

or the more flexible message tags in Struts 1.1:

Getting it done with Action objects 215
<logic:messagesPresent>

 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>

</logic:messagesPresent>

Queuing messages with Struts 1.0
In Struts 1.0, you can use the same queue for confirmation messages. Whether or
not a message is an error is typically a matter of context. It’s not difficult for users
to tell the difference between

"The Amount field is required"

and

"Record #1412 deleted"

Queuing messages with Struts 1.1
In Struts 1.1, you can register both messages and errors to separate queues. On
the presentation page, you can then print each queue separately, perhaps using
different styles. The process for registering a message is the same general process
as registering an error:

� Create an empty ActionMessages instance.

� Add keys for the messages as needed.

� Call saveMessages(HttpServletRequest, ActionMessages).

On the JSP, you can check for messages, as opposed to errors, by specifying mes-
sage=true in any of the message tags:

<logic:messagesPresent message="true">

 <html:messages id="message" message="true">
 <bean:write name="message"/>
 </html:messages>

</logic:messagesPresent>

To check for errors, as opposed to messages, omit the message attribute (which
defaults to false).

216 CHAPTER 8

Working with Action objects
Exception handling in Struts 1.0
In a Struts 1.0 application, the Action object sits at the top of the call tree. Any
exception that is not caught here does not get caught. It ends up as either a
“white screen” or as filler for your JSP error page.

 The perform method is documented to throw IOExceptions and ServletExcep-
tions. If these exceptions do occur, letting them go to a default error page may be
the best thing, since something nasty has happened.

 The exceptions you must watch for are those thrown by your business logic.
The recommended approach is for business objects to throw their own class of
exception. This makes it easier to watch for the right ones. It can also give your
business layer the chance to frame the exception in a business context.

Exception handling in Struts 1.1
In Struts 1.1, the preferred entry point to an Action is the execute method. This
method is designed to be used with the Struts ExceptionHandler object
(org.apache.struts.action.ExceptionHandler). You can register both global and
local exception handlers with the Struts configuration. If you like, you can dele-
gate all responsibility for exceptions to the Struts handler. Or you can still handle
recoverable exceptions from the Action and allow others to pass up to the han-
dler. The choice is yours.

 For more about configuring a Struts exception handler, see chapter 4. For
more about writing your own ExceptionHandlers, see chapter 9.

Actions route control
The Struts ActionForwards may define the “places to go,” but it’s the Action object
that selects the runtime itinerary. The ActionForward defines where; the Action
object decides when.

mapping.findForward. The ActionServlet invokes an Action object through its
perform or execute method and exits by returning an ActionForward or null. The
most common way for an Action class to select a forward is through the find-
Forward method of the ActionMapping:

return mapping.findForward("continue");

The mapping will first search for a local forward before checking the global for-
wards. If the named forward is not found, then findForward returns null.

 Usually, an Action returns null to indicate a response has already been sent. If
you receive a message from a browser indicating that there was no response, most

Getting it done with Action objects 217
often it’s because findForward returned null. This means that either a forward is
missing or the Action class has the name wrong.

STRUTS TIP One way to avoid errors like this is to define String tokens for the Ac-
tionForwards. Unfortunately, you can’t use them in the XML configura-
tion file and they are clumsy to use in a JSP. But they do at least
document what the forwards are supposed to be called and prevent typing
errors in the Action classes.

Dynamic selection. While passing a String constant is the most common way to
select an ActionForward, it is not the only way. The mapping.findForward method
is resolved at runtime, and so the forward name can be determined at runtime
too. For example, a base Action could provide a getForward method that could be
subclassed to provide specialized behavior. The main execute block calls your
method to return the result:

return mapping.findForward(this.getForward());

Your subclass can override the getForward method to return a different outcome
without changing the main execute method. An Action class might also select a
forward based on the outcome of an operation. For example, a special page might
be used if a search result came back empty.

Collection result = businessClass.getResult();
if (0==result.size()) {
return mapping.findForward(Tokens.EMPTY);
}
request.setAttribute(Tokens.RESULT,result);
return mapping.findForward(Tokens.SUCCESS);

Although not a common practice, an Action could also transparently select one for-
ward or another based on the user’s locale, browser, security role, or other criteria.

Dynamic construction. The ActionForward itself can also be constructed at run-
time. This is a handy way to add parameters to an ActionForward before sending
it along to another Action. For more about constructing ActionForwards, see
chapter 6.

8.2.4 What does an Action look like?

Here’s a skeleton execute method that synthesizes some of the fragments pre-
sented earlier (for Struts 1.0, you can use the same code within a perform method):

218 CHAPTER 8

Working with Action objects
public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {

ActionErrors errors = new ActionErrors();

// If all exceptions are registered with handlers
// the try .. catch clause can be omitted
try {

 // * business logic here *

}

// * Catch your business exceptions here *

catch (ChainedException e) {
 // Log and print to error console
 servlet.log("Exception: ", e);
 e.printStackTrace();
 // General error message
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.general"));
 // Generate error message from exceptions
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.detail",e.getMessage()));
 if (e.isCause()) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new
ActionError("error.detail",e.getCauseMessage()));
 }
 }

 // Report any errors
 if (!errors.empty()) {
 saveErrors(request, errors);
 if (mapping.getInput()!=null)
 return (new ActionForward(mapping.getInput()));
 // If no input page, use error forwarding
 return (mapping.findForward(Tokens.ERROR));
 }

 // * If your business logic created any *
 // * helper objects, save them before returning *
 // * request.setAttribute("yourKey",yourBusinessObject); *

 // * Return the ActionForward you use for success *
 return findForward("continue");
 }

Of course, there are several other clever things your Action could do, but this is
the basic skeleton that most Actions will follow.

The standard Actions 219
 The Scaffold package provides a refactored version of this skeleton that can be
used as a base Action in your applications (org.apache.struts.scaffold.Base-
Action). It replaces each block of code shown previously with a public or pro-
tected method that your subclasses can override as needed.

8.3 The standard Actions

Many Struts Action classes are written to do a particular job in a particular applica-
tion. Other Actions are written to be used by any application. Some Actions are
written so they can do several jobs. Other Actions may only provide flow control to
an application without doing anything themselves. Still others are written to pro-
vide a common base for other Actions.

 The Struts distribution provides several “standard” Actions that do different
things. There are bridge Actions that help Struts work with other servlets in your
application, and several base Actions designed to be extended with new functional-
ity. Table 8.3 describes these Actions.

8.3.1 Standard bridge Action classes

Struts likes to play well with others and even provides standard classes to help inte-
grate Struts with other servlets in your application. These work by calling the stan-
dard servlet RequestDispatcher class (javax.servlet.RequestDispatcher), using
either its forward or include method, as shown in table 8.4.

Table 8.3 The Struts standard Actions (org.apache.struts.actions)

Action Purpose Example

Bridge Actions Integrate Struts with other servlets ForwardAction
IncludeAction

Base Actions Extend your functionality DispatchAction
LookupDispatchAction [Struts 1.1]
SwitchAction [Struts 1.1]
BaseAction [ASF, Scaffold]

Table 8.4 The standard bridge Actions

Action Purpose

ForwardAction Issues a RequestDispatcher forward

IncludeAction Issues a RequestDispatcher include

220 CHAPTER 8

Working with Action objects
ForwardAction
True to its name, the ForwardAction simply forwards control to another resource.
This can be another Action, a JSP, another servlet, or any other application
resource with a URI [W3C, URI].

 The ForwardAction creates a request dispatcher and forwards control to a
context-relative URI supplied by the ActionMapping. The context-relative path is
given as the ActionMapping’s parameter property:

<action
 path="/saveSubscription"
 type="org.apache.struts.actions.ForwardAction"
 name="subscriptionForm"
 scope="request"
 input="/subscription.jsp"
 parameter="/path/to/application/resource"/>

The ActionServlet will run through its normal routine of instantiating any form
bean and validating it, if appropriate, before forwarding the request along.

 The most common use of the ForwardAction is to serve as a placeholder
Action. Many Struts developers avoid linking from one page to another and try to
always pass control through an Action or ActionForward. This keeps the workflow
under the control of the Struts configuration where it can be centrally managed.

 However, many pages do not require any special preprocessing (at least not
yet). If an ActionMapping is created for these pages, you can start by using the
ForwardAction to just route control. Later, if requirements change and prepro-
cessing is required, you can change the mapping to refer to an Action for that
page. Since the links refer to the mapping, not the Action class, you can change
the Action class without changing the links.

1.0 vs 1.1 Support for modular application, was introduced in Struts 1.1. Use of this
feature requires that control passes through the ActionServer before pro-
cessing a JSP page using the Struts taglibs. Even if you are not using a
modular design now, you can make your application easier to refactor by
linking only to Actions and never to JSPs. If your page does not require
an Action, use the ForwardAction instead.

The ForwardAction can also be used to integrate Struts with any other compo-
nents in an application that expects to be handed a URI. Many servlets, such as
Cocoon [ASF, Cocoon], are designed to be accessed through a URI. The URI for
these servlets can be encapsulated using a ForwardAction. This makes it easier to

The standard Actions 221
leverage the Struts control flow and form bean capabilities without giving up the
special services the other servlet offers.

 The other servlet would also have access to the form bean in the request, if
that were needed. The mapping would also be available under the key given by
Action.MAPPING_KEY, along with the original HTTP request parameters. Any of
these objects can be used to provide information to the other servlet (if it is able
to import the Struts classes):

ActionMapping mapping = (ActionMapping)
 request.getAttribute(Action.MAPPING_KEY);

EditForm editForm = (EditForm)
 request.getAttribute(mapping.getName());

If you need to put objects in the request that are expected by the other compo-
nent, then simply create your own Action subclass and return an ActionForward
to the component’s URI. This forward could be created dynamically or read from
the Struts configuration in the usual way.

IncludeAction
Similar to the ForwardAction, the IncludeAction helps you integrate other appli-
cation components into the Struts framework. Rather than forward to the path
specified as the parameter property, it issues an include directive.

 With an include, you can start responding to a client and still issue the include.
When the other servlet completes, control returns. By contrast, a forward cannot
be issued once a response begins, and control does not return to the issuing serv-
let, as shown in table 8.5.

Includes are most often used as part of the presentation and are the basis for most
JSP template systems, like the Tiles library covered in chapter 11. For more about
how servlets dispatch requests, see the servlet specification [Sun, JTS].

 The place where an IncludeAction can come into play is when an Action
object begins a response and then wants some other servlet to finish it. Somewhat
esoteric … but there it is. In practice, the source code from an IncludeAction may

Table 8.5 Forward versus include

Action Response Control

Forward Cannot be issued once response begins Control does not return

Include Can be issued during the response Controls does return

222 CHAPTER 8

Working with Action objects
be a helpful guide in developing your own Action classes that need to include out-
put from other servlets.

8.3.2 Standard base Actions

The standard base Actions include the following:

� BaseAction (Scaffold)

� DispatchAction

� LookupDispatchAction

� SwitchAction

BaseAction (Scaffold)
Earlier in this chapter, we outlined the things Actions usually do:

� Detect errors and queue messages

� Call business methods

� Catch exceptions

� Log messages

� Route control

If you put all these tasks together into a well-factored Action, you end up with
something like this:

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
throws Exception {

 // Check for precondition errors; fail if found
 preProcess(mapping,form,request,response);
 if (isErrors(request)) {
 return findFailure(mapping,form,request,response);
 }
 // Try the logic; Call catchException() if needed
 try {
 executeLogic(mapping,form,request,response);
 }
 catch (Exception e) {
 // Store Exception; call extension point
 setException(request,e);
 catchException(mapping,form,request,response);
 }
 finally {
 postProcess(mapping,form,request,response);

Since
Struts 1.1 [

The standard Actions 223
 }
 // If errors queued, fail
 if (isErrors(request)) {
 return findFailure(mapping,form,request,response);
 }
 // Otherwise, check for messages and succeed (only 1_0)
 if ((isStruts_1_0()) && (isMessages(request))) {
 saveErrors(request,getMessages(request,false));
 }
 return findSuccess(mapping,form,request,response);
}

This is the execute method from the Struts BaseAction (org.apache.scaffold.
http.BaseAction) in the optional Scaffold package. This Action provides hotspot
methods for the major events in an Action’s workflow. A subclass can override just
the hotspot methods it needs to change.

STRUTS TIP Always create a base class for the custom Actions in your application. The
Actions are instantiated only once, so there is little penalty for creating a
deep Action hierarchy. If you watch for places where you can abstract
common needs into utility methods, there can be a lot of code to share
between your Actions.

In practice, you would usually override the executeLogic method and sometimes
postProcess, but the other methods have default behaviors that will work well in
most circumstances. If not, you can override any of these hotspot methods to pro-
vide special behavior for special circumstances, as shown in table 8.6.

Table 8.6 Base Action hotspots

Action Description

preProcess Optional extension point to handle any preconditions for this Action.

findFailure Returns the appropriate ActionForward for an error condition. The default method
returns a forward to the input path, when there is one, or the error forward when
not.

executeLogic Executes the business logic for this Action. Overrides to provide functionality.

catchException Processes the exception handling for this Action.

postProcess Optional extension point to handle any post conditions for this Action.

findSuccess Returns the appropriate ActionForward for the nominal, nonerror state. The
default returns mapping.findForward("success").

224 CHAPTER 8

Working with Action objects
You can use BaseAction as the ancestor class for your own Actions, or adopt and
adapt the techniques to any base Action that you may already use.

1.0 vs 1.1 The BaseAction Scaffold 1.0 release is written to be forward-compatible
with Struts 1.1. It includes a stub process method that calls the now-
preferred execute method. This lets you base your code on execute re-
gardless of whether it is now used with Struts 1.0 or Struts 1.1. In Struts
1.1, the execute method will be called directly and the old perform
method ignored. Under Struts 1.0, calling the perform method in turn
invokes the newer execute method. Other hooks are included to accom-
modate other changes, like the new message queue.

For more about moving from Struts 1.0 to Struts 1.1, see chapter 16.

DispatchAction
A common strategy among Struts developers is to use the same Action class to
handle several related tasks. A good example is performing the basic CRUD (Cre-
ate Read Update Delete) operations on a data record. Since these operations have
much in common, it can be simplest to maintain them from the same class.

 Without the DispatchAction, the usual approach is to use a hidden field in the
ActionForm to select the appropriate Action. With the DispatchAction
(org.apache.struts.actions.DispatchAction), developers can group multiple
methods within a single Action. The DispatchAction can automatically select the
correct method by keying on the hidden field; it uses reflection to replace the
fragile if/then logic most developers would use instead.

 Each of the dispatch methods must use the same signature as the usual Action
perform or execute method. (Read as perform for Struts 1.0 and execute for Struts
1.1.) The name of the hidden field is passed to the Action in the generic parame-
ter property of the ActionMapping. The DispatchAction then grabs the value of
the field from the request and uses reflection to call the appropriate method.

STRUTS TIP Use DispatchAction to organize related operations into a unified Action.
Keeping related operations together simplifies maintenance and flow
control.

For example, your DispatchAction subclass might contain “dispatch” methods
like these:

The standard Actions 225
public ActionForward create(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException,ServletException;

public ActionForward read(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException;

public ActionForward update(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException;

public ActionForward delete(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException;

And your Struts configuration could create an entry like this:

<action
 path="/dataRecord"
 type="app.recordDispatchAction"
 name="dataForm"
 scope="request"
 input="/data.jsp"
 parameter="method"/>

To select the delete method, you could call

http://localhost/app/dataRecord?method=delete

and include whatever other property is needed to select the record.
 In practice, the value of the method field is usually the name of one of the but-

tons or a hidden property in the form (set with a JavaScript).
 The dispatch mechanism itself is transparent and efficient. The developer

need only subclass DispatchAction and supply the appropriate methods. The per-
form or execute method should not be overridden, since it is used to select one of
the other methods. Whatever functionality would usually be placed in a perform
or execute method would be placed into the dispatch methods.

LookupDispatchAction
A convenient way to select a dispatch method is by linking it with a button. This
can be problematic in a localized application, since the label of the button may
change according to the user’s locale. For one user, the button may read Delete; for
another, it may read Borre.

Since
Struts 1.1

226 CHAPTER 8

Working with Action objects
STRUTS TIP Use LookupDispatchAction instead of DispatchAction when it is impor-
tant to both localize your controls and avoid reliance on JavaScript to se-
lect the dispatch operation.

The LookupDispatchAction (org.apache.struts.actions.LookupDispatch-
Action) solves this problem by mapping the labels back to their original message
key. The key can then be mapped to the appropriate dispatch method. Since the
message key may not be an appropriate name for a Java method, the developer
provides a hash table that maps the message keys to the dispatch method names:

protected Map getKeyMethodMap(ActionMapping mapping,
 ActionForm form,HttpServletRequest request) {
 Map map = new HashMap();
 map.put("button.add", "create");
 map.put("button.view", "read");
 map.put("button.update", "update");
 map.put("button.delete", "delete");
 return map;
}

In a JSP, the buttons could be created like this:

<html:form action="/dataRecord">
 <html:submit property="method">
 <bean:message key="button.add">
 </html:submit>
 <html:submit property="method">
 <bean:message key="button.view">
 </html:submit>
 <html:submit property="method">
 <bean:message key="button.update">
 </html:submit>
 <html:submit property="method">
 <bean:message key="button.delete">
 </html:submit>
</html:form>

The labels for the buttons may vary by user locale, but the same method will be
selected regardless.

 To sum up, the difference between the DispatchAction and DispatchLookup-
Action is that the latter does a reverse lookup to match the localized value submit-
ted for the button back to the message key. The message key is then mapped to
the name of the dispatch method.

The standard Actions 227
Factoring dispatch methods
Often, the dispatch methods will need to do similar things while undertaking
their individual operations: watch for exceptions, check for errors, log messages,
and so forth—all the things an Action would usually do.

 While Action classes need to be thread-safe, you can still provide utilities for
the dispatch methods to share. The important thing is to pass whatever variables
are needed by the utility through its signature. This places the variables on the
stack, which is thread-safe.

 For example, if each dispatch method needs to check the locale of the user,
they can all call the same utility to look this up, as long as each instance passes
their copy of the request:

Locale locale = getLocale(request);

The same principle applies to any other data structure. A multithreaded class, like
an Action, cannot share data between methods using class variables, but methods
may pass instance variables to each other through their signatures. The Base-
Action class covered earlier in this section relies on this technique.

 If you like routing related operations to the same Action but sometimes need
to handle one of them through its own Action, you can always have the dispatch
method return a forward so that the other Action can finish the job.

SwitchAction
All Struts applications have at least one module. Some applications may be con-
figured to use multiple modules. Each module has its own set of configuration
files and presentation pages and can be developed as if it were the only module
in the application.

 Of course, at some point the modules need to interact if they are going to work
as a single application. SwitchAction (org.apache.struts.actions.SwitchAction)
is a standard Action that can switch to another module and then forward control
to a path within that module.

 SwitchAction expects two request parameters to be passed:

� page: A module-relative URI (beginning with /) to which control should be
forwarded after switching.

� prefix: The module prefix (beginning with /) of the application module to
which control should be switched. Use a zero-length string for the default
module. The appropriate ApplicationConfig object will be stored as a request
attribute, so any subsequent logic will assume the new application module.

Since
Struts 1.1

228 CHAPTER 8

Working with Action objects
8.4 Chaining Actions

As an application grows, its Actions tend to evolve into an internal API. Developers
find themselves wanting to join Action classes in a chain, creating a workflow or
macro process. Generally, this is a sign that the business logic is too strongly cou-
pled with the Action or that the Action hierarchy is too shallow. If there is func-
tionality that should be shared between Actions, it should be factored into
separate business classes or provided as helper methods in an Action super class.
However, there are techniques you can use to chain Actions together if need be.

 The ActionForward returned by an Action’s perform method can be any URI,
including another Action. Developers often use this technique to create work-
flows where each Action plays its own part in processing the request.

 If you forward from one Action to another in this way, the ActionServlet treats
the forwarded request just as if it had come directly from the client. The Action-
Form bean is reset, repopulated, and revalidated, and, if all goes well, passed to the
second Action. This often upsets developers, since they usually want to set a prop-
erty on the form bean and pass that value along to the next Action in the chain.

 The best solution here is to add a switch to your bean to make its properties
immutable:

private boolean mutable = true;
public void setMutable(boolean mutable) {
 this.mutable = mutable;
}

// ...

public setProperty(String property) {
 if (isMutable()) this.property = property;
}

After modifying properties in the first action, call setMutable(false). Then go
on to the second Action.

 If your reset method calls the public setters, then reset will be effectively dis-
abled as well. If reset sets the properties directly, then it will need to be modified
to check the immutable state. If validation might be a problem, then have vali-
date return true whenever mutable is false. However, the data you want to pass
between Actions is likely to be valid and shouldn’t fail in the normal course.

 A variation on this technique is to create a new form bean for the second
Action, populate it, and add it to the request. If both Actions use the same bean
type, and you need them both, you can add an attribute property to one of the
Action’s mappings so that it is stored under a different attribute name:

Scaffold Actions 229
<action
 path="/item/Edit"
 type="org.apache.gavel.http.ModelHelper"
 name="itemForm"
 attribute="itemFormAdd"
 scope="request"
 validate="false"
 parameter="org.apache.gavel.item.Select">
 <forward
 name="continue"
 path="/pages/item/Form.jsp"/>
</action>

8.4.1 Starting fresh

On the other hand, if you would like to clear the request context so that the
chained Action starts with a clean slate, make it a redirect instead:

ActionForward startOver = mapping.findForward("start");
startOver.setRedirect(true);
return startOver;

NOTE Speaking as a software architect, chaining Actions in any way is not some-
thing that I like to do. Ideally, you should be able to call the business ob-
jects from any Action where they are needed. Wanting to forward control
to another Action implies that the business objects may be too tightly
coupled. Or it may imply that the Actions should descend from a com-
mon super class with hotspots that subclasses could override. Be sure to
study the design of the Scaffold BaseAction before you kluge two Actions
together. There are occasions when chaining Actions makes sense—for
example, if the other Action is being used to render the response in lieu
of a presentation page. But valid use cases are rare. The best general
practice is to stay with a one-request, one-Action regimen.

8.5 Scaffold Actions

The Scaffold package includes several standard Action classes that are designed to
be used multiple times in multiple applications. These fall into two general cate-
gories, as shown in table 8.7.

230 CHAPTER 8

Working with Action objects
All of the Scaffold standard Actions subclass BaseAction. The Struts 1.0 version of
BaseAction provides a forward-compatible execute signature. In this section,
when we refer to execute we are referring to the same method for both versions.

8.5.1 Forward-only Actions

This is a very simple but powerful technique. Here the Action class is used as a
simple dispatcher. It looks for a given ActionForward and relays control. The Scaf-
fold package provides four variations on this theme, as shown in table 8.8.

SuccessAction
Similar to the standard ForwardAction, the SuccessAction (org.apache.struts.
scaffold.SuccessAction) routes control to another resource, usually a JSP. But
instead of getting the URI from the parameter property, it looks for a local or glo-
bal forward.

 The execute method for a SuccessAction is implemented as one line:

return mapping.findForward(request.getParameter(Tokens.SUCCESS));

An ActionMapping element this might look like this:
<action
 path="/myPackage/myForm"
 type="org.apache.scaffold.http.SuccessAction"
 name="myFormBean"
 scope="request"
 validate="false">

Table 8.7 Scaffold Actions

Forward-only Actions Helper Actions

SuccessAction
RelayAction
ParameterAction
FindForwardAction

BaseHelperAction
ProcessAction
AttributeExistsAction
RemoveAttributeAction

Table 8.8 Scaffold’s forward-only Actions

Action Purpose

SuccessAction Just forwards to success

RelayAction Looks up a forward based on a known runtime parameter

ParameterAction Adds a runtime parameter before relaying

FindForwardAction Dynamically finds a forward based on the runtime parameters

Scaffold Actions 231
 <forward
 name="success"
 path="/pages/myPackage/myForm.jsp"/>
</action>

The SuccessAction has the same effect as the ForwardAction but lets you specify
the resource using a forward rather than the mapping’s parameter property. Of
course, since the SuccessAction is very simple, if you wish to use a token other
than success, creating your own version for a given project is trivial.

RelayAction
The RelayAction (org.apache.struts.scaffold.RelayAction) looks for a given
parameter and uses its value to look up the forward. This can be useful when
there is more than one Submit button on a page and a different ActionMapping
should be called for each.

NOTE This is an alternative approach to DispatchAction and LookupDis-
patchAction, which expect related operations to be submitted to the
same ActionMapping. Other designs may need to route different opera-
tions through different ActionMappings.

 A simple JavaScript is used to set a hidden property on the form. Like the Contin-
ueAction, the implementation of the Action execute method is a single line:

return mapping.findForward(request.getParameter(Tokens.DISPATCH));

But here, we look up a parameter from the request and pass its value to find-
Forward(). In contrast, the SuccessAction always passes the same value to find-
Forward ("success").

 If passed a URL like

http://whatever.com/artimus/do/prospect/Submit?dispatch=update

the RelayAction would check the mappings for an ActionForward named update
and return that. Here’s an example of a RelayAction mapping:

<action
 path="/prospect/Submit"
 type="org.apache.scaffold.http.RelayAction"
 name="prospectForm"
 scope="request"
 validate="false">
 <forward
 name="update"

232 CHAPTER 8

Working with Action objects
 path="/do/prospect/Store"/>
 <forward
 name="cancel"
 path="/do/prospect/Current"/>
 <forward
 name="create"
 path="/do/prospect/CreateDonor"/>
 <forward
 name="donor"
 path="/do/donor/Detail"/>
</action>

Depending on the value of the dispatch parameter, this mapping can relay con-
trol to four other ActionMappings: Store, Current, CreateDonor, or Detail.

 In a JSP, the forward parameter can be set using a smidgen of JavaScript, like this:

<html:form>
// ...
<html:hidden property="dispatch" value="error"/
<html:submit onclick="set('update');">UPDATE PROSPECT</html:submit>
<html:cancel onclick="set('cancel');">CANCEL</html:cancel>
<html:submit onclick="set('create');">CREATE DONOR</html:submit>
<html:submit onclick="set('donor');">UPDATE DONOR</html:submit>
</html:form>
<script>
function set(target) {document.forms[0].dispatch.value=target;};
</script>

NOTE The hidden dispatch property defaults to error. If JavaScript were dis-
abled, then the user would be forwarded to an error page, where the re-
quirement could be explained. This assumes that dispatch is a property
on the ActionForm (recommended). If dispatch is not an ActionForm
property, then

<input type="hidden" name="dispatch" value="error">

could be used instead.

Another technique that does not require JavaScript is the FindForwardAction cov-
ered in this chapter.

 STRUTS TIP Use the RelayAction to select and dispatch Actions from the Struts con-
figuration. This helps keep the control-flow code in the “open” rather
than buried in an Action.

Scaffold Actions 233
ParameterAction
Many menu pages offer lists of business operations. Often, these menu items
require a parameter in order to operate correctly. For example, a search opera-
tion may need a String parameter to narrow the search. Typically, we start out
with a URI like

/do/find/Content

and want to customize it to be something like

/do/find/Content?content=glockenspiel

where glockenspiel is provided by the user at runtime.
 The ParameterAction (org.apache.struts.scaffold.ParameterAction) starts

out like a RelayAction. It looks for a request parameter named dispatch and uses
the dispatch value to look up a forward. But then it goes on to look up a second
request parameter. The value of this parameter is appended to the end of the URI.
The request parameter the Action should look up is specified by the parameter
property of the ActionMapping.

 Here’s a sample ActionMapping:

<action
 path="/menu/Find"
 type="org.apache.struts.scaffold.ParameterAction"
 name="menuForm"
 validate="false"
 parameter="keyValue">
 <forward
 name="title"
 path="/do/find/Title?title="/>
 <forward
 name="author"
 path="/do/find/Author?creator="/>
 <forward
 name="content"
 path="/do/find/Content?content="/>
</action>

and a JSP code fragment that uses it:

<html:form action="/menu/Find">
<TR>
<TD>Find articles by: </TD>
<TD>
<html:select property="dispatch">
 <html:option value="title">Title</html:option>
 <html:option value="author">Author</html:option>
 <html:option value="content">Content</html:option>

234 CHAPTER 8

Working with Action objects
</html:select>
<html:text property="keyValue"/>
</TD>
<TD><html:submit>GO</html:submit></TD>
</TR>
</html:form>

If the user selects Content and enters glockenspiel in the text field, the browser
will submit

dispatch=content
keyValue=glockenspiel

The ParameterAction will then look up the forward for content and append the
keyValue to the end of its URI, yielding

/do/find/Content?content=glockenspiel

For more about creating menu pages, see section 8.8.

FindForwardAction
Using multiple Submit buttons on a page can get complicated—especially when
some might be localized or use an image. The browser submits the button’s name
and its label when a standard HTML button is used. But when an image button is
used, the browser submits the x/y coordinates instead (by appending .x and .y to
the button name). The original name is not passed at all.

 In either case, the value submitted is usually of no value. The label may be
localized or changed on a designer’s whim. Even the x and y coordinates are sub-
ject to change.

 The one reliable piece of information here is the button’s name, which can be
used as a key to determine which task is required. An Action object could loop
through the set of possible button keys, but changing the set of buttons could
mean changing the Action’s source code.

 A better approach is to map the buttons to their corresponding ActionMap-
ping from within the Struts configuration. FindForwardAction (org.apache.
struts.actions.FindForwardAction) makes this easy to do. Since the technique is
indirect, let’s start with a concrete example of a JSP and work from there.

 This example displays two buttons. One is a standard Submit button named
add with a localized label. The other is an image button named delete:

<html:form action="/addDelete">
<!-- BUTTON --!>
<html:submit property="button_add">
 <bean:message key="button.add"/>
</html:submit>

Scaffold Actions 235
<!-- IMAGE --!>
 <html:image page="/images/delete.gif" property="image_delete" />
</html:form>

When submitted, the request will contain either a parameter named button_add
or a set of parameters named image_delete.x and image_delete.y.

 Here is a sample ActionMapping for handling this form. Note that it specifies
a local forward for each button. In the case of the image_delete button, the
image_delete.x name was used since it is an image button (image_delete.y would
work as well):

<action path="/addDelete"
 type="org.apache.scaffold.http.FindForwardAction"
 name="addDeleteForm"
 scope="request"
 input="/pages/addDelete.jsp">
 <forward name="button_add" path="/do/Add"/>
 <forward name="image_delete.x" path="/do/Delete"/>
</action>

Or , if you need to include a parameter:

<action path="/addDelete"
 type="org.apache.scaffold.http.FindForwardAction"
 name="addDeleteForm"
 scope="request"
 input="/pages/addDelete.jsp">
 <forward name="button_add" path="/do/crud?dispatch=add"/>
 <forward name="image_delete.x" path="/do/crud?dispatch=delete"/>
</action>

While the other forward-only Action classes looked for a forward by a given name,
FindForwardAction is more dynamic. It obtains the list of available ActionForward
names and checks to see if any of them match the name of a request parameter. If
one does, it is selected as the ActionForward. So, if the method finds button_add,
the local forward for button_add fires. If the method finds image_delete.x, the
local forward for image_delete.x fires instead.

 The FindForwardAction perform method is a whopping five lines:

String forwards[] = mapping.findForwards();
for (int i=0; i<forwards.length; i++) {
 if (request.getParameter(forwards[i])!=null) {
 return mapping.findForward(forwards[i]);
 }
}
return null;

236 CHAPTER 8

Working with Action objects
This decouples button names from the Action classes they call. If the page
changes the buttons it uses, or how it uses them, any corresponding changes
would take place only in the Struts configuration.

8.5.2 Helper Actions

Scaffold provides several Action classes that provide services above and beyond
what is usually expected of an Action. In addition to being dispatchers, these
classes manage special helper objects that are used to complete the task at hand,
as shown in table 8.9.

BaseHelperAction
Nearly all the object types used by the Struts framework can be specified in the
Struts configuration—ActionForwards, ActionForms, ActionMappings, and the
Action objects—everything but the business objects. The business objects are usu-
ally encapsulated (or “buried”) in the Action class.

STRUTS TIP Specifying a helper object in the ActionMapping puts everything under
the control of the Struts configuration, making the application architec-
ture easier to design, review, and modify.

If you are using lightweight business objects, then the BaseHelperAction can allow
you to bring the business objects out into the open. The business object type to be
associated with a mapping can be specified as its parameter property:

<action
 path="/search/Content"
 type="org.apache.struts.scaffold.BaseActionHelper"
 name="articleForm"
 validate="false"
 parameter="org.apache.artimus.article.SearchContent">
 <forward

Table 8.9 Helper Actions

Action Purpose

BaseHelperAction Creates arbitrary helper objects

ProcessAction Instantiates and executes helper beans and processes the result

ExistsAttributeAction Checks whether an attribute exists in a given scope

RemoveAttributeAction Deletes an object from session context

Scaffold Actions 237
 name="continue"
 path="/pages/article/Result.jsp"/>
</action>

The BaseHelperAction (org.apache.struts.scaffold.BaseHelperAction) sub-
classes BaseAction. The BaseAction supplies the default control flow for an Action
so that subclasses, such as BaseHelperAction, can override one hotspot and
inherit the rest of the process. Since these helpers are intended as business
objects, BaseHelperAction overrides the executeLogic method to instantiate the
helpers. It then calls a new hotspot of its own, with an array of all the helpers:

executeLogic(mapping,form,request,response,helpers);

Subclasses should override this new executeLogic signature to make use of the
helpers passed by the BaseHelperAction class. The default version provides some
test code that just prints the String representation of each helper as the response:

protected void executeLogic(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response,
 Object[] helpers)
 throws Exception {
 // override to provide new functionality
 response.setContentType(Tokens.TEXT_PLAIN);
 for (int i = 0; i < helpers.length; i++)
 response.getWriter().print(helpers[i].toString());
 }

ProcessAction
The Scaffold ProcessAction (org.apache.struts.scaffold.ProcessAction) class
is a BaseHelperAction subclass that uses the helper business objects and builds on
the control flow provided by the BaseAction.

 ProcessAction expects the underlying helpers to be subclasses of another Scaf-
fold class, ProcessBean (org.apache.commons.scaffold.util.ProcessBean). This
is a lightweight class designed to encapsulate business operations. Like a Struts
Action, a ProcessBean is accessed through an execute method.

 When used with ProcessAction, the ProcessBean execute method is expected
to return a ProcessResult (org.apache.commons.scaffold.ProcessResult). This is
a transfer object designed to encapsulate the result of an arbitrary business opera-
tion that may return any combination of data, messages, or both.

238 CHAPTER 8

Working with Action objects
 The ProcessAction analyzes the ProcessResult. If the result returns messages,
he action calls saveMessage to expose the messages to Struts. If the result returns
data, it saves the data to a servlet context where a presentation page can find it.

 ProcessAction is designed as a “graybox” component, like the Struts ActionServ-
let. You can use it as is or start overriding the extension points to modify or extend
the default behavior. The real programming takes place in the ProcessBeans.

 For a working example of implementing ProcessBeans and using them with
ProcessAction, see the Artimus application in chapter 15.

ExistsAttributeAction
Some workflows may expect that an attribute has already been created. This may
be a value object that is being used to collect fields as part of a wizard. It may be an
object that provides the options for an HTML control. It may be a user profile
record that is used as part of a security scheme, or several other things.

 The chaotic nature of web applications can make it difficult for us to ensure
that such attributes are available. There are many ways that users can skip around
an application and end up at step 2 without going through step 1. There are also
objects that we may not want to bother creating until they are needed, but once
we create them we do not need them again.

 The ExistsAttributeAction is one solution for these types of problems. It checks
to see if a given attribute exists in a given scope, or in any scope. If so, it goes on to
the success forward. If not, it goes on to the failure forward:

<action
 path="/Menu"
 name="menuForm"
 type="org.apache.struts.scaffold.ExistsAttributeAction"
 parameter="*;HOURS">
 <forward
 name="success"
 path="/pages/article/Menu.jsp "/>
 <forward
 name="failure"
 path="/do/MenuCreate"/>
</action>

The scope and attribute are specified as the parameter property. The first token is
the scope (application, session, request). To indicate any scope, use an asterisk.
The second token is the attribute. Remember that Java is case sensitive, so HOURS
and hours are not the same attribute.

Base View Actions 239
RemoveAttributeAction
This Action class can be used with any workflow that needs to remove an attribute
from the session context. It simply removes the attribute specified as the Action-
Mapping’s parameter and forwards to success:

<action
 path="/account/Logoff"
 type="org.apache.gavel.http.RemoveAttributeAction"
 validate="false"
 parameter="userProfile">
 <forward
 name="success"
 path="/pages/account/Logon.jsp"/>
</action>

This can be used as part of logging out a user or at the end of a wizard workflow.

8.6 Base View Actions

For the most part, the Struts framework is designed to provide the Controller
component of a Model/View/Controller architecture (see chapter 1).

 But that doesn’t mean an Action can’t create the response and render the
View. The framework directly supports the idea that the Action may create the
response. All an Action has to do is return null and the framework considers the
request/response fulfilled. If your application has special requirements for the
View, an Action can do whatever you need it to do. You might want to create your
own View Action for rendering dynamic images, creating PDFs, or merging XML
with a XSL stylesheet.

 One approach is to simply chain your View Action and have the usual Control-
ler Action forward to another that renders the View. This way, your Controller
Actions can continue to prepare the data and forward it on for someone else to dis-
play. Instead of a JSP or Velocity template, the “someone else” is an Action.

 Another approach is to create a base View Action and then extend that to cre-
ate whatever Controller Actions you may need. The base Action can implement a
method like this:

public ActionForward render(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException;

Taking this approach has several consequences:

� Since this method passes the runtime variables in its signature, it is thread safe.

240 CHAPTER 8

Working with Action objects
� The code can be easy to maintain. One team can work on the ancestor class
while others focus on the classes that extend it.

� Since render uses the perform signature, the method’s interface is as stable
as the rest of the Action.

� Since the request does not need to be forwarded, everything can be com-
pleted then and there.

� The ActionServlet will not process the request again or overwrite the origi-
nal ActionForm and ActionMapping.

� If you have more than one special rendering technique, there could be
more than one base class. If the interfaces were compatible, you could just
change which one it extends.

� If the base class extends DispatchAction (org.apache.struts.actions.
DispatchAction), then you could also call the render method directly and
forego the subclass.

� Properly factored, the request-rendered code can be portable. The Action
can pass the request, the response, and any other needed data to a method
in another class. The second class can write the actual response, just as it
might call a business layer method to access the actual database.

8.7 Helper Action techniques

In the preceding section, we looked at some standard Action classes that were
designed for reuse. These Action classes implement several techniques that you
can include in your classes to make them more flexible. To save you prowling
through the source code to scavenge for the best bits, we present several reusable
techniques here (see table 8.10 for a summary).

Table 8.10 Helper Action techniques

Action Purpose

Optional forwarding Engages logic if a certain forward is present

Calling ahead Invokes base method intended to be overridden

Catching chained exceptions Displays a message for each exception in a chain

Smart error forwarding Optionally forwards to input or standard error page

Confirming success Queues messages to report status

Alternate views Selects view helper based on business logic event

Helper Action techniques 241
8.7.1 Optional forwarding

This technique is used several times in the helpers to provide optional behavior
depending on how an Action object is configured. This permits the same Action
class to be used in different ways. In the Struts framework, an Action object is
configured by an ActionMapping. The ActionMapping defines several properties
and also provides a list of local ActionForwards.

STRUTS TIP Use optional forwarding to make your base Actions more flexible and
easier to reuse.

The optional forwarding technique first checks to see whether a particular
ActionForward has been defined. If not, the optional behavior is skipped. If so,
the optional behavior may occur if circumstances warrant.

 A good example is checking for a cancel state. Canceling the submission of an
HTML form is built into the Struts framework. Of course, not every form can be
canceled, and when it can, where the control should flow may vary from mapping
to mapping.

 Here’s an ActionMapping that includes a forward for routing a cancel event:

<action
 path="/item/Store"
 type="org.apache.gavel.http.ModelHelper"
 name="itemForm"
 scope="request"
 validate="true"
 input="/pages/item/Form.jsp"
 parameter="org.apache.gavel.item.Store">
 <forward
 name="cancel"
 path="/do/item/Detail"/>
 <forward
 name="token"
 path="/pages/item/tokenError.jsp"/>
 <forward
 name="continue"

Reflecting methods Invokes a method of an Action by name

Reflecting classes Invokes a helper object with an Action by name

Table 8.10 Helper Action techniques (continued)

Action Purpose

242 CHAPTER 8

Working with Action objects
 path="/do/item/Detail"/>
</action>

Here’s how the BaseAction uses our optional forwarding technique to check for a
cancel command. This is the first statement of the BaseAction’s execute method:

ActionForward forward = mapping.findForward(Tokens.CANCEL);
if ((forward!=null) && (isCancelled(request))) {
 return (forward);
}

First, it checks to see if a cancel ActionForward has been defined. If an appropri-
ate ActionForward has been defined (!=null) and the request was in fact can-
celed, the cancel ActionForward is returned, ending the method.

 Another built-in feature is synchronizer tokens (see also chapter 10). These
ensure that a form is not submitted more than once. Again, if an ActionForward
for token has been defined, and the token is actually invalid, then the token
ActionForward is returned. The balance of the method is not processed.

forward = mapping.findForward(Tokens.TOKEN);
if ((forward!=null) && (!isTokenValid(request))) {
 return (forward);
}

Is it is important to note that the names of any optional forward (like cancel or
token) should be used only in a local context. If there are also global forwards
using these names, looping and other problems can occur. The findForward
method will always search the local forwards first, but if the forward is not found,
it will also search the global forwards before returning null.

8.7.2 Calling ahead

As a general pattern, it is often useful to have an ancestor method call an abstract
or base method that is expected to be subclassed. Many Struts developers do this
with the Action execute method in order to ensure that some standard operation
happens first. (In Struts 1.0, the perform method would be called instead of exe-
cute.) A common use case is authenticating users with application-based security.
The base ancestor Action object first checks that the user is logged in (often by
checking for an object in the HTTP session). If so, the ancestor execute calls
another method that has been subclassed to provide the actual functionality. If
not, the user is routed to a login page.

 Often the other method is given a similar but different name (for example,
doExecute). Developers can then extend the application’s base Action class, and
override doExecute instead of execute.

Helper Action techniques 243
 Another approach is to call

super.execute(mapping,form,request,response)

from the subclassed execute and return any non-null result.
 The BaseHelperAction uses a third variation. It calls another method named

perform that uses a different signature. After the method has instantiated the busi-
ness object, it closes with

return execute(mapping,form,request,response,helpers);

This invokes the “other” execute method and passes it an array of helper objects.
When the subclass method returns, that is the result that passes up the stack to the
ActionServlet.

8.7.3 Catching chained exceptions

Many Java mavens recommend that business objects throw their own exceptions.
Internally, a component may catch a SQL or IO exception, but what we really need
is to tell the user that a data access error occurred. Of course, at the same time, we
do not want to sacrifice any detail from the original exception. Retaining detail
from the exception can be especially important in a layered, multitiered, or multi-
platform application. The business component may not have direct access to the
log, and the exception is its only way of telling us what went wrong.

 In short, we need a way to keep the detail of the original message but at the same
time also add a user-friendly business exception. The former may complain that it
could not process a SQL query. The latter may simply report that a data-access error
occurred and suggest that you contact the database administration. We would also
want to be sure to log both exceptions, to ensure that all the detail is maintained.

 As the exception class was originally designed, doing something like this is a
problem. The Java exception mechanism allows you to throw only one exception,
not two or three. It’s easy to wrap exceptions, using one to initialize the next, but
the result is a loss of detail over multiple layers. What we really need to do is stack,
or chain, the exceptions, so that each layer can add its own viewpoint to the inci-
dent. Then, at the end, we can display them all, with the originating exception at
the bottom of the list.

 This approach works surprisingly well in a layered architecture. The topmost
layer is closest to the user, and so throws the most user-friendly exceptions. The
lowest layer throws the “geek-friendly” errors that we need to solve the problem.
When we chain exceptions by linking them together, the user-friendly message

244 CHAPTER 8

Working with Action objects
comes first, followed by the more detailed messages. The user is told what he or
she needs to know first, and can leave the rest to the system administrators.

STRUTS TIP Use chained exceptions to catch errors at different layers of the applica-
tion without loss of detail.

The best part is that chaining exceptions is very easy to implement in Struts!
 Java 1.4 provides new functionality for chaining exceptions, but it is not diffi-

cult to write your own ChainedException class to use with another JVM. The Com-
mons Scaffold toolkit [ASF, Scaffold] includes a ChainedException class that
works with older JVMs.

 Here’s a try/catch block from a base Action that uses the Scaffold Chained-
Exception class. It calls a member method to perform the business operation and
then analyzes the result:

// b
 ActionErrors errors = new ActionErrors();
 try {
 executeLogic(mapping,form,request,response);
 }
 catch (Exception exception) {
 // c
 servlet.log("*** ACTION EXCEPTION: ", exception);
 exception.printStackTrace();
 // d
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.general"));
 // e
 StringBuffer sb = new StringBuffer();
 if (exception instanceof ChainedException) {
 ChainedException e = (ChainedException) exception;
 e.getMessage(sb);
 }
 else {
 sb.append(exception.getMessage());
 }
 }
 // f
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.detail",sb.toString()));
 // g

b We set up an empty ActionErrors collection for later use, call the business opera-
tion, and catch any and all exceptions it might throw.

Helper Action techniques 245
c If an exception is thrown, we start by logging the message and including a marker
so that it is easier to find later. We also print the stack trace, to ensure that it is
recorded for future reference.

d We start by adding our own general error message to the errors collection. This
just says something like “The process did not complete. Details should follow.”

e If the business operation passes back a subclass of ChainedException, we trundle
through the chain and collect all the messages.

f To make the messages easy to display a presentation page, we wrap them in a
generic message template. The message template is a single substitution code:

error.detail={0}

so that it just prints everything verbatim.
 This results in an error messages like

1 The process did not complete. Details should follow.

2 A required resource is not available.

3 Cannot connect to MySQL server on localhost:3307. Is there a MySQL
server running on the machine port you are trying to connect to?
(java.net.ConnectException)

being (using the same reference numbers):

1 The general error message

2 The business object message

3 The original message from the JDBC driver

g We branch to an error page if the error collection is not empty.

The key advantage to this approach is that it provides a high-level message for the
user (“A required resource is not available”) and a low-level message for technical
support (“Cannot connect to MySQL server...”). So, everybody’s happy! The user
gets a reasonable message. Support gets the detail needed to solve the problem.

8.7.4 Smart error forwarding

The Struts ActionErrors class is designed so that you can add any number of mes-
sages and then send them through the request to be displayed by a page compo-
nent. This class is also used for validation errors. If a validation error occurs, the
ActionServlet automatically forwards to the mapping’s input property. So, when
an input property exists, it would be a reasonable target for other error messages.

246 CHAPTER 8

Working with Action objects
 This block of code checks to see whether any error messages have been col-
lected. If so, it checks to see whether there is an input property for the current
mapping, or lacking an input property, looks for a standard error mapping
instead:

if (!errors.empty()) {
 saveErrors(request, errors);
 if (mapping.getInput()!=null)
 return (new ActionForward(mapping.getInput()));
 return (mapping.findForward(Tokens.ERROR));
}

8.7.5 Confirming success

The Scaffold ProcessResult class (org.apache.commons.scaffold.util.Process-
Result) provides its own collection of messages. These are intended to provide
confirmation of a successful operation, or alerts, rather than to report an error
condition. This message collection is not coupled with the ActionErrors class. The
BaseAction provides a utility method so they can collaborate. The utility method,
mergeAlerts, works as an adapter between a list of message tokens and a Struts
ActionErrors class. Here’s the signature for the utility message:

protected void mergeAlerts(
 HttpServletRequest request,
 ActionErrors alerts,
 List list) {

The mergeAlerts method assumes that the messages are replacement parameters
for a Struts-style messages. The first element on the list is taken as the template.
Any other items are taken to be parameters. mergeAlerts calls the appropriate
errors.add method for up to a maximum of four parameters.

 The BaseAction provides other support methods that create the message
queue, as needed, and place it in the request context. If the queue is already in
the request, mergeAlerts appends to it. An application would usually just call the
saveMessages(HttpServletRequest,List) method.

 Struts 1.1 also has a saveMessages(HttpServletRequest,ActionMessages)
method. The BaseAction version is designed to be compatible with the stock
Struts 1.1 method and also works with the Struts 1.1 messages tags.

 In a Struts 1.0 application, the BaseAction automatically saves the message
queue as the error queue so that the Struts 1.0 tags can find it.

Helper Action techniques 247
8.7.6 Alternate views

The final task that most Actions perform is to forward control on to the next
player. An Action may also return null it if responds to the request itself—but that
is rare. Actions will typically branch to an error page along the way or look for a
success or continue forward at the end. Sometimes, there may be more than one
successful outcome. For example, search operations often return an empty set. A
page, like the one shown earlier, might contain presentation logic to deal with this
gracefully. Alternatively, control might be sent to an empty set page instead.

NOTE Whether an MVC page should contain presentation logic is open to de-
bate. One argument is that a View should not cope with business logic
events such as an empty result set or whether a user is logged in. Another
argument is that without presentation logic, the number of Views in
some applications would increase exponentially. Such a mass of Views
can become a support burden and defeat the purpose of the MVC archi-
tecture. Our suggestion is that you make the decision based on the needs
of your application.

Here’s an example of forking to an alternate forward. Inverting the optional for-
ward technique, this block looks for a trigger first (an empty result set) and then
checks for a valid ActionForward. This block would come at the end of an
Action.execute method:

ActionForward forward = null;

if (resultList.getSize()==0)
 forward = mapping.findForward(Tokens.EMPTY);
if (forward!=null) return forward;
return mapping.findForward(Tokens.SUCCESS);

Here, if the ActionMapping included an empty forward, we would branch to that
page when the result set has no entries. Otherwise, we branch to the usual success
page, the presumption being that the version of the success page (for this map-
ping) can handle an empty result set. If another mapping provided an empty for-
ward, the Action would use that forward for an empty result set and the usual
success page when one or more entries were returned.

8.7.7 Reflecting methods

Many Struts developers like to gather related tasks into a single Action class. This
can simplify application design and reduce the cost of maintenance. One way to

248 CHAPTER 8

Working with Action objects
select which task to perform is to invoke it via reflection. The Struts DispatchAc-
tion (org.apache.struts.actions.DispatchAction) uses this technique.

 The basic strategy is to first identify the name of the method. DispatchAction
uses the mapping’s parameter property to do this. Once the method name is
determined, you can look up the method by its signature. Here’s a streamlined
version of looking up the method as is done by DispatchAction:

protected Class clazz == this.getClass();
protected Class types[] = {
 ActionMapping.class, ActionForm.class,
 HttpServletRequest.class, HttpServletResponse.class }
protected Method getMethod(String name)
 throws NoSuchMethodException {
{
 return clazz.getMethod(name, types);
}

DispatchAction also caches the methods to improve performance, but we
removed that portion of the code to simplify the example. You can find the full
source in the Struts source distribution [ASF, Struts].

8.7.8 Reflecting classes

A similar strategy is to pass to the Action class the names of one or more business
classes to invoke. The Scaffold BaseHelper class does this—again using the map-
ping’s parameter property to obtain the class names. Given Java’s reflection tech-
niques, creating an object from its classname is simple:

Object helper = null;
try {
 helper = Class.forName(className).newInstance();
} catch (Throwable t) {
 // error handling
}

If the helper uses a known ancestor class or interface, it can be cast and the oper-
ative method called. Here’s an example of invoking a ProcessBean, using an
ActionForm as input:

ProcessBean processBean = (ProcessBean) helper;
ProcessResult processResult = processBean.execute(
beanUtils.describe(form));

Using smart forwarding 249
8.8 Using smart forwarding

One thing that has made the World Wide Web so popular is ease of navigation.
Any swatch of text on a page can be turned into a hyperlink. Users just have to
point and click, and off they go to the target page. Behind the swatch of text is a
path to the page, which may be long and cumbersome, but the users don’t need
to know that. They just click on the description, and the system does the rest.

 Besides the ubiquitous hyperlink, HTML also provides us with an assortment of
user interface widgets, like radio buttons, checkboxes, and select lists. Like hyper-
links, they allow us to display a plain language description to the user but return a
technical descriptor to the server. Most often, these controls are used to make it
easier to fill out a form, but they can also be used to create menu systems. Users
choose a location from the select list, and the system whisks them off to the rele-
vant page.

 The simplest way to build a menu system would be to just embed the page loca-
tions, or URLs, into the control. Any many, many web applications have been writ-
ten using that approach, especially those using CGI systems like Perl. But
embedding systems paths is not the way we build applications with Struts. We want
to design pages using logical identifiers, and let Struts do the matching between
identifiers with system paths. This way we can move things around without the
pages being any the wiser.

 The fundamental way Struts matches identifiers with system paths is through
the Struts configuration (struts-config.xml). Struts applications continually use
the configuration to match IDs like success and failure to various locations with
the application. Now how can we do the same thing to support menu systems?

 Earlier in this chapter, we introduced a standard RelayAction that can be used
to select between multiple Submit buttons. Now let’s look at how we can use the
RelayAction and some other standard Actions to select between multiple options
on a select list.

 This is a multidisciplinary technique that uses standard Actions, ActionForm
beans, JSP tags, and the Struts configuration. To bring it all together, we will intro-
duce code for each of these components.

 The simplest instance would be selecting between various locations in an appli-
cation. Here’s an example with two options:

<html:select property="dispatch" >
<html:option value="reload">Reload Config</html:option>
<html:option value="create">Create Resources</html:option>
</html:select>

250 CHAPTER 8

Working with Action objects
This control can be used just like the multiple Submit buttons technique. The
form’s dispatch property is set to whatever is selected. The form is submitted to a
RelayAction with a local forward for each option. The RelayAction then forwards
the request along to whatever path is indicated by the forward:

 <action
 path="/menu/Manager"
 type="org.apache.scaffold.struts.RelayAction"
 name="menuForm"
 validate="false">
 <forward
 name="reload"
 path="/do/admin/Reload"/>
 <forward
 name="createResources"
 path="/do/admin/CreateResources"/>
 </action>

This is great for simple requests, but what if we need to include a parameter?
 If the control is being used to select parameters for the same ActionMapping,

or mappings that use the same parameter name, you can just give the option the
parameter name. Here’s a radio button control that displays identifiers like Day
and Week but passes the corresponding number of hours to the mapping:

 <html:form action="/find/Hours">
 <P>List articles posted in the last:</P>
 <P>
 <INPUT type="radio" name="hours" value="24">Day <INPUT type="radio"

name="hours" value="168">Week <INPUT type="radio" name="hours"
value="720">Month

 </P>
 <P>
 <html:submit property="submit" value="GO"/>
 </p>
 </html:form>

When users submit the form, the browser generates a URI like

 /find/Hours?hours=24

or

 /find/Hours?hours=168

or

 /find/Hours?hours=720

depending on which radio button is selected.

Using smart forwarding 251
 In practice, we might want to write this control from a collection, using code
like this:

 <html:form action="/find/Hours">
 <P>List articles posted in the last:</P>
 <P>
 <html:options collection="FIND" property="value" labelProperty="label"/>
 </P>
 <P>
 <html:submit property="submit" value="GO"/>
 </p>
 </html:form>

But that would not be an instructive example. So, we show our options hardcoded
instead, even if that is not what we would do in practice.

 Hardcoding a parameter, or passing it down with a collection, works fine when
all our options go to the same option or goto actions that use the same parameter
name. But what if the parameters names are different? We may have a number of
actions for looking up a record based on this field or that field, and may need to
provide the field as the parameter name, like this:

/do/find/Title?title=Struts
/do/find/Author?creator=husted
/do/find/Content?content=menus
/do/article/View?article=12

There are many times when we would like to provide locations like these as a sin-
gle combo control, which lets us select the search type (Title, Author, Content,
ID), and then provide a user-supplied parameter, like those shown.

 In each case, all we really need to do is paste the parameter to the end of the
URI. The form would still need to submit the parameter under the same name,
but if we could take something like this:

 /do/menu/Find?dispatch=title&value=Struts

and turn it into this:

 /do/find/Title?title=Struts

 we’d be in business.
 Happily, this is exactly what the standard ParameterAction does. Here’s the

action-mapping element that sets it up:

 <action
 path="/menu/Find"
 type="org.apache.scaffold.struts.ParameterAction"
 name="menuForm"

252 CHAPTER 8

Working with Action objects
 validate="false"
 parameter="keyValue">
 <forward
 name="title"
 path="/do/find/Title?title="/>
 <forward
 name="author"
 path="/do/find/Author?creator="/>
 <forward
 name="content"
 path="/do/find/Content?content="/>
 <forward
 name="article"
 path="/do/article/View?article="/>
 </action>

You may note that the action uses a form bean called menuForm. This is a simple
bean with properties common to many menu items. Here’s the source:

 private String keyName = null;
 public String getKeyName() {
 return this.keyName;
 }
 public void setKeyName(String keyName) {
 this.keyName = keyName;
 }

 private String keyValue = null;
 public String getKeyValue() {
 return this.keyValue;
 }
 public void setKeyValue(String keyValue) {
 this.keyValue = keyValue;
 }

 private String dispatch = null;
 public String getDispatch() {
 return this.dispatch;
 }
 public void setDispatch(String dispatch) {
 this.dispatch = dispatch;
 }

The version in the Scaffold package (org.apache.struts.scaffold.MenuForm)
includes some other convenience properties, but these three are the important ones.

 Of course, your form can still use all the properties it needs. They all go into
the request and stay there for the duration. When one of the standard actions for-
wards the request, all the original parameters go with it. You can populate as many
ActionForms as you like from the same request. When the request arrives at the
mapping for the target action, whatever form bean it uses is populated normally.

Using smart forwarding 253
 So far, we’ve looked at using the RelayAction to select between different Sub-
mit buttons or menu selections, and the ParameterAction to append a value to a
query string. There is one more action like this in our repertoire: the
FindForwardAction (org.apache.struts.scaffold.FindForwardAction).

 The RelayAction relies on there being a parameter with a known name in a
request—for example, [dispatch=save]. It looks for the parameter named dis-
patch, then looks for a forward named save. The FindForwardAction is even
more dynamic. It runs through all the parameter names and checks to see if any
are also the name of a forward. If so, it returns the matching ActionForward.

 This can be a good way to match multiple Submit buttons without using Java-
Script to set the dispatch property. If you have buttons named Save, Create, and
Delete, and forwards also named save, create, and delete, the FindFowardAction
will automatically match one with the other.

 Here is an example of JSP code that creates multiple Submit buttons:

 <html:submit name="save">SAVE</html:submit>
 <html:submit name="create">SAVE AS NEW</html:submitl>
 <html:submit name="delete">DELETE</html:submit>

Then, in the Struts configuration file, we enter forwards for each of the buttons:

<action
 name="articleForm"
 path="/do/article/Submit"
 type="org.apache.scaffold.FindForwardAction">
 <forward
 name="create"
 path="/do/article/Create"/>
 <forward
 name="save"
 path="/do/article/Store"/>
 <forward
 name="delete"
 path="/do/article/Recycle"/>
 </action>

The only caveat here is that you have to manage your forward and control names
more carefully. The FindForwardAction will check all the parameters on the form
against all the available forwards, and the first one it finds wins. So if any of your
control names match any of your forward names, it might come up with an unex-
pected match.

 This can be useful when you cannot add a dispatch property to a form, or can-
not use JavaScript to set the dispatch property. But the RelayAction should be
preferred when possible, since it is more deterministic.

254 CHAPTER 8

Working with Action objects
 Using these techniques together can fill a surprising number of your menu
needs and keeps all the flow control within the Struts configuration.

8.9 Summary

This chapter explored the ins and outs of the workhorses of a Struts application:
the Action classes. Reload and the other admin Actions can update the Struts con-
figuration at runtime, a very handy development feature. Other standard Actions,
such as ForwardAction and IncludeAction, help integrate Struts with other serv-
lets in the application. The handy DispatchAction and the new LookupDis-
patchAction can be used to select a method within an Action object at runtime
and help reduce the number of individual Action classes. The reusable Actions in
the Scaffold package can be used throughout your application and can help slash
the number of custom Actions you need to write and maintain.

9 Extending ActionServlet
This chapter covers
� Understanding the ActionServlet’s role in your application
� Using ActionServlet extension components
� Using ActionServlet extension points
255

256 CHAPTER 9

Extending ActionServlet
If the only tool you have is a hammer, you tend to see
every problem as a nail.

—Abraham Maslow

9.1 Where’s the beef?

First, let it be said that, for the most part, the Struts ActionServlet components can
be used as they are. They do not need to be subclassed (but can be), and the
default classes get the job done with a minimum of fuss. From an architectural
perspective, the Struts ActionServlet is a blackbox component [Johnson].

 Throughout this book, we have often referred to the Struts controller servlet
and described how it fits in with the various components that make up the Struts
framework. This jibes well with actual practice, since to work with Struts on a day-
to-day basis, most developers only need to know how the ActionServlet interacts
with the other components they use. Struts developers, rarely, if ever, work with
the ActionServlet directly.

1.0 vs 1.1 The implementation of the ActionServlet changed quite a bit between
Struts 1.0 and Struts 1.1—so much so, that we will cover only the
Struts 1.1 ActionServlet here. Most developers did not subclass the Struts
1.0 ActionServlet, or did so in very minor ways. Moreover, the ActionServ-
let is designed as a singleton. At most, applications will subclass Action-
Servlet exactly once. Since Struts developers do not work with the
ActionServlet on a day-to-day basis, we will not contrast the differences
between the releases, as we have done elsewhere. By simply describing
the ActionServlet as it now stands, if necessary, Struts 1.0 developers will
be able to adapt any changes they might have made.

There are two key reasons why Struts developers are so detached from the Action-
Servlet. First, it is a true singleton. There is exactly one ActionServlet present in any
Struts application. We do not create new ActionServlets the way we create new
Actions or ActionForms. In Struts, there is simply not much development work
left to do with a servlet.

 Second, the ActionServlet spends most of its time invoking other objects.
Rather than code to the servlet, we code to the objects the servlet calls. Many
frameworks use this approach. In fact, it is considered a formal design pattern,
Inversion of Control [Johnson]. The ActionServlet coordinates the application’s
activities, but the methods defined by the user to tailor the framework are only
called by the servlet. They are not declared within the servlet.

Where’s the beef? 257
DEFINITION Inversion of Control (a.k.a. the “Hollywood Principle,” or “Don’t call us,
we’ll call you”) is a design pattern where objects register with a frame-
work as a handler for an event. When the event occurs, the framework in-
vokes a hook method on the registered object. The object then performs
whatever application-specific processing is required for the event. This al-
lows frameworks to manage the event life cycle while allowing developers
to plug in customized handlers for the framework events. [Earles]

Many of the other classes in the Struts framework, like ActionForms and Actions,
are designed to be subclassed and tailored for each application. These are the
framework’s whitebox components [Johnson]. On the other end of the spectrum
is the framework’s chief blackbox component, the ActionServlet. Figure 9.1 depicts
the ActionServlet at the center of the application, calling other objects into service.

ActionFormBeans

...

ActionMappings

ActionMapping

contains
* Action class name
* ActionFormBean name

ActionMapping

contains
* Action class name
* ActionFormBean name

...

Action object
instance

ActionForm
object

instance

ActionServlet

ActionFormBean

contains
* ActionForm class name

ActionFormBean

contains
* ActionForm class name

Action
descriptor

ActionForm
descriptor

Create
instance

Create
instance

ActionMappings.findMapping(String path)

ActionFormBeans.findFormBean(String name)

Figure 9.1 The ActionServlet is at the center of the application, calling other objects into service.

258 CHAPTER 9

Extending ActionServlet
While still very much a blackbox, the Struts 1.1 ActionServlet is designed to be
more extensible. A number of new extension points are available that make it eas-
ier to design a subclass that cleanly changes a specific behavior.

 Most of the extension points are provided through objects that can be plugged
into the controller. Using pluggable components allows you to change key behav-
iors without actually creating a new ActionServlet subclass. One reason for these
new components is to allow different application modules to use different behav-
iors. (Configuring Struts for modular applications is covered in chapter 4.)

9.1.1 The servlet’s Gang of Three

Of all the pluggable components, the RequestProcessor (org.apache.struts.
action.RequestProcessor) is the most powerful. The RequestProcessor is the
meat of the ActionServlet; it handles the top-level request routing the way that an
Action handles a request for a specific URI.

 One of the top-level issues that the RequestProcessor handles is exception han-
dling. Exception classes can be registered for a handler. If one of the registered
Exceptions is thrown, the RequestProcessor hands the Exception off to its Excep-
tionHandler (org.apache.struts.action.ExceptionHandler). You can use the
default class or provide your own subclass for each Exception type.

 Many applications need access to their own specialized resources. To make it
easy to initialize custom resources with Struts, you can register a PlugIn Action
with the controller. The controller then calls the Action’s init method on startup
and its destroy method on shutdown. The Action has access to the calling servlet
and can be used to do whatever a conventional servlet can do.

 This extensible triad—the RequestProcessor, ExceptionHandler, and PlugIn
Action—doesn’t leave much else for the ActionServlet to do. In fact, all the
ActionServlet class does at runtime is select the RequestProcessor for the appro-
priate application module. The rest of the class “simply” manages the Struts con-
figuration life cycle. It uses the Digester to create the objects called for by the
configuration files, and then destroys them when the application is shut down.

 The rest of this chapter will be about using this “Gang of Three” to extend
ActionServlet, without ever subclassing the servlet itself. Each of these classes, or
its subclass, can be plugged into the controller through the Struts configuration
file, covered in chapter 4.

The RequestProcessor 259
9.2 The RequestProcessor

When a request comes in, the servlet selects the application module and hands it
off to the RequestProcessor. Each module can load its own RequestProcessor sub-
class, or just use the default RequestProcessor that ships with the framework.

 The RequestProcessor is a “graybox” component. You can use it as is, like a
blackbox component, or extend it to provide some special behavior, like a white-
box component. Wearing its white hat, the RequestProcessor provides several
extension methods that you can override to cleanly change any of its behaviors.
Wearing its black hat, the RequestProcessor provides default behaviors for all of
these methods that are suitable for most applications. The extension methods are
summarized in table 9.1.

A RequestProcessor subclass is registered with the controller through the Struts
configuration file, using an element like this:

Table 9.1 The RequestProcessor extension methods

Extension method Remark

processMultipart Wraps multipart requests with a special wrapper

processPath Identifies the path component we will use to select a mapping

processLocale Selects a locale for the current user if requested

processContent Sets the content type in the request

processNoCache Sets the no-caching headers in the request, if enabled for this module

processPreprocess Serves as a general-purpose preprocessing hook

processMapping Identifies the mapping for this request

processRoles Checks for any role required to perform this action

processActionForm Creates or acquires the ActionForm bean for this mapping

processPopulate Populates the ActionForm from the request

processValidate Processes any ActionForm bean related to this request

processForward Processes a forward specified by this mapping

processInclude Processes an include specified by this mapping

processActionCreate Creates or acquires the Action instance to process this request

processActionPerform Calls the Action instance processing this request, returning
an ActionForward

processActionForward Processes the returned ActionForward instance

260 CHAPTER 9

Extending ActionServlet
<controller
 processorClass="myApp.MyRequestProcessor"/>

For more about registering objects through the Struts configuration file, see
chapter 4.

9.2.1 The process method

The extension methods are all called in turn from the process method. The pro-
cess method has responsibility for processing an HttpServletRequest and creating
the corresponding HttpServletResponse. The default RequestProcessor does this
by calling the extension methods listed in table 9.1.

 To create the response, the processActionForward method will typically send
the request off to a JSP page or other resource. But when process returns, the API
contract states that the response should have been completed.

 Overriding any of the extension methods, if needed, is usually a straightfor-
ward process, especially since you have the full source at your disposal. Generally,
you would probably want to execute your custom behavior and then call the super
class method for the default behavior.

9.2.2 processRoles

The RequestProcessor extension most likely to be completely overridden may be
processRoles. The assigned task of processRoles is to check whether the user is
permitted access to an action. The default behavior uses the standard Java security
API [Sun, JAAS], but many applications have their own schemes. By overriding
processRoles, you can call your own API instead.

 The default behavior is to run the list of roles specified by the ActionMapping
against the standard isUserInRole method exposed by the request parameter. If
the user is in any of the specified roles, access is granted.

 The standard container-based system has you specify a url-pattern and the
roles that may access resources matching that pattern. The Struts action-based
security system lets you specify which roles may access a particular ActionMapping.
When the standard API is being used, these systems do not conflict and may be
used together. Listing 9.1 shows the implementation of the processRoles method.

The RequestProcessor 261
protected boolean processRoles(
 HttpServletRequest request,
 HttpServletResponse response,
 ActionMapping mapping)
 throws IOException, ServletException {

 // Is this action protected by role requirements?
 String roles[] = mapping.getRoleNames();
 if ((roles == null) || (roles.length < 1)) {
 return (true);
 }

 // Check the current user against the list of required roles
 for (int i = 0; i < roles.length; i++) {
 if (request.isUserInRole(roles[i])) {
 if (log.isDebugEnabled()) {
 log.debug(" User '" + request.getRemoteUser() +
 "' has role '" + roles[i] + "', granting access");
 }
 return (true);
 }
 }

 // The current user is not authorized for this action
 if (log.isDebugEnabled()) {
 log.debug(" User '" + request.getRemoteUser() +
 "' does not have any required role, denying access");
 }
 response.sendError(HttpServletResponse.SC_BAD_REQUEST,
 getInternal().getMessage("notAuthorized",
 mapping.getPath()));
 return (false);
 }

By overriding processRoles, you can easily adapt this feature to a proprietary
application-based security scheme. Instead of calling request.isUserInRole, your
subclass method could call the equivalent method in your own API. Of course, the
roles do not have to be roles per se, but could contain whatever tokens your sys-
tem uses to quantify access.

 Depending on your security profile, you could also require that each Action-
Mapping have a role property, even if it is just a token, like *, that represents
anonymous access. You don’t even need to use the roles property at all. The
method is called regardless and could be used to implement any variety of access
scheme. The request and mapping objects are passed in the signature, which
means you have access to whatever you might need to check a user’s credentials.

Listing 9.1 The RequestProcessor processRoles method

262 CHAPTER 9

Extending ActionServlet
 The implementation of processRoles is typical of the RequestProcessor exten-
sion methods. Any of these can be overridden in the same general way to provide
whatever specialized behavior you may need.

9.3 The ExceptionHandler

The Action object is the ActionServlet’s delegate in most matters, which can
include exception handling. Alternatively, you can let Actions pass all or some of
the checked Exceptions back up to the ActionServlet, which catches all Excep-
tions. If the servlet does catch an Exception, it checks to see if you have registered
a handler for that Exception type or its super types. Any local exception handlers
for the ActionMapping are checked first, and then the global Exceptions.

 If the servlet finds a handler, it invokes that handler with the details of the
Exception. If not, the servlet rethrows the Exception, and it will probably end up
on an infamous “white screen.”

 The ExceptionHandler can be registered through an element in the Struts
configuration file (see chapter 4), like this one:

<exception
 type="org.apache.struts.webapp.example.ExpiredPasswordException"
 key="expired.password"
 path="/changePassword.jsp"/>

If the ExpiredPasswordException is thrown, the default handler will create an
ActionError using the specified key and an ActionForward for the specified
path. Control will then be forwarded to the /changePassword.jsp in this module.
Presumably, the JSP will look up and display the message for the key
expired.password from the module’s default message resource bundle and give
the user the chance to try again. If we had omitted the path attribute, the default
handler would have used the ActionMapping’s input property instead.

 The <exception> element can accept several other attributes, all of which are
listed in the struts-config API reference in appendix B. The attributes include han-
dler and className, which can be used to specify a custom ExceptionHandler
and (if needed) a custom configuration bean for that handler.

 Your ExceptionHandler must be a subclass of the default handler (org.
apache.struts.action.ExceptionHandler). The entry method is execute, which
provides a well-heeled set of parameters:

public ActionForward execute(
 Exception ex,
 ExceptionConfig ae,
 ActionMapping mapping,

PlugIn 263
 ActionForm formInstance,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException

Just as with writing an Action execute method, you have carte blanche as long as
you return an ActionForward when you are done. If for some reason your handler
completed the response, you can even return a null ActionForward.

 The ExceptionConfig bean (org.apache.struts.config.ExceptionConfig)
represents the original <exception> element from the Struts configuration file. If
you need any special properties set, you can create your own subclass of Excep-
tionConfig and use the <set-property> element to initialize them from the mod-
ule’s configuration file.

 For more about configuring Struts, see chapter 4.

9.4 PlugIn

Many applications need access to specialized resources. These may be data access
components, Properties files, or any number of business-tier components. Many
of the developer extensions to Struts, such as menu systems, alternate validators,
data transformers, XLS converters, and so forth, need to parse their own configu-
ration files and create their own controller objects.

 In a conventional Java web application, these objects would usually be initial-
ized as part of the servlet’s init method and released as part of its destroy
method. We could subclass the ActionServlet and do the same thing, but that can
lead to contention when a developer wants to use more than one third-party
Struts extension.

 Since Actions are already the servlet’s delegate in most matters, the framework
offers a PlugIn interface (org.apache.stuts.action.PlugIn) that allows an Action
to implement init and destroy methods, like those on a servlet. Since the Action
has access to the servlet as a member variable, any resource that could be initial-
ized or released by a servlet can be handled through a PlugIn Action.

 The PlugIn is registered with the controller through the Struts configuration
using an element like this:

<plug-in className="myApp.MyAction>
 <set-property
 property="key"
 value="MY_APP_KEY"/>
 </plug-in>

264 CHAPTER 9

Extending ActionServlet
The Action specified by the className attribute must implement the PlugIn inter-
face and provide an init and a destroy method. If the Action has any member
variables that need to be initialized, the standard <set-property> elements can be
used to pass a value to any arbitrary property.

 On startup, the controller initializes the PlugIn Actions, sets any properties,
and calls the init method. On shutdown, the controller calls the destroy method
on each PlugIn Action before releasing it.

9.5 Summary

To extend the controller servlet, most applications will not need to subclass the
Struts 1.1 ActionServlet at all. Most often, you can create the desired behavior by
subclassing one of the controller extension components or plugging in a prewrit-
ten component, such as the Tiles RequestProcessor or the Validator PlugIn. By
plugging in one of the standard components, or your own subclass, you should be
able to cleanly modify the controller to produce any reasonable behavior.

 In part 3 of this book, we move past the Struts control layer and take a closer
look at how Struts works with the presentation layer, so you can write the rest of the
application.

Part 3

Building your pages

Part 3 moves the focus to building the visible portion of your application—
the pages. Discussing pages later in the book reflects a key tenet of the Struts/
Model-View-Controller architecture: most of the real work is done before a
page is ever displayed.

10Displaying
dynamic content
This chapter covers
� Understanding why we use JSP tags
� Installing tag extensions
� Using the Struts JSP tags
� Glimpsing the future of JSP tags
267

268 CHAPTER 10

Displaying dynamic content
Nothing is particularly hard if you divide it into small jobs.
—Henry Ford

10.1 Tag—you’re it

In part 1 of this book, we covered processing business data and rules. In this chap-
ter, we can concentrate on what happens after the data has been acquired, the top-
level logic has been applied, and the nanosecond has come for the controller to
send the request out to the presentation layer—equipped with all the materials
needed to finish the job.

 The Struts distribution includes a powerful set of prewritten JSP tags that inte-
grate the framework with JSP pages. A new standard taglib, the JavaServer Tag
Library [Sun, JSTL], is also on the horizon.

 In this chapter, we introduce using the Struts tag extensions in your applica-
tion. You can use JSP tags to prepopulate text fields or select lists and to manage
arrays of checkboxes and radio buttons. Struts works well with JavaScript, so you
can create the other clever widgets that page designers adore but that HTML
barely supports.

10.1.1 JSP tags—what are they good for?

We’ve referred to JSPs throughout the book, but we haven’t really talked about
what they are or why we use them. Let’s step back and quickly review why we would
want to use JSP tags to build web pages. If you’re already a custom tag devotee and
easily bored, feel free to skip ahead to section 10.3.

 Most web applications rely on standard browsers to display information. In
turn, standard browsers rely on standard HTML as a formatting language. Often,
the information an application needs to display is not a static, prewritten page,
but dynamic content intended for a particular user. At first, this doesn’t sound too
difficult. After all, Java servlets make it easy to write HTML on the fly—we can write
HTML the same way we would send plain text to the display or printer: just
out.println("whatever"). Figure 10.1 shows how you’d write a web page using a
standard Java servlet.

 As the HTML code is being created, a couple of dynamic variables, dog and cat,
are being merged into the page. The web browser will receive and display a page
sent this way just as it would a static, prewritten page. If the ChaseBean was set to
something like fox or hound, the user would get a different story. Figure 10.2
shows the markup that the browser would receive and how it might be displayed.

Tag—you’re it 269
But complex pages output this way are maddening to create and burdensome to
maintain. The next step up from println is to use special Java classes and meth-
ods to generate the HTML. Figure 10.3 shows another approach to rendering
HTML, generating the markup using nested classes.

 At least the approach in figure 10.3 takes working with raw HTML out of the
equation. But even the best HTML generators make it hard to see the forest for the
trees. Few developers can imagine what the page is going to look like. To see the
latest version, the developer has to recompile the class and possibly redeploy it.

app.ChaseBean chase = new Chase("dog","cat");
// ...
out.println("<HTML>");
out.println("<HEAD><TITLE>The Chase<TITLE><HEAD>");
out.println("<BODY>");
out.println("<H1>Welcome to the Chase</H1>");
out.println("<H2>Our story so far:</H2>");
out.println(");
out.print("The big ");
out.print(chase.getChaser());
out.print(" & ");
out.print("the little)"
out.print(chase.getChasee());
out.println(" chased each other. ");
out.println("");
out.println("</BODY>");
out.println("</HTML>");

Figure 10.1 Rendering HTML the old-fashioned way

What the browser sees:

<HTML>
<HEAD><TITLE>The
Chase<TITLE><HEAD>
<BODY>
<H1>Welcome to the Chase</H1>
<H2>Our story so far:</H2>
<FONT SIZE=\"+1\" FACE=\"Times\"
COLOR=\"#FFFFFF">The big dog &
the little cat chased each other.

</BODY>
</HTML>

What the browser displays:

Welcome to the Chase

Our story so far:

The big dog & the little cat chased
each other.

Figure 10.2 What the browser sees and displays

270 CHAPTER 10

Displaying dynamic content
Server pages
One popular solution to the problem of authoring dynamic screens is the server
page. There are many flavors of server pages: ActiveServer Pages, ColdFusion
pages, PHP pages, server-side includes, Velocity templates, and of course JSPs. But
they all use the same basic approach:

� You create an HTML-like page that uses a server page markup to indicate
dynamic features.

� When a request for the page is received, the server page is used to construct
a dynamic response.

� The response is returned as standard HTML.

 Here are the key advantages:

� The server page is not a program file that is compiled into the core application.

� The syntax of the server page resembles a standard web page.

These advantages make server pages much easier to create and maintain, espe-
cially by nonprogrammers. Server pages can even be maintained using graphical
editors, such as Macromedia’s Dreamweaver [Macromedia].

app.ChaseBean chase = new Chase("dog","cat");
// ...
Html html = new Html()
.addElement(new Head()
.addElement(new Title("The Chase")))
.addElement(new Body()
.addElement(new H1("Welcome to the Chase"))
.addElement(new H2("Our story so far:"))
.addElement(new Font().setSize("+1")
.setColor(HtmlColor.WHITE)
.setFace("Times")
.addElement(chase.getChaser());
.addElement(" & ");
.addElement("the little)"
.addElement(chase.getChasee());
.addElement(" chased each other. ");
output(out);

Figure 10.3 A step up from println, packages like the Element Construction Set
[ASF, ECS] generate HTML using deeply nested classes.

Tag—you’re it 271
JavaServer Pages
JSPs offer two distinct approaches to server page markup. Developers can place
Java code directly into the page using scriptlets. Scriptlets are quick, relatively easy,
and quite powerful. Figure 10.4 shows the JSP scriptlet approach.

The second approach to JSP markup is to use tag extensions. JSP tags resemble
HTML tags, and use a similar format and syntax. They require more effort to write,
but once written, JSP tags are easier to use and much easier to maintain over the
long run. Figure 10.5 shows the JSP tag approach.

10.1.2 Struts and JSTL

While the Struts tags are quite capable and easy to use, they are not the only game
in town. Sun’s new JavaServer Pages Standard Tag Library (JSTL) implementation
sports a useful set of tags, many of which overlap with the Struts taglibs. JSTL
requires a container that supports Servlets 2.3 and JSP 1.2, such as Tomcat 4 or

<jsp:useBean id="chase" scope="page" class="app.ChaseBean"/>
<HTML>
<HEAD><TITLE>The Chase</TITLE></HEAD>
<BODY>
<H1>Welcome to the Chase</H1>
<H2>Our story so far:</H2>

The big "<%= chase.getChaser() %>" & the little "<%= chase.getChasee()
%>"> chased each other.

</BODY>
</HTML>

Figure 10.4 Scriptlets allow Java code and expressions to be mixed with HTML.

<%@ taglib uri="/tags/struts-bean" prefix="bean" %
<HTML>
<HEAD><TITLE>The Chase</TITLE></HEAD>
<BODY>
<H1>Welcome to the Chase</H1>
<H2>Our story so far:</H2>

The big <bean:write name="chase" property="chaser"/> & the little
<bean:write name="chase" property="chasee"/> chased each other.

</BODY>
</HTML>

Figure 10.5 A JSP page looks and feels like HTML.

272 CHAPTER 10

Displaying dynamic content
Resin 2. In short order, we can expect containers to be optimized for JSTL, making
it the base taglib of choice for most applications.

 Of course, JSTL does not eliminate the need for custom tag extensions. There
will be many instances when a developer will find it convenient to write a tag that
does exactly this in exactly this way. But, like the original Struts taglibs, JSTL elimi-
nates the need to write tags that perform the common operations most applica-
tions undertake.

 Should you use JSTL tags instead of Struts tags whenever you can? Sure, if
your container supports Servlets 2.3 and JSP 1.2, and that’s what you want to do.
Most of the Struts tags were provided to fill a void and are not strongly coupled
with the framework. If JSTL already existed, most of the Struts tags would never
have been written.

 Of course, at this time, the Struts tags are an integral part of a great many
applications and will be part of the Struts distribution for some time to come. But
you can rest assured that the Struts team will not be competing with JSTL. You can
expect any new Struts tags to either be based on JSTL or work as adjuncts to it.

NOTE As this book went to press, a JSTL version of the Struts taglibs was being
added to the development build. This library should be part of the final
release of Struts 1.1. See the book’s website [Husted] for any Struts 1.1
errata or addenda.

The JSTL expression language
 JSTL includes an expression language (EL) that provides a clear alternative to
scriptlets. An expression language is especially useful to the many custom tag
users who want to pass several dynamic parameters to their JSP tags.

 Right now, there is a blind spot in the syntax for custom tags. One property can
be passed in the body of the tag, which could include the output of another cus-
tom tag. All other properties must be passed in the tag itself, and nesting other
tags is not permitted here.

 So this

<some:tag attribute="<bean:message key='...'/>">

will not compile, since the JSP syntax expects you to do something like this

<some:tag><bean:message key="..." /></some:tag>

instead. This generally works, but sometimes more than one attribute needs to be
dynamic. The Struts tags get around this by having you specify the names of beans

Tag—you’re it 273
rather than the data. The tag then gets the properties from the bean. But for
other tags, you may need to use a runtime expression, like

<some:tag attribute='<%=myDynamicString + "txt" %>'/>

When using runtime expressions with JSP tag attributes, it is important to use a
complete expression for the attribute value, as we have done here, or the expres-
sion won’t compile.

 The JSTL expression language can provide another alternative:

<c:set var="msg"><bean:message key="..." /></c:set>
<tag attribute="$msg"/>

Here we first trapped the output of the <bean:message> tag as a page-scoped
attribute, and then we used the JSTL expression language to write that attribute
with the other (non-JSTL) tag.

 Of course, there is much more to JSTL than is shown by this simple example.
Generally, you should be able to use JSTL instead of the generic Struts bean and
logic tags (if that’s what you want). But you will probably need to continue using
the Struts html tags for the time being, since those tags are more specialized.

 JSTL and the Struts framework work well together because they share some
common goals. Both try to avoid the use of scriptlets, and both encourage using
JavaServer Pages as the View in a Model-View-Controller architecture.

10.1.3 Struts tags and MVC

The Struts JSP tags provide all the functionality most applications need to create
an MVC-style presentation page. (For more about the Model-View-Controller
architecture, see chapter 2.) This is important since many developers want to
make a clean break with the bad old days of page-centric, Model 1 web applica-
tions. In a proper Model 2–MVC application, a request does not go directly to the
presentation page. The request goes first to the Controller. As shown in
figure 10.6, only after the business data has been acquired and the business rules
applied does the Controller hand off to the presentation page.

 Since everything else has already been done, the page’s only responsibility is
writing the result—which is where the JSP tags come in. JSP tags can access value
objects stored in the servlet contexts and use data from these objects to create
dynamic content.

 If you haven’t guessed by now, the heading for section 10.1 has a dual mean-
ing. In an MVC environment, the Controller hands off to the page, saying, in
essence, “Tag—you’re it.” And, compared to the elder alternatives, tags are it.

274 CHAPTER 10

Displaying dynamic content
Moving forward, in section 10.2 we briefly cover the fundamentals of working with
tag extensions, including how to write and install them, and what you can’t do
with them. In section 10.3, we introduce the Struts taglibs, with a focus on the
overall design of the libraries. Then, in section 10.4, the rubber hits the road, and
we put the Struts taglibs to work. Here we explore the specifics of using the tags,
including the fundamentals, important techniques, and common applications.

 The goal of this chapter is to shorten your learning curve so that you can
quickly integrate the Struts tags into your own projects. The Struts Taglib Devel-
oper Guides and technical documentation [ASF, Struts] are quite good and are still
recommended reading. But to help you get started with those, this chapter pro-
vides a gentle introduction to tag extensions and the Struts tags, with an emphasis
on how they work and how you can put them to use in your own applications.

10.2 Working with tag extensions

In section 10.1, we took a brisk walk down memory lane to show how Java web
applications have progressed from rendering output using a command-line for-
mat to using templates and server pages that can be managed with an external
graphical editor. In this section, we look at how tag extensions are written and
what tag extensions are not, and then we introduce the Struts tags. With this foun-
dation, the balance of the chapter shows how to put the Struts tags to work.

10.2.1 How are tag extensions written?

JSP tags are written in Java using the tag extension API. The classes are designed to
parse a tag in XML format and use the tag’s properties as parameters to the class’s
methods. In practice, tag extensions let you call Java functions using an XML syn-
tax that resembles standard HTML. For example, the standard HTML base tag
looks like this:

Database

JSP

ControllerClient

Figure 10.6 Program flow in a Model 2–MVC application

Working with tag extensions 275
<base href="http://mydomain.com/myapp/index.jsp">

and the Struts base tag looks like this:

<html:base/>

When rendered by the JSP page, the Struts <html:base> tag will be converted into a
standard HTML base tag, with the appropriate path (or URI) automatically included.

 Under the hood, there is a BaseTag class corresponding to the base JSP tag.
BaseTag extends an API class, TagSupport (see listing 10.1), and overrides the
hotspot method, doStartTag. This is a run-of-the-mill Java method that constructs
the HTML markup, much as you would if you were using a plain servlet to gener-
ate the response (see section 10.1.1).

public class BaseTag extends TagSupport {
// ...
public int doStartTag() throws JspException {
 HttpServletRequest request = (HttpServletRequest)pageContext.getRequest();
 StringBuffer buf = new StringBuffer("<base href=\"");
 buf.append(request.getScheme());
 buf.append("://");
 buf.append(request.getServerName());
 buf.append(request.getRequestURI());
 buf.append("\"");
 if (target != null) {
 buf.append(" target=\"");
 buf.append(target);
 buf.append("\"");
 }
 buf.append(">");
 JspWriter out = pageContext.getOut();
 try {
 out.write(buf.toString());
 }
 catch (IOException e) {
 pageContext.setAttribute(Action.EXCEPTION_KEY, e,
 PageContext.REQUEST_SCOPE);
 throw new JspException(messages.getMessage(
 "common.io", e.toString()));
 }
 return EVAL_BODY_INCLUDE;
}
}

Listing 10.1 A sample BaseTag class

276 CHAPTER 10

Displaying dynamic content
This code may remind you of what we presented in figures 10.1 and 10.3. The
major difference is that a specialized class, designed for reuse, encapsulates the
markup here. Applications can share custom tag libraries, and the tag markup
integrates well with ordinary JSP/HTML markup.

 In practice, most developers do not need to write their own tags. Many general-
purpose libraries are available, including the new JSTL. But it’s nice to have the
option should the need arise. Typically, a developer will simply import an existing
taglib into a page (can you say reuse?) and go to work on the markup, which looks
and feels like an extension to HTML.

 Developers use a number of related terms when discussing tag extensions. A
quick glossary may help you keep everything straight. Table 10.1 defines some of
the vocabulary used to discuss JSP tag extension.

10.2.2 How are tag extensions installed?

Installing a tag extension and using it in your page is a three-step process:

1 Install the JAR and TLD files.

2 Update the application’s web.xml file.

3 Import the new taglib to your page.

1. Install the JAR and TLD files
Tag extensions are typically distributed in a binary Java Archive (JAR) file. You can
place the taglib JARs under the WEB-INF/lib folder, like any other jar’d compo-
nent. There is a second part to a taglib distribution: the Tag Library Descriptor
(TLD) file. The TLDs are often placed directly under WEB-INF. The JSP service
uses the TLD to check the syntax of the tags when compiling your JSP:

\WEB-INF\lib\struts.jar
\WEB-INF\struts-bean.dtd
\WEB-INF\struts-html.dtd
\WEB-INF\struts-logic.dtd

Table 10.1 JSP taglibs glossary

Term Definition

Tag extension The mechanism (or API) by which tag libraries are made available to a JSP.

Tag library A collection of actions (or tags) that encapsulate some functionality to be
used within a JSP.

Taglib Common abbreviation for tab library. Often pronounced tag-libe.

Custom tag or JSP tag The individual actions (or tags) that make up a tag library.

Working with tag extensions 277
2. Update the application’s web.xml file
To provide the best flexibility, your JSP will use a logical reference to refer to the
taglib. This lets you move or even change the taglib without affecting any of your
pages (as long as the libraries are binary compatible). The logical references are
mapped to the actual taglibs in your application’s deployment descriptor file
(web.xml).

 Here’s a block of taglib elements for the Struts tags we cover in this chapter:

<web-app>
<!-- ... other web-app elements ... -->
<taglib>
<taglib-uri>/tags/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/tags/struts-html</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>/tags/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>

</web-app>

Some developers will use the same string for both the uri and the location, but
that practice defeats the purpose of this feature and leads to confusion if the loca-
tion of the TLDs changes.

NOTE Since taglibs are often distributed in JARs, some developers place the
TLDs under \WEB-INF\lib with the JAR files. This keeps everything togeth-
er. Another common convention is to create a separate folder for the
TLDs. Since the location of the TLD is specified in the web.xml, any of
these places work as well.

3. Import the new taglib to your page
Which tags are available to which page is a decision left to the developer. The spec-
ification provides developers with good flexibility. You can both import a taglib and
give it an identifying prefix for the current page. Note that when we import the
taglib, we are referring to the uri from the web.xml—not the location:

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>

278 CHAPTER 10

Displaying dynamic content
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>

The individual tags can then be referenced by the prefix defined for the page:

<bean:write name="userForm" property="firstName"/>

This approach neatly resolves taglib name conflicts and makes it easy to switch
among compatible libraries.

 Most often, developers will use the same prefix through the application, but
this is not required. If there were a conflict, you could use different prefixes in dif-
ferent pages. You can also change the taglib imported to a page and use the old
prefix (as long as the DTDs are compatible).

NOTE If you find that a JSP tag on a page is acting strangely, or perhaps not
working, check to see that its taglib has been imported. Both the JSP com-
piler and web browser will ignore tags they don’t understand. So if you
use a taglib on a page but don’t import it, nothing happens!

10.2.3 What tag extensions are not

Tag extensions both useful and promising—but, at this writing, a technology still
under development. Here are some points to remember:

� Tag extensions are not supported by all HTML visual editors.

� Tag extensions are not a drop-in replacement for scriptlets.

� Tag extensions are not JavaServer Faces.

Tag extensions are not supported by all HTML visual editors
There is some plug-in support available for Macromedia’s UltraDev 4 [ASF,
CTLX], but it is currently incomplete. UltraDev 4 only supports JSP 1.0, which pre-
dates the introduction of custom tags. Another Macromedia product, HomeBase,
also supports custom tags, but that product is designed for the handcoders among
us. Of course, GUI support for JSP tags is likely to grow as custom tags become
more widely used.

Tag extensions are not a drop-in replacement for scriptlets
Almost everything you’d want to do with an MVC-style JSP can be done with the
Struts taglibs or JSTL. But that’s still just almost. Developers still find themselves
resorting to scriptlets to do some things. Most often, the continued use of
scriptlets is to overcome design flaws in a tag, or to avoid writing or extending a
new tag. A real honest-to-goodness need for a scriptlet is rare.

The Struts taglibs 279
 The scripting features of JSTL are designed to overcome any need to revert to
scriptlets. But at this writing, the JSTL is brand new and requires a container sup-
porting the relatively new Servlet 2.3 and JSP 1.2 APIs. The JSTL expression lan-
guage features will make replacing scriptlets even easier.

Tag extensions are not JavaServer Faces
An initiative is under way to define a standard set of JSP tags and Java classes that
will simplify building JavaServer application GUIs, called JavaServer Faces (JSF)
[Sun, JSF]. While JSF will apparently build on the tag extension API, it will be a
component framework of its own. The JSF components will overlap with some of
the Struts tags, but the Struts team is sure to provide a clear migration path when
the time comes.

NOTE As this book went to press, the Struts team announced the development
of a struts-faces taglib that will be released to coincide with JavaServer
Faces 1.0. The struts-faces taglib is designed so that developers can mi-
grate from the Struts tags to JavaServer Faces a page at a time. For the lat-
est details, see the book’s website [Husted].

For more about tag extensions, we recommend JSP Tag Libraries [Shachor],
another Manning Publications book.

10.3 The Struts taglibs

First, your application is not constrained to using only the Struts tags. Tag exten-
sions are a standard Java technology. Other standard libraries are available,
including Sun’s JSP Standard Tag Library [Sun, JSTL], the Jakarta Taglibs [ASF,
Taglibs], and Struts-Layout tags by Improve [Improve], to name a few. All of these,
and more, can be used in your application alongside the Struts taglibs. If you have
needs that are not met by a prewritten extension, or would like to streamline a
tag’s processing, you can also write your own custom tags. Your own tags can then
be mixed and matched with those from other sources.

 The Struts distribution includes four key tag libraries: bean, html, logic, and nest-
ing, as listed in table 10.2. Most of the tags in the html library (org.apache.
struts.taglibs.html) depend on the framework. Most of the tags in the other
libraries do not rely on the framework and could be used in other applications.
In this section, we look at common features shared by the Struts taglib, and then
introduce each of the libraries. This material is not meant to replace the Struts

280 CHAPTER 10

Displaying dynamic content
Developer Guides and technical documentation. For detailed specifics regard-
ing each tag, we refer you to the technical documentation. This section is
designed to build a foundation for section 10.4, where we explore putting the
Struts tag to work.

10.3.1 Features common to Struts tags

The JSP tags in the Struts taglibs offer a number of common features that help to
make the tags convenient to use, including automatic scoping, common property
names, extended syntax, runtime expressions, and a common error attribute.

Automatic scoping
Java servlets can store objects in a number of shared areas called contexts. Contexts
are like public bulletin boards. Any servlet in an application can post whatever it
wants, and any other servlet in that application can see whatever is posted.

 When searching for an object, the Struts tags can automatically check all the
standard contexts—page, request, session, and application—and use the first
instance found. You can also specify a context (or scope) to be sure the tag locks on
to the right object.

Common property names
An important thing to realize about the Struts tags is that they are designed to
expose JavaBeans passed to the page. The properties common to the tags—id,
name, property, and scope—revolve around working with some helper bean,
presumably passed by the controller. Table 10.3 itemizes these four most com-
mon properties.

Table 10.2 The four key Struts tag libraries

Library Description

bean Tags useful in accessing JavaBeans and their properties, as well as defining new beans

html Tags used to create HTML input forms that can interact with the Struts framework, and
related HTML tags

logic Tags for managing the conditional generation of output, looping over object collections
for repetitive generation of output, and application flow management

nesting Tags that provide enhanced nesting capabilities to the other Struts tags

The Struts taglibs 281
Here’s an example of a Struts tag using all four of the common properties:

<logic:iterate scope="request" name="result"
 property="collection" id="row"> <%-- markup --%> </logic:iterate>

This particular example says to look in the standard request context for a bean
named result. Then, retrieve a property on that bean, called collection (for
example, getCollection). Iterate over that collection, expose each element in
turn as a scripting variable named row, and process the markup up to the closing
</logic:iterate> tag.

 Other Struts tags will use these properties in similar ways, which helps to flat-
ten the learning curve.

Extended syntax
Struts tags support both the standard simple references found in JSP actions as well as
nested references. Using nested references, you can express a property in a Struts tag as

property="foo.bar.baz"

which tells Struts to call the equivalent of

getFoo().getBar().getBaz();

or, as a setter,

getFoo().getBar().setBaz(value);

Since Struts 1.1, you can also include indexed references:

property="foo[2]"

which calls the equivalent of

Table 10.3 Struts taglibs use a consistent set of property names.

Property Description

id Names any scripting variable to be created by a custom tag.

name Indicates the key value under which an existing bean will be found. If a scope is given,
only that context is searched. Otherwise, the contexts are searched in the standard
order (page, request, session, application).

property Indicates a property on the bean from which to retrieve a value. If not specified, the
value of the object itself is used.

scope Identifies the context (page, request, session, or application) in which the bean is to
be found. If not specified, the scopes are searched in the standard order. Any scripting
variable (see id) is created in the same scope.

282 CHAPTER 10

Displaying dynamic content
getFoo(2);

or, as a setter,

setFoo(2, value);

Note that the references are zero-relative, as is typical for a Java expression.

Runtime expressions
Although the Struts tags are designed so that you can avoid using scriptlets in your
JSPs, all of the Struts tag properties can be provided by a runtime expression
(scriptlet), in case there is no alternative. When using a scriptlet to generate a
property, be sure to use a complete expression:

 Incorrect

<html:link href="'<%= "/" + name %>/index.jsp>'>

 Correct

<html:link href="'<%= "/" + name + "/index.jsp" %>'>

As shown in the snippet, the expression must provide the entire property, quote
to quote. For more examples of mixing scriptlets with JSP tags, see the Struts Bean
Taglib Developers Guide [ASF, Struts]. Do note that the Struts team, and many
other developers, now consider using scriptlets a last resort.

Common error handling
The JavaServer Pages specification [Sun, JSP] allows you to define a default error
page. If an exception occurs when processing the page, the container will direct
control to the error page rather than throw up the standard “white page.” If a
Struts tag throws an exception, it is passed to the error page under a request
attribute using the key

org.apache.struts.action.EXCEPTION

This gives your JSP error page the opportunity to process the actual exception that
caused the problem.

10.3.2 The bean tags

There is a strong relationship between custom tags and JavaBeans. One of the orig-
inal design justifications for custom tags was to provide an interface between JSPs
and JavaBeans. Toward that end, Struts provides a small but extremely useful
library of tags devoted to manipulating JavaBeans and related objects. The 11 bean
tags are summarized in table 10.4. These tags can be used to do the following:

The Struts taglibs 283
� Create a JSP scripting variable from an HTTP header, request parameter,
cookie, or any existing object in any scope.

� Create a new bean from the response to another request (include), from an
application resource, or from a Struts configuration object.

� Determine the number of elements in a collection or a map.

� Automatically write a localized message for the current user from an appli-
cation resource.

� Write the value of a given property on any available bean.

Of these, only two, the message and struts tags, are bound to the framework in
any way. The other nine will work just as well in any application.

Used together, these tags provide a great deal of functionality that JSP designers
can usually access only through scriptlets. These include the usual CGI tricks, like
writing HTTP headers:

<bean:header id="browser" name="User-Agent"/>
<P>You are viewing this page with: <bean:write name="browser"/></P>

along with more useful things, like creating a new bean based on a cookie:

<bean:cookie id="username" name="username" scope="session"
 value="New User" />
<P>Welcome <bean:write name="username" property="value"/!</P>

Table 10.4 The Struts bean tags

Tag name Description

cookie Defines a scripting variable based on the value(s) of the specified request cookie

define Defines a scripting variable based on the value(s) of the specified bean property

header Defines a scripting variable based on the value(s) of the specified request header

include Loads the response from a dynamic application request and makes it available as a bean

message Renders an internationalized message string

page Exposes a specified item from the page context as a bean

parameter Defines a scripting variable based on the value(s) of the specified request parameter

resource Loads a web application resource and makes it available as a bean

size Defines a bean containing the number of elements in a Collection or Map

struts Exposes a Struts internal configuration object as a bean

write Renders the value of the specified bean property

284 CHAPTER 10

Displaying dynamic content
If the username had already been stored as a cookie, then it would be displayed
instead of New User.

Bean tag best practices
The Struts bean taglib provides many advanced capabilities that can be useful
when developers are migrating from JSP Model 1 to Model 2 applications (see
chapter 1). Many of the tags, like <bean:cookie> and <bean:header>, provide ser-
vices that can also be handled by the Struts Action. Many Struts developers prefer
to reduce JavaServer Pages to a mail-merge task. Anything that smacks of business
logic, like managing cookies, might best be handled in a Struts Action and then
passed to the page.

 In general practice, the most often used bean tags are <bean:write> and
<bean:message>.

The bean write and message tags
The <bean:write> tag is the read-only complement to the Struts html tags dis-
cussed in the next section. It is a flexible and efficient tag that uses reflection to
print the value of any given property:

<bean:write name="shoppingCart" property="itemSum"/>

If the property is not a Java primitive, the standard toString() method for the
object is called.

 The <bean:message> tag helps localize your application. Java defines a stan-
dard object for storing a user’s region and language, called the locale
(java.util.locale). By default, the Struts controller creates a locale object for
each user and stores it in the session context under a known key.

 All the developer need do is provide the key for the message. The pertinent
Struts components, like the <bean:message> tag, look up the message related to
that key. The framework automatically provides the related message from the
resource for the user’s locale.

 Given a tag like this:

<bean:message key="inquiry"/>

the bean message tag could render

"Comment allez-vous?"

for a user set to the French/Canada locale, but render

"How are you?"

The Struts taglibs 285
for a user in the English/United States locale. For more about localizing applica-
tions, see chapter 13.

10.3.3 The html tags

The HTML format [W3C, HTML] provides a small but useful set of controls that
browsers must support. These include buttons, checkboxes, radio buttons, menus,
text fields, and hidden controls. All of these are designed so that they can be pre-
populated with dynamic data. Actually getting the data into the control is left up
to the application.

 Dynamic applications written with scripting languages, including JSP scriptlets,
often populate HTML tags by writing a mix of HTML and script. For example, to
populate an HTML text form tag using a standard JavaBean and JSP scriptlet, most
developers would write something like this:

<input type="text" name="firstName"
 value="<%= formBean.getFirstName() %>"/>

NOTE Incidentally, there is nothing to prevent you from writing HTML tags us-
ing scriptlets. The Struts tags have no special preference. When the form
is submitted to the Struts controller, all the controller sees is a standard
HTTP request. Regardless of how the request was initiated, the controller
will dutifully run through the gauntlet: populate any associated Action-
Form bean, call the ActionForm bean’s validate method, and pass the
ActionForm along to the Action perform method or forward the re-
quest back for additional input. How the HTML form underlying the re-
quest was rendered isn’t important. What is important (at least to the
Struts team) is that JSP developers have a complete set of tags they can
use to write HTML controls without resorting to scriptlets.

Here’s how we would populate that same control using a Struts html tag:

<html:text property="firstName"/>

Note some differences between the two:

� Although not shown, the scriptlet version requires that the formBean be
declared on the page as a scripting variable before use. The Struts tags will
find the bean without any red tape.

� By default, the Struts tags will use the same bean as the rest of the form, so
the bean does not have to be specified for each control.

286 CHAPTER 10

Displaying dynamic content
Corresponding HTML elements
The Struts html taglib provides a set of more than 20 tags to help you prepopulate
HTML controls and related elements. As shown in table 10.5, most of these corre-
spond to standard HTML elements.

This one-to-one correspondence makes converting existing HTML or JSP pages to
Struts a very straightforward process. For example, wherever an HTML element like

<input type="text" name="username">

is found, it can be replaced with the corresponding Struts html tag:

<html:text property="username"/>

There are already converters available that read existing HTML pages and auto-
matically create the corresponding Struts version [Objectwave], [Ramaiah]. Tools
like this can give you a good head start on your project.

Table 10.5 How Struts html tags correspond to HTML elements

Struts html
tag

Corresponding HTML element
Struts html

tag
Corresponding HTML element

base <base> link <a>

button <input type="button"> messages None—displays a set of accumulated
error message [Struts 1.1]

cancel <input type="cancel"> option,
options

<option>

checkbox,
multibox

<input type="checkbox"> password <input type="password">

errors None—displays a set of accu-
mulated error messages

radio <input type="radio">

file <input type="file"> reset <input type="reset">

form <form> rewrite None—outputs a URL-encoded path

hidden <input type="hidden"> select <select>

html <html> submit <input type="submit">

image <input type="image> text <input type="text">

img textarea <input type="textarea">

The Struts taglibs 287
Common properties
Like the Struts tags overall, the Struts html tags share a number of common prop-
erties, as shown in table 10.6.

10.3.4 The logic tags

As shown in table 10.7, Struts offers three flavors of logic tags: evaluation tags,
control-flow tags, and a repeat tag.

Evaluation tags
The Struts logic tags are often used to provide alternative versions of the same
presentation page. Depending on the existence or value of an object or property,
a given block of markup is selected and presented to the user:

Table 10.6 Struts html taglibs use a consistent set of property names.

Property Purpose

name The name of the ActionForm, or other JavaBean, that provides the data for this con-
trol. If not specified, the ActionForm bean associated with the enclosing form tag is
used.

on* Each of the html tags includes the appropriate JavaScript event handlers
[Netscape], including onblur, onchange, onclick, ondblclick, onfocus,
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onreset, and onsubmit. These are all rendered in
lowercase for compatibility with XML.

accesskey Accessibility key character (ignored by some browsers). Pressing an access key
assigned to an element gives focus to the element.

tabindex An attribute that specifies the position of the current element in the tabbing order
for the current document. The tabbing order defines the order in which elements
will receive focus when navigated by the user via the keyboard.

style CSS styles [W3C, CSS] to be applied to this HTML element.

StyleClass CSS style sheet class [W3C, CSS] to be applied to this HTML element.

Table 10.7 The three kinds of Struts logic tags

Tag Purpose

Evaluation tags For testing if values are equal, less than, greater than, empty (blank or null), or
even present

Control-flow tags For redirecting or forwarding the request

Repeat tag For iterating over any type of collection

288 CHAPTER 10

Displaying dynamic content
<logic:notPresent name="logonForm">
 <html:link forward="logon">Sign in here</html:link>
</logic:notPresent>
<logic:present name="logonForm">
 <html:link forward="logoff">Sign out</html:link>
</logic:present>

Many pages will differ slightly depending on certain circumstances, such as
whether a user is logged in. Logged-in users may see a dialog box offering them
the chance to log out. Logged-out users may see a dialog box offering them the
chance to log in. When users are logged in, they may also have access to adminis-
trative controls. In addition, users may have access to different controls based on
their security role. Often, most of the page remains the same, the only difference
being a line or two of markup.

 While the MVC architecture allows us to process the application’s business
logic in the Model and Controller layers, being able to apply some logical con-
structs in the View is still useful. In practice, creating separate pages for every pos-
sible circumstance creates a maintenance burden. If similar pages are created and
then need to be updated, every variation of the page will have to be updated
separately. This does not meet the MVC’s prime directive to help us create robust,
easy-to-maintain applications. So, as a practical matter many developers place a
smidgen of presentation logic into a page, just to reduce the total number of
pages to maintain.

NOTE The Tiles library discussed in chapter 11 provides another solution to this
problem. Various page definitions can be created for each circumstance
without creating redundant markup files. Using Tiles in this way can re-
duce or eliminate presentation logic from an application.

Since it is expected that the majority of logic will be processed in the Action, the
Struts logic tags are rudimentary. You may have noticed that the lack of an
if...then...else structure in the foregoing code fragment. One tag, present,
was used to test to see whether the logonForm exists, and another, notPresent,
was used to test whether the ActionForm did not exist. This same pattern follows
for all the Struts evaluation tags. There is no kind of if...then...else structure
available in the logic tag library. These structures are difficult to formulate as cus-
tom tags, and given the restricted amount of logic that is processed on a Struts
page, deemed not worth the trouble by the development team.

The Struts taglibs 289
Evaluation tags—common properties
As mentioned, Struts provides a full complement of evaluation tags: empty
[Struts 1.1], notEmpty [Struts 1.1], equal, notEqual, greaterEqual, lessEqual,
greaterThan, lessThan, match, notMatch, present, and notPresent. All of these
tags require a value property upon which to base the evaluation. Of course, the
value property can be determined by runtime expression if needed:

<bean:define id="value2" name="bean2" property="value"/>
<logic:equal value="<%=(String) value2 %>" name="bean1" property="value">
<%-- markup for when bean1.value equals bean2.value --%>
HIT!
</logic:equal>

As shown in table 10.8, the evaluation tags can compare the value with a cookie,
HTTP header, request parameter, bean, or property on a bean.

The match and notMatch tags also take an optional location property. This can be
used to indicate whether the start or end of the string is to be matched. Other-
wise, the match runs across the entire string.

 For details regarding what attributes each of the Struts tags accepts, see the
technical documentation provided with the Struts distribution.

Control-flow tags
Again, while it is better to provide the control flow in the controller, the Struts
redirect and forward tags can also handle task this from a JSP. Typically, flow will
be forwarded or redirected based on the outcome of an evaluation tag.

 A very good use of the redirect or forward tag is to send control from a
default welcome page to an Action. Virtual URIs, like the Struts Action, cannot be
used as the welcome page for an application. (The container looks for a physical
page.) Alternatively, you can provide an index.jsp page that forwards control to an
element controlled by the Struts configuration:

Table 10.8 Comparison attributes for evaluation tags

Attribute Purpose

cookie The value is compared with a cookie’s property.

header The value is compared with the HTTP header.

parameter The value is compared with a request parameter.

name The value is compared with the object by this name.

property The value is compared with this property of the named object.

290 CHAPTER 10

Displaying dynamic content
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<logic:forward name="welcome"/>

The repeat tag
The Struts <logic:iterate> tag is quite flexible. It provides all the looping func-
tionality most MVC presentation pages require. A collection is passed as a bean, or
as a property of a bean. The tag then repeats over each element, exposing it as a
scripting variable. The bean and html tags can then be used to write out the ele-
ment as it iterates:

<logic:iterate id="item" name="list">
 <bean:write name="item"/>
</logic:iterate>

We will return to iterate in the next section, which covers putting the tags to work.
 The complete API for the Struts tag libraries is included with the Struts distri-

bution [ASF, Struts]. As you start to use the tags in your own application, it is rec-
ommended that you review the Struts Taglib Developer Guides, which include
additional usage information and several handy examples. The exercise-taglib
application in the Struts distribution also includes several interesting test cases for
various tags. Many of these can be used as a starting point for your own widgets.

 To complement what is distributed with Struts, appendix C provides a Struts
taglibs quick reference with descriptions of the tags in each library, along with a
list of properties each tag accepts.

10.4 Using Struts JSP tags

In part 1 of this book, we stressed the importance of using a layered architecture.
With this approach, all the data processing takes place through an Action class.
The presentation layer can then focus on displaying data rather than acquiring it.
In this section, we cut to the chase and show you how to use the Struts custom tags
to display dynamic data.

 One last note before we get started. It’s important to remember that, in the
end, it all comes down to HTML. By the time the page reaches the browser, it is no
longer “in JSP” or “in Struts.” What the browser sees is regular HTML, rendered in
the usual way. This must be the case, since JSP and Struts are designed to work
with any existing browser, as is, without adaptation. There are technologies, such
as Java applets, that can plug into a browser and provide special capabilities. But
JSP and Struts are designed to work with stock web browsers. They can do only

Using Struts JSP tags 291
whatever HTML can do. Conversely, you can do anything with Struts that you can
do with JSP and HTML. That by itself opens a world of possibilities.

10.4.1 The Struts tag team

In practice, tags from the various Struts libraries are often used together. Some
properties on a form may be read-only and rendered with a <bean:write> rather
than an <html:text> tag. A logic tag may be used to provide or exclude a control
on a form based on evaluating a value at runtime. The <html:link> tag is often
used with <logic:iterate> to render a list of hyperlinks. And so forth.

 In this section, we focus on how the Struts tags are used together to provide a
desired effect. Creating web pages from dynamic data is an interesting topic and
could easily fill an entire book on its own. Many of the more interesting effects
rely on client-side JavaScript rather than server-side dynamic data. Accordingly, we
focus here on how to get the dynamic, server-side data into your page, where
other assets, such as JavaScripts, can then make use of it.

 First, in the “Fundamentals” section, we look at the basics of populating con-
trols and setting defaults. Then, in the “Techniques” section, we examine several
key features of the Struts tags that provide a broad range of solutions to common
problems. These include using arrays to capture duplicate elements and using
rewrite to render paths to other assets.

10.4.2 Fundamentals

The material in this section is designed to help you get started with your own
application. First, we cover the base essentials, such as declaring a form and popu-
lating a control. Then we touch upon some of the finer points that new Struts
developers tend to overlook or struggle with, including how to do the following:

� Select a radio button

� Filter (or not filter) HTML

� Clear passwords

� Use transactional tokens

� Use collections with the options tag

� Use multibox to handle checkbox arrays

� Localize buttons and labels

Chapter 13 covers localization in depth. In this section, we cover localization
issues specific to using the Struts tags only.

292 CHAPTER 10

Displaying dynamic content
Declaring a form
The Struts html tags are designed to populate their corresponding element from
a JavaBean. The JavaBean represents the overall form. The properties of the Java-
Bean represent the form’s elements. While any JavaBean will work with the tags,
the architecture encourages developers to use ActionForms (see chapter 5).
ActionForms are specially designed to ferry data from HTML forms to the rest of
your application.

STRUTS TIP The best way to get started with the Struts JSP tags is to begin replacing
the HTML elements in your pages with the corresponding tag from the
html taglib.

Like its HTML counterpart, Struts begins a form with an <html:form> tag, fol-
lowed by whatever control elements are needed, and concludes with a closing
</html:form> tag, as shown in listing 10.2.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<html:html>
<HEAD><TITLE>Sign in, Please!</title></head>
<BODY>
<html:errors/>
<html:form action="/logonSubmit"
 name="logonForm" type="app.LogonForm" scope="request">
<TABLE border="0" width="100%">
<TR><TH>Username: </TH>
<TD><html:text property="username"/></TD>
</TR>
<TR>
<TH>Password: </TH>
<TD><html:password property="password"/></TD>
</TR>
<TR>
<TD><html:submit/></TD>
<TD><html:reset/></TD>
</TR>
</TABLE>
</html:form>
</BODY>
</html:html>

Listing 10.2 A simple login form page

Using Struts JSP tags 293
In listing 10.2, we specified the name, type, and scope for the default JavaBean to
be used by the form. In practice, these properties are usually omitted, and the
<html:form> tag looks them up from the ActionMapping (chapter 7). If the Java-
Bean does not exist, the <html:form> tag will create it, making the bean’s default
values available to other elements on the page.

Populating an html control element
By default, the text and password tags in listing 10.2 will populate themselves
from the logonForm bean. If the bean was placed in the request before forwarding
to the page, any preexisting values will be used. This lets you set the bean proper-
ties in a Struts Action class and then forward to the page, where the properties
can be displayed.

 So

<html:text property="username"/>

as a scriptlet would equate to something like

<input type="text" value="<%= logonForm.getUsername() %>"">

where logonForm had been already exposed as scripting variable.
 Every element on the form does not have to be populated from the same bean.

The bean used by the <html:form> tag is simply the default. The snippet

<html:text property="username" name="accountBean"/>

will populate the element from a bean named accountBean. Since the scope was
not specified, the usual order is followed: page, request, session, application. The
first bean found by that name is used.

NOTE When the form is submitted, the browser will send this element as user-
name= The Struts controller will populate only the ActionForm as-
sociated with the form’s action. If additional beans are used, it is the
developer’s responsibility to capture the additional parameters. Whenev-
er possible, it is best to have all the properties used by the form represent-
ed on the same ActionForm bean.

Selecting a radio button
Each radio button element requires an assigned value that distinguishes it from
the other radio buttons. When creating a static array of radio buttons, you need to
indicate which one of these, if any, is checked. This does not need to be done when

294 CHAPTER 10

Displaying dynamic content
the radio buttons are being populated from dynamic data. The control can com-
pare itself to the form bean’s property and then check itself when appropriate.

 Given a set of <html:radio> controls like this:

<html:radio property="expectedVia" value="UPS"/>UPS
<html:radio property="expectedVia" value="FEDX"/>Federal Express
<html:radio property="expectedVia" value="AIRB"/>Airborne

and that the expectedVia property on the form bean was already set to UPS, then
the HTML radio elements would be rendered like this:

<input type="radio" name="expectedVia" value="UPS" checked="checked">UPS
<input type="radio" name="expectedVia" value="FEDX">Federal Express
<input type="radio" name="expectedVia" value="AIRB" >Airborne

Filtering HTML
There are several characters that HTML treats specially, including the braces
around markup tags, the ampersand, and some others. If these characters are ren-
dered as part of a text field, as is, they can ruin the HTML and produce other nasty
side effects. By default, these characters are filtered by the Struts <bean:write> tag
and replaced with their HTML equivalents. This lets you store the actual charac-
ters in your data file but safely and automatically render them on a web page.

 Occasionally, you may need to use a field to capture actual HTML (entered by
trusted and knowledgeable people) and display that as part of the page. When
this happens, you can switch the filtering off:

<bean:write name="scriptForm" property="article" filter="false"/>

But this should only be done when you really, really know what you are doing. Ren-
dering raw input to a page is a security risk and should avoided whenever possible.

Clearing passwords
By default, the <html:password> field will repopulate itself, like any other html
tag. If there is a validation error on the page, the password property will be read
back from the form bean and placed into the password tag. The actual password
will be masked by the browser and hidden from casual onlookers, but will still be
visible in the HTML source. If this behavior is considered a security risk, then the
password tag can set to bypass autopopulation:

<html:password property="password" redisplay="false"/>

This means that the password field will always start out blank. If the form fails vali-
dation when submitted, the password will have to be entered again, even if the

Using Struts JSP tags 295
original input was valid. Setting redisplay to false on logon forms is a good prac-
tice for production applications.

Using transactional tokens
Duplicate submissions can often be a problem for web applications. Struts sup-
ports a strategy to prevent duplication submissions using a synchronizing token.
Using synchronizing tokens is automatic for the Struts <html:form> tag. If it sees
that tokens are being used, it automatically includes the appropriate hidden field.

 On the Action side, you can enable transactional tokens by calling

saveToken(request);

anywhere in the Action's perform or execute method. On the return trip, to have
an Action check if a token is still good, call

boolean valid = isTokenValid(request);

If this method returns false, branch to an error page. If it returns true, call

resetToken(request);

While participating in a transaction most often occurs with forms, there are also
applications for hyperlinks and other assets. Accordingly, the Struts <html:link>
and <html:rewrite> tags provide optional support for transactions. To include the
appropriate token in the link, set the transaction property to true. A tag like this:

<html:link forward="addItem" paramName="row" paramProperty="itemId"
paramId="id" transaction="true"/>

will then generate a hyperlink like this:

<a href="/gavel/do/addItem?
 id=3017&org.apache.struts.taglib.html.TOKEN=72da1d3fdede66c">

Using collections for options
The options tag is used to write the options for a menu selection from one or
more collections. You can use one collection for both the labels option and val-
ues option, or you can use a separate collection for each. Alternatively, you can
use one collection with elements that have accessors for the label and value
properties. With a little help from <bean:define>, you can also pass the collec-
tions as part of the form bean.

 The syntax for the options tag is complex. The best thing might be to provide
examples of the popular use cases:

� One collection, stored as a property on the ActionForm

296 CHAPTER 10

Displaying dynamic content
� One collection, stored as a separate bean

� One collection, with labelName and labelProperty accessors, stored as a
separate bean

� One collection with CodeName and LabelProperty accessors

One collection, stored as a property on the ActionForm. The same string will be used
for the value and the property. The collection is being returned by a method with
the signature Collection getImageOptions():

<TR>
<TD>Item Image Source:</TD>
<TD><html:select property="hasImage">
<html:options property="imageOptions" />
</html:select>
</TD>
</TR>

One collection, stored as a separate bean. Here the collection has been put directly
in the request, session, or application scope under the name imageOptions:

<TR>
<TD>Item Image Source:</TD>
<TD><html:select property="hasImage">
<html:options collection="imageOptions"/>
</html:select>
</TD>
</TR>

One collection, with labelName and labelProperty accessors, stored as a separate bean.
This will call the getValue() and getLabel() properties for each element in the
collection:

<TR>
<TD>Item Image Source:</TD>
<TD><html:select property="hasImage">
<html:options collection="imageOptions" property="value"
 labelProperty="label"/>
</html:select>
</TD>
</TR>

One collection, with labelName and labelProperty accessors. Th i s w i l l ca l l the
getValue() and getLabel() methods for each element in the collection. Here we
need to use <bean:define> to expose the collection so that it can be used like the
prior example:

Using Struts JSP tags 297
<TR>
<TD>Item Image Source:</TD>
<TD><html:select property="hasImage"
<bean:define id="imageOptions" name="itemForm"
 property="imageOptions" type="java.util.Collection"/>
<html:options collection="imageOptions" property="value"

labelProperty="label"/>
</html:select>
</TD>
</TR>

Since Struts 1.1, a LabelValueBean class is provided with the Struts distribution
(org.apache.struts.util.LabelValueBean), but any compatible class can be
used. For more about localizing LabelValue classes, see chapter 13.

Using arrays for checkboxes
Many applications need to use a large number of checkboxes to track options or
selected items. To help with this, Struts provides the multibox control. It’s quite
handy but a little tricky to understand at first.

 The multibox leverages the way HTML handles checkboxes. If the box is not
checked, the browser does not submit a value for the control. If the box is
checked, then the name of the control and its value are submitted. This behavior
is the reason there is a reset method on the ActionForm. Since the browser will
never signal that a box has been un-checked, the only solution is to reset all the
boxes, and then check the ones that are now present in the request.

STRUTS TIP Use the <html:multibox> tag to manage a set of checkboxes as an array.

The multibox control is designed to use an array of Strings. Each element in
the array represents a checked box. To select a box, add a String to the array
with the box’s value. To deselect a box, remove the element from the array.
(Sound familiar?)

 When passed a value, the multibox control scans the elements of its array to
see if there is a match. If so, the box is checked. If not, the box is left unchecked.
If the user checks the box and submits the form, the box’s value will be included
in the request. The controller will then add that box to the checked array. If a box
is unchecked, nothing is submitted, and nothing is added to the array. If the
ActionForm bean is kept in the session context, in between requests, the reset
method needs to reduce the array to zero length (but not null).

 In this example

298 CHAPTER 10

Displaying dynamic content
<logic:iterate id="item" property="items">
 <html:multibox property="selectedItems">
 <bean:write name="item"/>
 </html:multibox>
 <bean:write name="item"/>
</logic:iterate>

the labels for the individual checkboxes are in the items property. The list of
selected items is in an array named selectedItems. Items that are not selected are
not present in the selectedItems array. The multibox checks the selectedItems
array for the current item. If it is present, it writes a checked checkbox. If not, it
writes an unchecked checkbox.

 Given an ActionForm setup like this

private String[] selectedItems = {};
private String[] items = {"UPS","FedEx","Airborne"};
public String[] getSelectedItems() {
 return this.selectedItems;
}
public void setSelectedItems(String[] selectedItems) {
 this.selectedItems = selectedItems;
}

the markup in the example would generate three checkboxes, labeled UPS,
FedEx, and Airborne:

<input type="checkbox" name="selectedItems" value="UPS">UPS
<input type="checkbox" name="selectedItems" value="FedEx">FedEx
<input type="checkbox" name="selectedItems" value="Airborne">Airborne

Initially, the selectedItems array would be empty. If UPS were checked and sub-
mitted, it would become the equivalent of

private String[] selectedItems = {"UPS"};

If UPS and Airborne were both checked, it would become the equivalent of

private String[] selectedItems = {"UPS","Airborne"};

And when the checkboxes are rendered, the appropriate elements are automati-
cally checked by the multibox tag:

<input type="checkbox" name="selectedItems"
 value="UPS" checked="checked">UPS
<input type="checkbox" name="selectedItems"
 value="FedEx">FedEx
<input type="checkbox" name="selectedItems"
 value="Airborne" checked="checked">Airborne

Using Struts JSP tags 299
To provide different sets of labels and values, the standard LabelValueBean class
(org.apache.struts.util.LabelValueBean) (since Struts 1.1) can be used with
the multibox control:

<logic:iterate id="item" property="items"
 <html:multibox property="selectedItems">
 <bean:write name="item" property="value"/>
 </html:multibox>
 <bean:write name="item" property="label"/>
</logic:iterate>

Localizing labels
You can use <bean:message> to create localized labels for the html tags, as in

<TH><bean:message key="username"/></TH>
<TD><html:text property="username"/></TD>

where username is a key in the application’s message resources.
 A message resource may be provided for each supported locale. The message

for the current user’s locale will be rendered automatically. For more about local-
ization, see chapter 13.

 In the case of button tags, the <bean:message> may be given as the button’s
content:

<html:submit><bean:message key="submit"/></html:submit>

Since the button’s label is also its value, the localized message is what the browser
will submit.

Localizing options
The <html:options> tags allow you to provide a collection for the option labels
and another for the optional values. This allows you to forward a label collection
for a given user’s locale. There are no changes to the markup in this case, since
the tag simply outputs what it is given. The actual collection is best generated in
the Action class. See chapter 13 for more about generating localized content.

 If you are hardcoding the options in your page, then you can also localize
options using <bean:message>:

<html:option value="status"><bean:message key="status"/></html:option>

Localizing collections
For more about preparing localized collections, including collections based on
LabelValueBean, turn to chapter 13. When a localized collection is passed to a

300 CHAPTER 10

Displaying dynamic content
page, no changes to the markup are needed, since the page simply renders what-
ever is provided in the collection.

10.4.3 Techniques

Now that we’re past the fundamentals, let’s look at several advanced techniques
Struts developers find useful, including:

� Using an ImageButtonBean to represent an ImageButton

� Using bean tags to create custom controls

� Using an array to catch duplicate parameters

� Using <bean:size> to test the size of a collection

� Iterating over part of a collection

� Exposing the iteration index if needed

� Using nested <present> and <notEmpty> tags to test bean properties

� Using application scope objects for stable option lists

� Using rewrite to render URLs for style sheets, JavaScripts, and other assets

� Using Struts JSP tags to render JavaScript

� Using <bean:write> to render JavaScript from a bean

� Renaming the Submit button to avoid JavaScript conflicts

� Using formless buttons

� Using an Action as the input property to re-create dependent objects

� Using dynamic form actions

� Using alternative message tags

Using an ImageButtonBean to represent an ImageButton
An endless source of aggravation is the HTML input image element. The specifica-
tion says that browsers should treat this control like an image map. Unlike other
buttons, it does not submit a string representing the button’s label; it submits the
x and y coordinates. If you look at the HTTP post for an image button, you’ll see it
looks something like this:

myImageButton.x=200
myImageButton.y=300

For most other controls, a Struts developer can create a simple String property
to represent the element. This clearly won’t work with an image button, because

Since
Struts 1.1 [

Using Struts JSP tags 301
it submits two “dotted” properties instead of a simple name-value entry like
other elements.

 Happily, Struts does allow an ActionForm to contain, or nest, other JavaBeans,
and will automatically populate the beans using the same syntax as the image ele-
ment. (What a co-inky-dink!)

 To represent an image input element in your ActionForm, say what you mean,
and use an ImageButtonBean to capture the x and y parameters, like that shown
in listing 10.3.

public final class ImageButtonBean extends Object {
 private String x = null;
 private String y = null;
 public String getX() {
 return (this.x);
 }
 public void setX(String x) {
 this.x = x;
 }
 public String getY() {
 return (this.y);
 }
 public void setY(String y) {
 this.y = y;
 }
 public boolean isSelected() {
 return ((x!=null) || (y!=null));
 }
} // End ImageButtonBean

Note that we’ve included a helper method on this bean, isSelected. This method
just returns true if either the x or y property is not null. If both are still null, then
isSelected returns false.

 Here’s how you could declare two ImageButtonBeans on an ActionForm:

// ..

 private ImageButtonBean logonButton = new ImageButtonBean();
 public void setLogonButton(ImageButtonBean button) {
 this.logonButton = button;
 }
 public ImageButtonBean getLogonButton() {
 return this.logonButton;
 }
 private ImageButtonBean cancelButton = new ImageButtonBean();

Listing 10.3 An ImageButtonBean class

302 CHAPTER 10

Displaying dynamic content
 public void setCancelButton(ImageButtonBean button) {
 this.cancelButton = button;
 }
 public ImageButtonBean getCancelButton() {
 return this.cancelButton;
 }

// ...

The next question will be “OK, which button did they click?” so let’s define
another helper method on the ActionForm to tell us:

 public String getSelected() {
 if (getLogonButton().isSelected()) {
 return Constants.LOGON;
 }
 if (getCancelButton().isSelected()) {
 return Constants.CANCEL;
 }
 return null; // nobody home
 }

In an Action, determining which button is clicked is then a simple matter of ask-
ing the form what was selected:

String selected = ((myForm) form).getSelected();
if (Constants.CANCEL.equals(selected)) ...

Of course, since getSelected would be called within the Action, the method
doesn’t need to return a String. It could be an int, a custom type to represent
your API functions, or even the name of another method for use with a Dis-
patchAction (org.apache.struts.actions.DispatchAction).

Using bean tags to create custom controls
As good as the html tags are, they cannot cover every circumstance. When you
need to write an HTML form element in a way not supported by the stock tags, you
can cobble your own with <bean:write>. Here are some popular use cases:

 Adding wrap="soft" to the textarea control:

<textarea name="description" rows="5" cols="60" wrap="soft">
<bean:write name="scriptForm" property="description"/></textarea>

 Renaming a property:

<input type='hidden' name='prospect'
 value='<bean:write name="donorForm" property="donor"/>'>

 Setting a control to a parameter from the request:

Using Struts JSP tags 303
<bean:parameter id="item" name="item"/>
<input type='text' name='item' value='<bean:write name="item"/>'>

 Setting a control to the value of a cookie:

<bean:cookie id="username" name="username"/>
<input type='text' name="username" value='<bean:write name="username"
property="value"/>'>

Of course, these three cases are only the most popular examples. There are many
other use cases that follow the same pattern shown here.

Using an array to catch duplicate parameters
HTML and HTTP allow for parameters with the same name to be added to the
same request. You can capture duplicate parameters by making the properties on
your ActionForm a String array:

private String items = {""};
public String[] getItems() {
 return this.item;
}
public void setItem(String item[]) {
 this.item = item;
}

Note that you must code your arrays so that they are never null; otherwise an
Exception will be thrown when iterate tries to loop through the entries.

 In the form, you can then write out the array out using the iterate tag:

<logic:iterate name="logonForm" property="items" id="item">
 <TR>
 <TD>Item:</TD>
 <TD>
 <input type='text' name="item"
 value='<bean:write name="item"/>'>
 </TD>
 </TR>
</logic:iterate>

STRUTS TIP The properties on your ActionForm can include collections and arrays as
well as simple properties. If you submit parameters with duplicate names,
they can be captured in an array property.

Using <bean:size> to test the size of a collection
Some of the standard Java collections, like ArrayList, do not use JavaBean conven-
tions for their properties. To work around this problem, the <bean:size> tag

304 CHAPTER 10

Displaying dynamic content
returns the size of any given collection. One good use of this tag is to print a spe-
cial message if the collection is empty, rather than iterate over zero elements:

<bean:size id="listSize" name="list"/>
<logic:equal name="listSize" value="0">
 <P>No records were selected.</P>
</logic:equal>
<logic:notEqual name="listSize" value="0">
<logic:iterate id="row" name="list" >
 <%-- markup for each row --%>
</logic:iterate>
</logic:equal>

However, if an application often returns a set of search results, it can be worth-
while to define a convenience class to wrap the collection and associated proper-
ties. See the ResultList class in the Scaffold package for an example (org.apache.
commons.scaffold.util.ResultList).

Iterating over part of a collection
The <logic:iterate> tag can take an offset and count, in the event only part of
the collection should be exposed. For example, use this to start from the fifth ele-
ment and display the next five elements:

<logic:iterate id="element" name="list" offset="5" length="5">

Exposing the iteration index if needed
It can be useful to have access to the index for each iterator in order to generate
unique form names or other elements:

<logic:iterate id="element" name="list" indexId="index">
<bean:write name="element"/>
 [<bean:write name="index"/>]
</logic:iterate>

index is actually a scripting variable, and so this could also be written as

<logic:iterate id="element" name="list" indexId="index">
<bean:write name="element"/>
 [<% index %>"/>]
</logic:iterate>

Since
Struts 1.1

Using Struts JSP tags 305
Using nested <present> and <notEmpty>
tags to test bean properties
If you need to test whether a property on a bean is present or empty, and the bean
itself may not exist, you can nest the evaluations:

<logic:present name="bean"><logic:notEmpty name="bean" property="value">
 <bean:write name="bean" property="value"/>
</logic:empty></logic:present>

NOTES The <logic:empty> tag was added in Struts 1.1.

In Struts 1.0, <notPresent> can be used to test for null values. In Struts 1.1,
<empty> can be used to test for both null values and empty Strings.

Using application scope objects for stable option lists
Many applications need to use static, or semi-static, sets of option lists that may be
used on several different pages. Often, these lists are drawn from a database table
or other resource. This makes them good candidates for collections. If the collec-
tions are the same for every user, that makes them good candidates for applica-
tion scope objects. Here’s an example:

<TR>
<TD>Item Image Source:</TD>
<TD><html:select property="hasImage">
<html:options collection="imageOptions" scope="application"
 property="value" labelProperty="label"/>
</html:select>
</TD>
</TR>

If the list needs to be filtered or localized for a user, a proxy object can be placed
in the session, which uses the application object as a data source.

Using rewrite to render URLs for style sheets, JavaScripts, and other assets
The Struts <html:rewrite> tag can convert a context-relative URI into a base URI
that can be used to access style sheets, JavaScripts, images, and other HTML assets.
For example:

<LINK rel="stylesheet" type="text/css"
 href="<html:rewrite page='/assets/styles/base.css'/>">

If you want to hedge your bets about where the style sheets will be located, an
ActionForward may also be used:

<LINK rel="stylesheet" type="text/css"
 href="<html:rewrite forward='baseStyleSheet'/>">

Since
Struts 1.1

306 CHAPTER 10

Displaying dynamic content
Likewise, references to JavaScripts, as well as URIs to be processed by JavaScripts,
can be rendered this way:

<SCRIPT language='javascript'>
 src='<html:rewrite page="/assets/scripts/remote.js"/>'></SCRIPT>
<SCRIPT>
<!--
function doPreview (aRecord) {
 aBase = '<html:rewrite forward="preview"/>';
 doOpenRemote(aBase + '?record=' + aRecord);
}
// --
</SCRIPT>

In the latter example, we first included a set of JavaScripts from another page
(including the doOpenRemote script). Before calling the script, we look up the base
URI for the JavaScript function from an ActionForward. Finally, as we call the Java-
Script, we append the script number to the function. This type of function would
usually be called from a hyperlink like this

10011

that was generated using JSP code like this:

<a href='javascript:doScript(<bean:write name="row" property="script"/>)'>
 <bean:write name="row" property="script"/>

STRUTS TIP Use <html:rewrite> to reference HTML assets.

Since we are calling a JavaScript function, we did not bother with an <html:link>
tag to provide URL encoding. The hyperlink will be handled client-side, so main-
taining the session is not an issue. The URI generated by the rewrite tag, and sub-
sequently used by the JavaScript, will be URL encoded, so that the session will be
maintained if cookies are not present.

Using Struts JSP tags to render JavaScript
The Struts framework ensures that we can perform data validation without the
benefit of JavaScript. But that doesn’t mean we can’t use JavaScript in our Struts
applications. Most web developers rely on JavaScript to provide core features on
the presentation layer, and Struts developers are no exception.

 Most JavaScripts can be used on a Struts JSP like any other page. After all, in
the end, it all comes down to HTML.

Using Struts JSP tags 307
 Because it all comes down to HTML, you can mix JSP tags in with references to
your JavaScript. The JSP code renders first, so by the time the browser sees it, any
dynamic references have been resolved and it just looks just like a static reference.
Let’s look at a script to open a remote window to preview a record from a database.

 First, here’s a basic remote window script, just like you would use on a static page:

// Open window
function openWin(newURL, newName, newFeatures, orgName) {
 var newWin = open(newURL, newName, newFeatures);
 if (newWin.opener == null)
 newWin.opener = window;
 newWin.opener.name = orgName;
 return newWin;
}

// Open centered remote
function doOpenRemote(aURL, newName, aHEIGHT, aWIDTH, aFeatures, orgName){
 if (aHEIGHT == "*"){ aHEIGHT = (screen.availHeight - 80) };
 if (aWIDTH == "*"){ aWIDTH = (screen.availWidth - 30) };
 var newFeatures = "height=" + aHEIGHT + ",innerHeight=" + aHEIGHT;
 newFeatures += ",width=" + aWIDTH + ",innerWidth=" + aWIDTH;
 if (window.screen){
 var ah = (screen.availHeight - 30);
 var aw = (screen.availWidth - 10);
 var xc = ((aw - aWIDTH) / 2);
 var yc = ((ah - aHEIGHT) / 2);
 newFeatures += ",left=" + xc + ",screenX=" + xc;
 newFeatures += ",top=" + yc + ",screenY=" + yc;
 newFeatures += "," + aFeatures;
 }
 var newWin = openWin(aURL, newName, newFeatures, orgName);
 newWin.focus();
 return newWin;
}

We’ll take this script as a given and not step through how it works. The sample
script is not the point of the exercise. Let’s move on to how it is called from the JSP.

 We want to use this script to open different database records at different times.
To do this, we need to feed it a different URI to indicate which database record to
open this time. In many applications, the URI would look something like this:

/do/item/View?item=117

The /do/item/View part is relatively static. It just needs to be rewritten to maintain
the session. We can store it as an ActionForward and use the <html:rewrite> tag
to render it at runtime, and ensure it is URL-encoded if necessary. For example, in
the Struts configuration file, we can place

308 CHAPTER 10

Displaying dynamic content
 <forward
 name="item"
 path="/do/item/View"/>

 and then use this tag in the JSP:

<html:rewrite forward="itemScript"/>

The dicey part is the ?item=117. This is the truly dynamic portion of the URI, and
the part that we actively need to pass to the script. That being so, let’s make it a
parameter to our JavaScript function. Here’s the result:

<script>
<!--
function doItem(aItem) {
 aBase = '<html:rewrite forward="item"/>';
 HC_doOpenRemote(aBase + '?item=' +
 aItem,'preview','*','600','scrollbars','form');
}
// -->
</script>

Note that we only need to pass the item number (for example, 117) to this func-
tion. The function then takes the base part of the URI and concatenates it with the
query string and our parameter.

 All that’s left now is passing the parameter to the script. The item number would
be passed to the page within a JavaBean, so we can use <bean:write> for that:

<a href='javascript:doItem(<bean:write name="itemForm"
property="item"/>)'>Item Number

At runtime, this would resolve to

Item Number

Since the JavaScript is rewriting the URI, we don’t have to worry about that part of
it here and can use a conventional hyperlink tag.

Using <bean:write> to render JavaScript from a bean
Another way to go is to just write the entire script into the page from scratch:

<SCRIPT>
<!--
<bean:write name="fancyForm" property="javaScript" filter="off"/>
// -->
</SCRIPT>

This will write out whatever is returned by the String fancyForm.getJavaScript()
method. This lets you create the JavaScript by any means necessary. The Struts

Using Struts JSP tags 309
Validator uses this approach to create a complex series of scripts that are ren-
dered into the page from a single JSP tag.

 Of course, the same technique applies to any HTML text asset, including Cas-
cading Style Sheets (CSS).

Renaming the Submit button to avoid JavaScript conflicts
Some JavaScripts may try to call the submit operation for a form. By default, the
<html:submit> button is also named (surprise) Submit. To avoid conflicts, give the
Submit button another name:

<html:submit property="submitButton"/>

Using formless buttons
It is often useful to use a button to represent a hyperlink or JavaScript action.
Problem is, the <html:form> tag expects each form to have a corresponding
ActionForm bean. The solution is to give the tag what it wants and define a simple
form with no properties:

public class BlankForm extends ValidatorForm {
 // blank form
};

This form can then be cited in the Struts configuration whenever a “formless”
form is needed. For example, to provide a JavaScript back button:

 Struts configuration file:

<action
 path="/Back"
 type="org.apache.struts.ForwardAction"
 name="blankForm"
 scope="request"
 validate="false"
 parameter="/do/Menu"/>

 JSP page:

<html:form action="/Back">
 <html:button property="page"
 onclick="history.go(-1)">DONE</html:button>
</html:form>

Using an Action as the input property to re-create dependent objects
If a page displays options or other controls from objects placed in the request, these
objects must be re-created if validation fails. So instead of an input property like

310 CHAPTER 10

Displaying dynamic content
<action
 path="/item/RecvStore"
 // ...
 validate="true"
 input="/pages/item/RecvForm.jsp"/>

you should use something like

<action path="/item/RecvStore"
// ...
validate="true"
input="/do/item/RecvForm"/>

where the RecvForm action will re-create any objects the page expects to find in
the request.

 If the dependent objects are properties on the ActionForm, you can also pre-
serve them out as hidden properties on the form. The dependent objects can
then be reconstructed from the request along with the user-supplied values.

Using dynamic form actions
A form collects properties and submits them to an Action object. In practice, dif-
ferent Actions may expect the same set of properties but carry out different oper-
ations on those properties. The classic example is inserting versus updating a
record. To a database, these are distinct operations. To an application, they may
look like the same form.

 Problem is, the <html:form> tag assumes that a particular form always use the
same value for the action property. The framework does not provide an auto-
matic way to pass the action property to a form.

 When they want to reuse the same form with different ActionMappings, devel-
opers typically hardcode the action property into the tag:

<html:form action="/saveRecord'>
 <%-- ... -->%
</html:form>

and then use smoke and mirrors to change the ultimate target of the submit.
Chapter 6 shows ways to handle this with ActionForwards. Chapter 8 offers other
solutions using the standard Dispatch Actions and the Scaffold FindForward
Action. The Tiles framework covered in chapter 11 can also help out by putting
the content of the form in a separate tile. Yet another workaround is to use a
(ugh!) runtime expression.

 Like all Struts tag properties, the value of the action property can be provided
as an expression at runtime. You can have your Action object pass the value for

Using Struts JSP tags 311
the form’s action property through the request. The page can place it into the
<html:form> tag when the page is rendered:

<bean:define name="dispatch" id="dispatch" type="java.lang.String">
<html:form action ="<%=dispatch %>">
 <%-- ... -->%
</html:form>

If the dispatch String is being passed through the request, as shown here, you
must be sure that the request always passes through the page’s Action first. Other-
wise, the dispatch String will not be in the request, and the <html:form> tag will
throw an exception.

NOTE The same principle applies to any dependent properties. See “Using an
Action as the input property to re-create dependent objects” earlier in
this section.

A way to avoid this routing issue is to make dispatch a property on the Action-
Form bean:

<bean:define name="recordForm" property="dispatch"
 id="dispatch" type="java.lang.String">
<html:form action ="<%=dispatch %>">
<html:hidden property="dispatch"/>

By also including the dispatch property as a hidden field, you ensure that it will
be automatically populated during the validation step along with the other
ActionForm properties. If validation fails, the dispatch property will be written
back into the <html:form>, like any other ActionForm value.

 If you use this technique, a good practice is to put the dispatch property in a
base ActionForm object that your other ActionForms can extend. The Base-
Form class (see chapter 5) in the Scaffold package (org.apache.scaffold.
http.BaseForm) provides a dispatch property, among others.

Using alternative message tags
Many Struts applications can get by with a simple

<html:error/>

tag at the top of a page. If any error messages are present, it’s this tag’s job to print
them all out. To help prettify the output, <html:error> checks for errors.header
and errors.footer messages in the application resources. If found, the tag prints
these before and after the block of messages. A common setup is:

312 CHAPTER 10

Displaying dynamic content
errors.header=
errors.footer=

Struts 1.0 developers can then include and tags with the text of each
message to be used this way. In Struts 1.1, the situation improves with the addition
of the errors.prefix and errors.suffix messages. Just as the header and footer
print before and after the block of messages, the prefix and suffix print before the
individual messages. So to print a simple list of any message that might arise, you
can just include

errors.header=
errors.footer
errors.prefix=
errors.suffix=

in your application resources, and the <html:error> tag will take care of the rest.
 However, purists would complain that HTML markup has no place in a mes-

sage resources file. And they would be right. Even with the Struts 1.1 prefix and
suffix feature, you may still need to use different markup on different pages.

 For Struts 1.0 applications, the Struts Validation extension (see chapter 12)
offers a useful alternative to the standard <html:error/> tag. You can use these
tags whether you are using the rest of the Validator package or not. Instead of pro-
viding one omnibus tag, the Validator approach is to use an iterator to expose
each message, and then leave it up to the page to provide whatever other format-
ting is necessary. Here’s an example:

<validator:errorsExist>

 <validator:errors id="error">
 <bean:write name="error"/>
 </validator:errors>

</validator:errorsExist>

In Struts 1.1, these tags were adopted into the core taglibs. Here’s the same exam-
ple using the Struts 1.1 rendition:

<logic:messagesPresent>

 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>

</logic:messagesPresent>

Using Struts JSP tags 313
This is all great if you just want to print your messages as a batch. But many mes-
sages are related to data-entry validation and involve a specific field. Many page
designs expect a message concerning a field to print next to a field.

 Not a problem. When the error message is queued, you can specify a “prop-
erty” to go with it. If you don’t specify a property (using any of the tags we
described), then all the messages print. If you do specify a property, then only the
messages queued for that property print.

 The default code for queuing an error message is:

 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("error.username.required"));

To specify that this message is for the username property, we would use this code
instead:

 errors.add("username", new ActionError("error.username.required"));

If we specify a property, we can use the <html:errors/> tag (or any of the alterna-
tives) like this:

<P>Username: <html:text property="username"/></P>
<P>Password: <html:password property="password"/></P>

The username errors print next to the username field, and any password errors
print next to the password field.

 But what if you need to print both specific and general errors?
 Again, no problem. You can also specify the generic property just like you did

in the Java code. First, at the top of your JSP, import the Action and ActionErrors
package, so you can reference the appropriate constants:

<%@ page import="org.apache.struts.action.Action" %>
<%@ page import="org.apache.struts.action.ActionErrors" %>

Then, in the tags, use a runtime expression to specify the constants:

<logic:present name="<%=Action.ERROR_KEY%>">
<P><html:errors property="<%=ActionErrors.GLOBAL_ERROR%>"/>/P>
</logic:present>

Viola! Specific messages print out in specific places, and any general errors can
still print out in a place of their own.

 Of course, you don’t have to settle for any of these standard tags. If these varia-
tions still don’t meet your specific needs, take a peek at the source code and cobble
up your own. The framework provides the queue, but how it prints is up to you.

314 CHAPTER 10

Displaying dynamic content
10.4.4 Successful controls

Many of the dynamic pages we write involve submitting HTML forms. When you’re
working with HTML forms, it’s important to keep in mind how empty, or “unsuc-
cessful,” controls are handled. If a control is not successful, then the browser may
not include it in the request. In this case, you will not get back an empty string or
anything representing null. The parameter for the control will simply not be there.

 Here are some notes from the HTML 4.01 specification [W3C, HTML] regard-
ing successful controls:

� Controls that are disabled cannot be successful.

� Hidden controls and controls that are not rendered because of style sheet
settings may still be successful.

� If a control doesn’t have a current value when the form is submitted, user
agents (for example, web browsers) are not required to treat it as a success-
ful control.

� If a form contains more than one Submit button, only the activated Submit
button is successful.

� All on checkboxes may be successful.

� For radio buttons that share the same value of the name attribute, only the
on radio button may be successful.

� For menus, the control name is provided by a SELECT element and values
are provided by OPTION elements. Only selected options may be successful.
When no options are selected, the control is not successful and neither the
name nor any values are submitted to the server when the form is submitted.

Because of the way HTML treats unsuccessful controls, the Struts ActionForms
have a reset method. The reset method can be used to set a control to its default
value in case it is unsuccessful and not submitted by the browser. The problematic
case is when a form using checkboxes is resubmitted and the ActionForm is being
maintained in the user’s session. If the user deselects a checkbox, the control
becomes unsuccessful and is not resubmitted. As a result, the ActionForm value in
the session object does not become unchecked. The workaround is to use reset
to turn off all the checkboxes and let the request turn on the successful ones.

Alternate views 315
10.5 Alternate views

Struts isn’t just for JSP any more. Several new extensions are available that connect
other presentation systems to the framework, making XLST and Velocity first-class
citizens in a Struts application.

10.5.1 Struts and JSPs

In chapter 2, we explored the Model-View-Controller architectural pattern and
the framework’s role as a web-aware Controller. Of course, no Controller is an
island. To be useful, an application also needs Model and View components. JSPs
are the standard means for creating dynamic views in a Java web application. To
help JSP developers integrate controller elements with the rest of their applica-
tion, the Struts distribution includes a comprehensive JSP taglib that we covered
earlier in this chapter.

 Of course, Struts does not itself render the JSPs. That’s the container’s job.
Internally, the .jsp extension is mapped to a service running within the container.
When anyone, including Struts, wants a JSP, the container’s service takes over the
request and delivers the response. The JSP may include tags from our Struts-
supplied taglib, but it’s the JSP service that invokes the code behind the tags.

 A benefit of this arrangement is that it enforces layering between Struts and
the JSPs. Since Struts does not actually render the JSPs and has no special privi-
leges within the container, Struts communicates with JSPs in the same way any
servlet would—through the servlet contexts [Sun, JST].

10.5.2 Servlet contexts

Sun’s Java web architecture encourages developers to create applications as a col-
lection of cooperating servlets. Each servlet can be assigned to handle a particular
type of request and then either return the response or forward it to another serv-
let. In practice, a servlet often needs to include additional information with the
HTTP request. Information could be added to a raw HTTP request as it was for-
warded, but the HTTP request is String-based and encoded in arcane ways, mak-
ing that a clumsy option at best.

 To provide servlets with both the HTTP request and runtime information
about the request, the container wraps the HTTP request in a Java object, called,
well, the HttpServletRequest. Among other things, the HttpServletRequest provides
a clipboard-like component that servlets can use to exchange information, called
a context.

316 CHAPTER 10

Displaying dynamic content
DEFINITION Java servlets can store objects in a number of shared areas called contexts.
Each variable in a context has a name and an associated object. Any serv-
let in the same application can retrieve any object from a context by
name. The servlets in an application often need to share information
that outlasts a single HTTP request. To help manage the life cycle of
shared variables, three standard contexts are provided: application, session,
and request. A page scope is also available to a JSP. Objects in page scope
cannot be shared with other JSPs or servlets.

Application frameworks such as Struts rely on the standard servlet contexts to
allow their components to communicate and collaborate. The servlet framework
provides various scopes, so that different types of objects can have their own life
cycle. If the Struts controller posts a Locale object under the name
org.apache.struts.action.LOCALE, any other servlet in the application can access
that object by referring to the same name. Table 10.9 shows the standard contexts.

The Struts controller makes extensive use of the standard contexts. All of its
resources are exposed in one context or another. The contexts are how JSPs, and
any other object in the application, can be integrated with the Struts controller.

 This allows Struts to be used by any view or model technology with access to
the standard contexts. The contexts are available to every servlet in the applica-
tion. So, if you can do it with a servlet, you can do it with Struts.

Table 10.9 The standard contexts

Context Purpose

application Objects are available to all servlets in the application.

session Objects are available to all servlets that have access to the user’s HttpSession object.
This is usually found by calling a method on the HttpRequest. The session context may
be invalidated by a servlet or by the container.

request Objects are available to each servlet processing the HttpRequest. The request may be
forwarded from one servlet to another. Objects in the request may also be shared when
one servlet includes another. (See chapter 8.)

page Objects are available to the current JSP for the lifetime of the request. Page scope is
available to JSPs but not to standard servlets.

Summary 317
NOTE Although we’ve introduced the idea of servlet requests and contexts from a
web perspective, the HTTP versions of these classes extend interfaces that
are also available to conventional applications. So, it’s not just a web thing.

10.5.3 Beyond JSPs

While the vast majority of Struts applications are written solely with JSPs, many
developers are using other presentation servlets in their applications. Exten-
sions for using Struts with XLST and Velocity are already available. More are sure
to follow. Struts developers can now mix and match their presentation technolo-
gies, using XLST where it makes sense and JSP or Velocity templates where they
make sense—or just one or the other, as best meets the requirements of a spe-
cific application.

 In chapter 17, we look at moving from JSP tags to Velocity templates.

10.6 Summary

JSP tags are part of a development continuum that started with writing raw HTML
to the HTTP response and is progressing toward creating server pages using GUI
editors. The ultimate design goal of JSP tags is simply to expose the properties of
JavaBeans that software engineers can define and page designers can use. Recent
initiatives like the JavaServer Page Standard Tag Library and JavaServer Faces are
moving us closer to that goal, but there is still work to be done.

 The Struts JSP tags provide Java developers with the functionality they need
today. The tags in the HTML library correspond closely to the standard HTML ele-
ments and often can be swapped one for one. Other Struts tags are designed to
wean developer from scriptlets and help them refactor Model 1 applications for
Model 2. Overall, combining JSP tags with a Model 2–MVC architecture provides a
more robust design today and opens the door to future possibilities.

 Of course, any journey starts with the first step. The fundamental how-tos in
this chapter get developers started on the right foot as they build their pages
around the Struts tags. To lay the foundation for more complex pages, we
explored several advanced techniques Struts developers commonly use to build
real pages for real applications.

 That's great, but now how do I...
 At this point, the answer to most “How do I?” questions is going to be “How-

ever you would usually do it.” Custom tags are not a new environment but simply a
way to get dynamic data into the tried-and-true HTML environment. By leveraging

318 CHAPTER 10

Displaying dynamic content
the fundamentals and techniques described here, you should be able to take any
existing HTML or JSP form and adapt it to Struts.

 In the next chapter, we explore taking JSPs to the next level with the Tiles
framework. Tiles helps you build your pages from specialized components so that
pages become easier to design and maintain.

11Developing applications
with Tiles

Co-authored by Cedric Dumoulin and Ted Husted
This chapter covers
� Designing applications with dynamic includes
� Using the Struts and Tiles frameworks together
� Understanding Tiles Definitions and attributes
� Migrating applications to Tiles
319

320 CHAPTER 11

Developing applications with Tiles
A foolish consistency is the hobgoblin of little minds, adored by little
statesmen and philosophers and divines.

—Ralph Waldo Emerson

11.1 Leveraging layouts

Usability is a prime concern in the design of today’s applications—and consis-
tency is a prime ingredient of usability. Users want to stay focused on the task at
hand and are easily annoyed by any small inconsistency in an application’s inter-
face or screen layout.

 Consistency is no small challenge for a dynamic web application; it is common-
place for each page to be coded by hand. Layout tools for static pages are avail-
able to most designers today, but few of these are available to applications based
on JavaServer Pages.

 Worse, the look and feel of an application is usually the last detail to be final-
ized, and then it will often change between versions—or even arbitrarily as part of
a greater website “relaunch.” This can create a nightmarish round of last-minute
coding and testing—even if only to alter the background color or add a new link
to the menu bar.

 Of course, consistency is more than a hobgoblin; it’s a hallmark of good
design. Like any other component, web pages contain many common elements,
headers, footers, menus, and so forth. Often, these are cut-and-pasted from one
page to the next. But like any component, bugs are found and features are
enhanced, leading to another round of cut-and-paste “reuse.”

 In a web application, page markup is a programming component like any
other and should be held to the same standard of reuse.

11.1.1 Layering with dynamic templates

In the first part of this book, we stressed the importance of layering an applica-
tion to isolate the effects of change. By compartmentalizing an application, we
can change one piece without disrupting the other pieces. The same concept can
be applied within the presentation layer to separate the look and feel from the
actual content.

 One approach to separating layout from content is the use of dynamic JSP
includes. The JSP specification provides for both static and dynamic includes. The
standard JSP action for a dynamic include is <jsp:include>.

 We make use of dynamic includes by breaking the server page into several frag-
ments, each with its own job to do. A background template can set the default

Leveraging layouts 321
format and layout, and page fragments can be included at runtime to provide the
content. A dynamic include folds the output of the included page into the origi-
nal page. It acts like a switch that moves processing over to a page fragment and
then back to the caller. As shown in figure 11.1, the included template is pro-
cessed normally, just as if it had been called on its own.

The Tiles framework, which we explore in this chapter, uses a more advanced
form of the JSP include action. In a Tiles application, the background, or layout,
template usually defines the position of a header, menu body, content, and footer.
Other pages are then included to fill each of these positions. If the header
changes, then only that template file need be changed. The change is automati-
cally reflected in all pages that include that template. The effects of changes are
minimized—and the hobgoblins appeased.

 Standard HTML components, like Cascading Style Sheets (CSSs), also work
well with dynamic templates. A style sheet can help keep the templates internally
consistent and further minimizes the effects of change.

11.1.2 Template consequences

Every technology comes bundled with compromises. Here are some conse-
quences—pro, con, and mixed—that come with using dynamic templates in your
application:

� The JSP include technology is well established and reliable, and tends to
scale well in larger applications. The underlying technology for including
dynamic templates is part of the core Java Servlet API.

� Most containers are optimized for JSPs and standard features like servlet
include.

Request

Original
page

Response

<jsp:include.../>

Included
page

Request

Response

Figure 11.1 The effect of the <jsp:include> action on the processing of a request

322 CHAPTER 11

Developing applications with Tiles
� The included pages typically output HTML fragments and are not synopti-
cally complete. This can prevent you from maintaining templates with
standard HTML editors, which expect markup to be part of a complete,
stand-alone page.

� Most sites recompile JSP pages when the source changes. Templates create
more pages to be monitored for such changes.

� Templates actually reuse code that would otherwise be duplicated from
page to page. This can result in a significantly smaller footprint and con-
serve server resources.

11.1.3 Using templates

We take a close look at using dynamic templates in this chapter, especially as the
Tiles framework implements them. Tiles is a mature product and integrates
well with the Struts framework. Tiles templates can even be deployed from a
Struts ActionForward, eliminating a good many “red tape” files other template
systems require.

 Struts and Tiles are a powerful combination. Using dynamic templates to gen-
erate presentation pages jibes well with the other programming practices involved
in writing a web application. In this chapter, we show how to best combine Tiles
with Struts and other assets, like CSS. After introducing Tiles, we provide a refac-
toring guide to help you migrate an existing product to Tiles.

 If you find that Tiles is a good match for your application, be sure to study the
example application in chapter 15. See table 11.1 for a glossary of some of the
special terms we use in this chapter.

Table 11.1 A glossary of dynamic template terms

Term Definition

Dynamic element A portion of a JSP that is recognized by the JSP translator, including an action,
directive, expression, JSP tag, or scriptlet.

Template data A portion of a JSP that is not recognized by the JSP translator and is passed to
the response verbatim. Usually markup and visible text.

Template page A JSP that includes, or is included by, another page.

Template file A static file or JSP that is included by a template page.

Tile A synonym for template page.

Layout A description of where template files, or tiles, should be positioned on a page.

Leveraging layouts 323
11.1.4 Combining templates, Tiles, and Struts

When HTML tables were first invented, page designers immediately adopted them
as a layout mechanism. A borderless table can be used to contain other tables and
content and create layouts that were otherwise impossible.

 The same idea is often used with dynamic templates. As shown in figure 11.2, a
master template is used to provide the layout for the page and position the ele-
ments; page fragments are then included to fill in the elements. The page frag-
ments can be included in any type of layout: those that use borderless tables,
those that use <div> tags, and even very simple layouts that just stack one compo-
nent over the other.

Tiles is a framework that makes using template layouts much easier through use
of a simple but effective tag library. It can be used as a drop-in replacement for the
Template taglib distributed with Struts 1.0 but provides more functionality. The
Tiles package can be used with any JSP application.

Tiles A framework that makes templates and layouts easier and more powerful.

Definition A Tiles feature that allows a layout to be specified as a template page or as a
JavaBean. Definitions can also be described by an XML document.

Table 11.1 A glossary of dynamic template terms (continued)

Term Definition

Commodore 1541
Capacity 180K
Cost: $200
Aligned?: Sometimes

[Main] [Logoff]

ITEM DETAILS

footer.jsp

layout.jsp

details.jsp

header.jsp

Figure 11.2
A master template provides
the layout for a page.

324 CHAPTER 11

Developing applications with Tiles
1.0 vs 1.1 Tiles is bundled with Struts 1.1. Configuring Tiles for Struts 1.1 is covered
in chapter 4. Tiles is also available for Struts 1.0. See the Extensions cate-
gory on the Struts Resources page for details [ASF, Struts].

Most often, a JSP template system will use one template for the layout and another
for the fill-in components. Tiles calls these layout files Definitions. Most template
systems require that an extra file be used just to specify the layout. To avoid this
overhead, Tiles allows the layout Definitions to be stored as a JavaBean. What’s
more, there is an extension to Struts that allows Definitions to be the target of an
ActionForward. This is an exciting feature, which we discuss in section 11.3.3. In
section 11.5, we return to Definitions again when we walk through refactoring an
existing product into a Tiles-based application using Definitions and Struts.

 But, for now, let’s start at the beginning and create a new layout from scratch.

11.2 Building a layout template

The first step in building any layout is to identify the component parts. For a clas-
sic web page, the parts would be a header, menu, body, and footer. Often a simple
sketch can help to bring the layout into focus.

 To provide a quick example, we will build a layout for a classic web page with a
header, a menu, a body, and footer. Our layout sketch is provided in figure 11.3.

Creating the template page for a layout like the one in figure 11.3 is as easy as it
looks:

1 Open a new JSP page.

2 Import the Tiles taglib.

3 Create an HTML table with cells that match the sketch.

4 Use a Tiles JSP tag (<tiles:insert>) to name each part of the layout.

Header

Footer

Body
M
e
n
u Figure 11.3

The classic master template
layout includes a header,
body, menu, and footer.

Building a layout template 325
As you can see in listing 11.1, wherever we create a cell to include one of our lay-
out components, we place a JSP tag like <tiles:insert attribute="aName"/>. This
tag says to insert the tile (or template file) identified by the value of the specified
attribute. When it is time to use this layout in an application, we pass to it the
paths to use for each of these tiles. This allows us to use the same layout over and
over again, simply by passing a different path for one or more of the tiles.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<TABLE border="0" width="100%" cellspacing="5">
<TR>
 <TD colspan="2"><tiles:insert attribute="header"/></TD>
</TR>
<TR>
 <TD width="140" valign="top">
 <tiles:insert attribute="menu"/>
 </TD>
 <TD valign="top" align="left">
 <tiles:insert attribute="body"/>
 </TD>
</TR>
<TR>
 <TD colspan="2">
 <tiles:insert attribute="footer" />
 </TD>
</TR>
</TABLE>

In most cases, the body tile will change for each page, but all pages in the same
area could share the same header and menu tiles. Meanwhile, all pages on the
same site might share a single footer tile. When a new year rolls around and it is
time to update the copyright notice to display the new current year on every page,
only the one footer tile need be edited.

 Our classic layout can be made into a complete, stand-alone template page just
by adding the rest of the HTML markup.

 In listing 11.2, you’ll note that we slipped in a new Tiles tag, <tiles:getAsString
name="title"/>. This tag says to return an attribute value as a literal string rather
than as a pathname or other command. To do this, Tiles calls the object’s standard
toString() method. The result is inserted directly into the page at runtime.

Listing 11.1 Markup fragment for our layout page

326 CHAPTER 11

Developing applications with Tiles
<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<HTML>
 <HEAD>
 <TITLE><tiles:getAsString name="title"/></TITLE>
 </HEAD>
<BODY>
<TABLE border="0" width="100%" cellspacing="5">
<TR>
 <TD colspan="2"><tiles:insert attribute="header" /></TD>
</TR>
<TR>
 <TD width="140" valign="top">
 <tiles:insert attribute='menu'/>
 </TD>
<TD valign="top" align="left">
 <tiles:insert attribute='body' />
 </TD>
</TR>
<TR>
 <TD colspan="2">
 <tiles:insert attribute="footer" />
 </TD>
</TR>
</TABLE>
</BODY>
</HTML>

11.2.1 But what is a tile?

The template features offered by the Tiles framework far surpass what the stan-
dard Servlet and JSP includes offer. The framework refers to its templates as tiles.
This is to help indicate that tiles are more powerful than simple JSP templates.
Tiles are building blocks for your presentation layer.

 Technically, a tile is a rectangular area in a JSP, sometimes referred to as a
region. A tile may be assembled from other tiles. Tiles can be built recursively and
represented as a tree, as shown in figure 11.4. Each node on the tree is a region.
The root node is usually the page. Final nodes, or leaves, contain the page con-
tent. Intermediate nodes are usually layouts. The layout nodes are utility tiles
that either position a tile within the page or provide background markup for the
content tiles.

 The tile objects support several important features, including parameters and
Definitions.

Listing 11.2 Classic layout as a complete template page: myLayout.jsp

Building a layout template 327
Parameters
A tile can accept variable information at runtime in the form of parameters or
attributes. This means that tiles are parameterizable. They can accept variable
information and act upon themselves accordingly. The tiles parameters are usu-
ally called attributes to avoid confusion with request parameters.

 Tile attributes are defined when inserting the tile and are visible within the tile
only. They aren’t visible in subtiles or to a page enclosing the tile. This avoids
name conflicts when the same tile is used several times in the same page. Develop-
ers can stay focused on making the best use of Tiles without worrying about name
contention.

 Tile attributes can be strings and other types. See section 11.4 for more about
tile attributes.

Definitions
Taken together, the various attributes passed to a tile create a description of the
screen. In practice, many of these descriptions are related and tend to build on
one another.

 Definitions store a set of attributes so that a screen description becomes a dis-
crete object with its own identity. Declare a base screen Definition and then create
other Definitions derived from that base. If the particulars of a base screen
change, then all the Definitions extended from that base are also changed. This
brings the object-oriented principles of inheritance and encapsulation to your
dynamic pages. We cover the Tiles Definition in section 11.4.

 Definitions are optional. You can also deploy a tile at any time using a simple
JSP tag.

Page

Layout

Menu Header Footer Body

Figure 11.4 Tiles can be represented as a tree: the page is the root, and the layout
tile is a branch (intermediate node), which then includes its own leaves (final nodes).

328 CHAPTER 11

Developing applications with Tiles
11.2.2 Deploying a Tiles template

The layout template we built in 11.2.1 defined where to position its tiles but not
what tiles to use. Those details—and any other particulars—are passed to the lay-
out when it is deployed. The simplest way to do this is to call the layout from
another JSP.

 Listing 11.3 shows a JavaServer Page being used to pass to a layout what tiles it
should use. When hello.jsp is rendered, it will return myLayout.jsp with the con-
tent of the specified tiles.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:insert page="/layouts/myLayout.jsp" flush="true">
 <tiles:put name="title" value="Hello World" />
 <tiles:put name="header" value="/tiles/header.jsp" />
 <tiles:put name="footer" value="/tiles/footer.jsp" />
 <tiles:put name="menu" value="/tiles/menu.jsp" />
 <tiles:put name="body" value="/tiles/helloBody.jsp" />
</tiles:insert>

To use the same layout with a different body, we simply substitute the tags

<tiles:put name="title" value="Hello World" />
<tiles:put name="body" value="/tiles/helloBody.jsp" />

with new particulars, like

<tiles:put name="title" value="Hello Again" />
<tiles:put name="body" value="/tiles/pageTwo.jsp" />

This new page would look much like the original hello.jsp, except with a different
title (Hello Again) and a different body tile (the contents of pageTwo.jsp).

 You can continue to reuse a layout this way, substituting different attribute val-
ues as needed. This passing of parameters makes it possible to use a single base
template to lay out every page on a site. If the website layout has to be altered,
then only the one base template need be changed.

 However, to get the full value of this approach, you have to create at least two
JSP files for each new page deployed: one file for the new content and then a sec-
ond file to insert the template and include the new content in the first file. Later
in the chapter, we show you how to use Tiles Definitions with Struts to avoid the
overhead of a second file. The body-wrap deployment approach covered in the
next section is another way to avoid the second file.

Listing 11.3 Deploying an instance of the classic layout: /pages/hello.jsp

Building a layout template 329
Body-wrap deployments
Any tile can be used any number of times in an application. In practice, though,
most of the tiles in your application will be content tiles that provide the distinct
portion of any given page.

 Typically, a page’s content tile is used only once in the application. The header,
footer, and menu tiles may be used over and over again from page to page. But the
multiuse tiles are usually window dressing for each page’s singular content tile.

 When this is the case, you can simply wrap the content tile with the rest of the
screen definition. The trick is to just provide the markup as the value of the put
tag. As shown in listing 11.4, be sure to specify type="string" so that Tiles does
not mistake it for the path to a page.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:insert page="/layouts/myLayout.jsp" flush="true">
 <tiles:put name="title" value="Hello World" />
 <tiles:put name="header" value="/tiles/header.jsp" />
 <tiles:put name="body" type="string">

 <%-- Place the content from /tiles/pageTwo.jsp here --%>

 </tiles:put>
 <tiles:put name="footer" value="/tiles/footer.jsp" />
 <tiles:put name="menu" value="/tiles/menu.jsp" />
</tiles:insert>

This avoids creating an extra tile. A side effect is that it prevents a body tile from
being reused on another page. When the body markup does need to be used in
more than one place, you would have to refactor the page so that the content is
a separate tile again. But for nearly all your pages, the content tile will be used
only once.

 The body wrap is a very effective approach. The only downside is that the screen
definitions are dispersed throughout the site, which can make some global changes
more difficult. The Tiles Definitions, described in section 11.3, provide a more cen-
tralized approach that works very well with the Struts architecture. But the body-
wrap deployment pattern can still be a good choice for smaller applications.

11.2.3 Adding a style sheet

Since tiles are JSP pages, all the usual accouterments are available, including CSSs
[W3C, CSS]. Using a style sheet with your tiles is not required but can be helpful.

Listing 11.4 Deploying a layout using the body-wrap technique

330 CHAPTER 11

Developing applications with Tiles
While full support of CSSs eludes today’s browsers, they are still a useful way to
define color schemes and some other key attributes. Style sheets help ensure that
these niceties remain consistent from tile to tile.

 To specify a style sheet, simply insert the usual tag. The <html:base> tag can
help resolve relative paths to the style sheets and other assets. Better yet, use the
<html:rewrite> tag to render the path for you, and URL-encode it in the bargain.
Listing 11.5 shows how to use both tags.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<HTML>
 <HEAD>
 <TITLE><tiles:getAsString name="title"/></TITLE>
 <html:base/>
 <LINK rel="stylesheet" type="text/css"

 ref="<html:rewrite page='/assets/styles/global.css'/>">
 </HEAD>
<BODY>

11.2.4 Templates and MVC

Dynamic templates work especially well within a Model-View-Controller architec-
ture. (See chapter 2 for more about MVC.) Used correctly, dynamic templates
cleanly separate markup from content. In practice, the portion of a page with the
actual content is often tucked away in the center, surrounded by areas devoted to
markup and navigation. Content, markup, and navigation map easily to the roles
of Model, View, and Controller.

 Often, an MVC template system can be created from an existing application
just by using standard refactoring techniques. The base markup for the page can
be extracted into a master template. The site header and footer are extracted into
their own files; the center square with the actual content goes into its own tem-
plate file as well. The base template includes them back again. Related technolo-
gies, like CSS, can be used to define formatting in the base template and have it
apply seamlessly to the others that form the final page.

DEFINITION Refactoring is the process of improving software by restructuring its
source code for clarity and flexibility and by eliminating redundant or
unused code.

Listing 11.5 Using <html:base> and <html:rewrite>

Tiles Definitions 331
The Tiles package takes this one step further with its Definition feature. Using
Definitions, we can streamline the number of physical templates an application
needs and move the implementation details into a central JavaServer Page or, bet-
ter yet, an XML document.

11.3 Tiles Definitions

In listing 11.3, we saw that even the simplest layout can require a good number of
parameters. We also saw that in most cases only one or two of those parameters
change from page to page.

 What’s needed is a way to define all these attributes and properties in a single
reusable bundle that could just be overloaded with the parameters that change—
which, as it happens, it just what the Tiles Definitions do.

11.3.1 Declaring Definitions

Since they serve similar purposes, writing a Tiles Definition is much like writing
a <tiles:insert> tag, as we did in 11.2.2. A Definition requires the following
information:

� A path to the base template file

� A list of zero or more attributes (name-value couplets) to pass to the template

� An identifier (or name) for the Definition

As you can see, the real difference between a Definition and a <tiles:insert> tag
is that a Definition can be named. But just by adding identity to the feature list, sev-
eral doors are opened:

� A Definition can be overloaded by passing additional or replacement
attributes when it is deployed.

� A Definition can be extended by using one Definition as the base for
another.

� A Definition can be reused by storing it in a JSP or loading it from an XML
document.

� A Definition can be the target of a Struts ActionForward.

Let’s look at the two ways of specifying a Tiles Definition: with a JSP or via an XML
document.

332 CHAPTER 11

Developing applications with Tiles
11.3.2 JSP declarations

A quick and easy way to get started with Definitions is to declare them with a JSP.
This does not reduce the number of template files your application needs but
does allow for reuse through overloading. You can declare a base Definition, and
then in other Definitions specify how the new Definition differs from its predeces-
sor. This requires the use of a stub file to deploy the Definition at runtime.

 In section 11.3.3, we will look at placing these same Definitions in an XML doc-
ument and deploying them directly from a Struts ActionForward. Since the under-
lying process is the same, let’s discuss the now-familiar JSP-type declaration first.

 The process for using Tiles Definitions with JavaServer Pages includes:

� Declaring a Definition with a JSP

� Deploying a JSP-declared Definition

� Overloading a Definition

� Reusing Definitions with JSPs

Let’s discuss each in turn.

Declaring a Definition with a JSP
Listing 11.6 specifies the same particulars as listing 11.4 but uses a Definition.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:definition id="definitionName" page="/layouts/myLayout.jsp">
 <tiles:put name="title" value="Hello World" />
 <tiles:put name="header" value="/tiles/header.jsp" />
 <tiles:put name="footer" value="/tiles/footer.jsp" />
 <tiles:put name="menu" value="/tiles/menu.jsp" />
 <tiles:put name="body" value="/tiles/helloBody.jsp" />
</tiles:definition>

The Definition in listing 11.6 would be saved as a bean in the JSP context scope,
using id as the attribute key. Like many Struts tags, the <tiles:definition> tag
supports a scope property for specifying a certain context (application, session,
request, page). The default is page context. This Definition would be available to
the rest of this JSP only.

Listing 11.6 A simple Definition

Tiles Definitions 333
Deploying a JSP-declared Definition
To put a Definition to use, you can use the <tiles:insert> tag, specifying the
bean name (Definition ID) and also the scope if needed, as shown in listing 11.7.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:definition id="definitionName" page="/layouts/myLayout.jsp">
 <tiles:put name="title" value="Hello World" />
 <tiles:put name="header" value="/tiles/header.jsp" />
 <tiles:put name="footer" value="/tiles/footer.jsp" />
 <tiles:put name="menu" value="/tiles/menu.jsp" />
 <tiles:put name="body" value="/tiles/helloBody.jsp" />
</tiles:definition>
<tiles:insert beanName="definitionName" flush="true/>

At startup, Tiles uses the XML element to create a Definition object (or bean) with
the id definitionName. At runtime, the <tiles:insert> tag refers to the Defini-
tion id through its beanName property.

Overloading a Definition
Once we have declared a Definition, we can refer to it by name and overload
some or all of its attributes. To overload an attribute, just specify it again with a
new value. To create a new attribute, include a new attribute name and its value.
This allows you to create a base Definition and then just specify the changes
needed to create a new page, as shown in listing 11.8.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:definition id="definitionName" page="/layouts/myLayout.jsp">
 <tiles:put name="title" value="Hello World" />
 <tiles:put name="header" value="/tiles/header.jsp" />
 <tiles:put name="footer" value="/tiles/footer.jsp" />
 <tiles:put name="menu" value="/tiles/menu.jsp" />
 <tiles:put name="body" value="/tiles/helloBody.jsp" />
</tiles:definition>

<tiles:insert beanName="definitionName" flush="true" >
 <tiles:put name="title" value="New PageTitle" />
 <tiles:put name="body" value="/tiles/anotherBody.jsp" />
 <tiles:put name="extra" value="/extra.jsp" />
</tiles:insert>

Listing 11.7 Deploying a Definition

Listing 11.8 Overloading a Definition

334 CHAPTER 11

Developing applications with Tiles
Here, after declaring the Definition, our <insert> tag specifies a new page title
and a different body, and throws in an extra attribute that was not used in the
original Definition. This implies that the layout can manage without this tile but
can also display it when provided. A layout can indicate an optional tile using the
ignore property. When ignore is set to true, an error will not be reported if the
attribute is not present.

 This is how the myLayout.jsp from the original Definition would specify the
extra tile:

<tiles:insert attribute="extra" ignore="true" />

Reusing Definitions with JSPs
In the preceding example, we had to repeat the Definition before we could over-
load any of the attributes. Of course, this is not a very practical approach to
reuse. A slightly better approach, shown in listing 11.9, is to declare and reuse
Definitions by using a utility page and including that page wherever any of the
Definitions are needed.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<%@ include file="definitionsConfig.jsp" %>
<tiles:insert beanName="definitionName" beanScope="request" />
 <tiles:put name="title" value="Another Page" />
 <tiles:put name="body" value="/tiles/anotherBody.jsp" />
</tiles:insert>

The key here is the standard JSP include tag that brings in the file containing our
Definitions. The Definitions are created normally; you can use any of the Defini-
tions in the usual way. The example also overloads the title and body attributes
to customize the page.

 This approach to reuse is fine if you have a small number of Definitions, but it
doesn’t scale well. Each time the file is included, by default all the Definition
objects are re-created, draining performance. This can still be a useful approach
during development, since any change to the Definitions will be reflected in the
next page load.

 In production, one workaround would be to create the Definitions in applica-
tion scope and protect the block with the Struts <logic:notPresent> tag (or
equivalent), as shown in listing 11.10.

Listing 11.9 Including a Definition

Tiles Definitions 335
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<logic:notPresent name="definitionName" scope="application">
<tiles:definition id="definitionName" page="/layouts/myLayout.jsp">
 <tiles:put name="title" value="Hello World" />
 <tiles:put name="header" value="/tiles/header.jsp" />
 <tiles:put name="footer" value="/tiles/footer.jsp" />
 <tiles:put name="menu" value="/tiles/menu.jsp" />
 <tiles:put name="body" value="/tiles/helloBody.jsp" />
</tiles:definition>
<%-- … other definitions … --%>
</logic:notPresent>

If the Definitions have already been created and stored in application scope,
they will not be created again. Each page still has to include the Definitions, and
each page will be looking to see if they exist, but at least they won’t be continu-
ally re-created.

 Tiles offers a better approach to loading and reusing Definitions. The Defini-
tions can be declared and loaded once from an XML document. Internally, Tiles
renders the Definitions directly from ActionForwards. This is a truly excellent way
to manage Tiles Definitions, which we explore in the next section.

1.0 vs 1.1 Tiles for Struts 1.0 subclasses the ActionServlet to render the Definitions.
In Struts 1.1, Tiles subclasses the RequestProcessor to do the same thing.

11.3.3 Configuration file declarations

By declaring your Definitions in an XML configuration file, you can make your
application load the file at startup and create a “Definition factory” containing
your Definitions. Each Definition is identified by the name property that should be
unique to all your Definitions. Other components, like ActionForwards, can then
refer to the Definition by name.

 Declaring Tiles Definitions from a configuration file requires some additional
setup to enable support for reading the configuration file when the application
initializes. See chapter 4 for more about installing Tiles with Struts 1.1.

 The XML configuration file is read when the application is initialized and
parsed into a Definition factory that contains an instance of each declared Defini-
tion. Each Definition should have a unique name so that it can be referenced by

Listing 11.10 Including a Definition using <logic:notPresent>

336 CHAPTER 11

Developing applications with Tiles
JSP tags or the Struts ActionForwards. The Definition name is an internal refer-
ence only. It is not a URI and can’t be referenced directly by a client.

 The process of using Definitions declared from an XML document is no differ-
ent than using includes from a JSP file. The main difference is how they are cre-
ated, how they can be extended, and how the Definitions can be used as Struts
ActionForwards.

Creating the configuration
The overall format of the XML configuration is similar to the Struts configuration
(since they are both proper XML documents). Unsurprisingly, the syntax used
within the XML configuration file is similar to the Tiles <definition> tag, as
shown in listing 11.11.

<!DOCTYPE tiles-definitions PUBLIC
 "-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/tiles-config_1_1.dtd">
<tiles-definitions>
<definition name="definitionName" page="/layouts/myLayout.jsp">
 <put name="title" value="Hello World" />
 <put name="header" value="/tiles/header.jsp" />
 <put name="footer" value="/tiles/footer.jsp" />
 <put name="menu" value="/tiles/menu.jsp" />
 <put name="body" value="/tiles/helloBody.jsp" />
 </definition>
 <!-- ... more definitions ... -->
</tiles-definitions>

An empty Tiles Definitions file is provided with the Blank application on the
book’s website [Husted].

NOTE The name and location of the Tiles Definitions file can be specified in
the web application deployment descriptor (web.xml). We recommend
creating a conf folder under WEB-INF to store the growing number of
configuration files that a Struts application can use.

Extending Definitions
A Definition can be declared as a subclass of another Definition. In this case, the
new Definition inherits all the attributes and properties of the parent Definition.
The property extends is used to indicate the parent Definition:

Listing 11.11 The Tiles XML configuration file

Tiles Definitions 337
<definition name="portal.page" extends="portal.masterPage">
 <put name="title" value="Tiles 1.1 Portal" />
 <put name="body" value="portal.body" />
</definition>

In this code segment, we specify a new Definition named portal.page that
extends the Definition portal.masterPage. The new Definition inherits all the
attributes and properties of its parent. In the preceding fragment, the attributes
title and body are overloaded. This inheritance capability allows us to have root
Definitions—declaring default attributes—and extended Definitions with special-
ized attributes (like title and body). If all your Definitions extend one root Defi-
nition, changing a value in the root Definition will change that value for all
Definitions extended from that root

 Extending is similar to overloading but adds persistence. Overloading
describes the process where we specify a Definition and pass it new parameters (or
attributes), rather like making a call to a method and passing it parameters. But a
<tiles:insert> tag cannot call another <tiles:insert> tag, so the overloaded
Definition cannot be referenced and reused. By using the extend property, you
are creating a new Definition. This new Definition can then be inserted and over-
loaded and even extended by another Definition. It is still linked back to its ances-
tor Definitions through the usual type of inheritance tree, as shown in figure 11.5.

Extending and overloading Definitions can dramatically reduce the amount of
redundant information in your page declarations. Each markup, navigation, and
content component in your website schema need be declared only once. The
component can then be reused wherever it is needed.

 While this is all quite cool, we would still need an extra page to host the Defini-
tion. This means to add a new page of content, we need to add the content page
and then another page to insert the Definition that specifies the new content. A
conventional application will have 60 pages for 60 pages of content. A templated
application will use at least 120 pages to cover the same ground. Each of the

Root definition

Account layout

Account
receivable

Account
payable Receivables Payables

Menu layout

Figure 11.5 Definitions can be extended to create new Definitions.

338 CHAPTER 11

Developing applications with Tiles
template pages are smaller and simpler than their conventional counterparts, but
file management can be an issue.

 A good solution to the page boom is to host the Definitions as Struts Action-
Forwards.

11.3.4 Using Definitions as ActionForwards

In a Struts application, most pages are not referenced directly but encapsulated
by an ActionForward object. The ActionForward is given a unique logical name
along with a URI that usually refers to a presentation page. A Struts Action selects
and returns an ActionForward to the controller servlet. The ActionServlet then
forwards control to the URI specified by the ActionForward’s path property. (For
more about ActionForwards, see part 1 of this book.)

 The Tiles package includes an ActionServlet subclass that also checks the path
property against your Definitions. If the Definition id and ActionForward path
properties match, then the Definition bean is placed in the request scope, control
forwarded to the layout, and your assembled templates are displayed.

 Accordingly, you can define ActionForwards that use Definition names instead
of URIs:

<action
 path="/tutorial/testAction2"
 type="org.apache.struts.example.tiles.tutorial.ForwardExampleAction">
 <forward
 name="failure"
 path=".forward.example.failure.page"/>
 <forward
 name="success"
 path=".forward.example.success.page"/>
</action>

Of course, you could also name your Definitions using the traditional slash
instead of a dot:

<action
 path="/tutorial/testAction2"
 type="org.apache.struts.example.tiles.tutorial.ForwardExampleAction">
 <forward
 name="failure"
 path="/forward/example/failure.page"/>
 <forward
 name="success"
 path="/forward/example/success.page"/>
</action>

Tile attributes 339
However, the second naming scheme could be confused with other identifiers
related to Actions and page URIs. A good practice is to use dot separators (the
first scheme) for the Tile Definitions and the slash separators for ActionForwards.
This ensures that the names do not intersect.

 The code in your Action is exactly the same as before. If you are switching
from presentation page URIs in an ActionForward to a Tiles Definition, most
Action classes would not need to be rebuilt. Typically, Action classes ignore the
ActionForward path and just deal with the ActionForward by its name.

 You can mix and match conventional ActionForwards and Tiles-Definition-
ActionForwards in an application. The Tiles ActionServlet deals with each request
on its own terms.

 When ActionForwards are used this way, the number of template pages in an
application drops dramatically. To host 60 pages of content, we just need 60 content
pages, plus a small number of utility tiles to provide the standard navigation and
layout features. But creating page 61 can mean creating only one more content-
only JSP and one more XML Definition, with the latter often being a single line.

 Deploying Tiles Definitions as ActionForwards gives you all the power and flex-
ibility of dynamic templates without the usual red tape.

11.4 Tile attributes

Being able to extend Definitions and overload attributes is a very powerful fea-
ture. But so far, we’ve only shown examples where the attributes are static values
hardcoded into the pages. What if you would like to specify an attribute at run-
time? Shouldn’t an Action be able to pass the value of an attribute to a tile?

 Yes, it can. The secret is that Tiles stores the attributes in its own context. Just
as JSP stores attributes in a page context, Tiles stores its attributes in a Tiles con-
text associated with the user’s request.

 There is nothing mysterious about the Tiles context. It is simply a collection
that Tiles creates in the request for the use of its components. Specialized con-
texts are a popular technique for managing the various objects components cre-
ate and then share with others, especially when control may pass from one
application layer to another. Several of the Tiles tags are designed to be used with
the Tiles context, including useAttribute.

340 CHAPTER 11

Developing applications with Tiles
11.4.1 useAttribute

The <tiles:useAttribute> tag makes one of the Tiles context attributes available
through the page context. This makes the attribute available to other tags that
read the page context, like the Struts <bean:write> tag.

 The same attribute name can be used in either context

<tiles:useAttribute name="myAttribute" />

or another name can be specified:

<tiles:useAttribute attributeName="anAttribute" name="myAttribute" />

Once Tiles has put the attribute into page scope, the Struts bean tag can refer to
the message in the usual way:

<bean:write name="myAttribute" />

The <useAttribute> tag can also be used to declare a scripting variable for use in
a JSP scriptlet:

<tiles:useAttribute id="list" name="myAttribute"
 classname="java.util.List" />

In general, the <useAttribute> tag corresponds to the <useBean> action and the
Struts <bean:define> tag but allows access to the attributes in the Tiles context.

 Note that each tile is an individual JSP and therefore has its own page context.
To export an attribute so that it is available to other tiles that may make up the
completed response page, specify another scope. For example,

<tiles:useAttribute name="myAttribute" scope="request"/>

puts the attribute in request scope where a tag in another tile would be able to
find it.

 Since each tile is technically a different “page,” each is in its own page scope.
If you want to avoid conflicts with attributes on another tile, you can use page
scope. If you want an attribute to be shared with another tile, you can use request
scope instead.

 The <useAttribute> operations are rendered sequentially. A tile rendering
further down the page would be able to use the attribute, but one rendering ear-
lier would not be able to find it (since it doesn’t exist yet).

11.4.2 importAttribute

By default, the <tiles:importAttribute> tag imports all of the Tiles context
attributes into the page context:

Tile attributes 341
<tiles:importAttribute/>

Any and all attributes stored in the current Tiles context would now be available
through the standard page context.

 Optionally, a single attribute or another context may be specified:

<tiles:importAttribute name="myAttribute" scope="request"/>

But, unlike <useAttribute>, <importAttribute> does not support renaming
attributes or exposing them as scripting variables.

11.4.3 put

The <tiles:put> tag is used to associate a value to an attribute. The name property
will usually be specified as a simple string, but the value may be specified in a vari-
ety of ways: as a tag property, as a tag body, and as a JavaBean.

put as tag property
When used in a JSP, this is the most common form of the put command. The value
is usually set using a simple string but can also be a runtime value:

<tiles:put name="title" value="My first page" />

or

<tiles:put name="title" value="<%=myObject%>" />

put as tag body
As is the case with many JSP tags, the value property can also be set as the tag’s body:

<tiles:put name="title">My first page</tiles:put>

This approach can also be used to nest the output of other JSP tags:

<tiles:put name="title"><bean:write message="first.pageTitle"/></tiles:put>

put as a bean defined in some scope
Like many of the Struts tags, the attribute can be passed via a bean:

<tiles:put name="title" beanName="myBean" />

The object identified by beanName is retrieved, and its value used as the attribute
value. If myBean is not a String, the Struts or Tiles JSP tags will automatically call the
object’s default toString() method so that the result of myBean.toString()will be
used to set the value property.

 By default, the scopes will be searched in the usual order, until the first
instance of myBean is found. You may also specify a particular scope:

342 CHAPTER 11

Developing applications with Tiles
<tiles:put name="title" beanName="myBean" beanScope="session"/>

This would ignore any instance of aBean in the page or request scope and check
the session instead. Tiles adds a context of its own, called tiles, that is checked
after the standard scopes. The values accepted by beanScope are page, request,
application, and tiles.

put as a property of a bean defined in some scope
Again like many of the Struts tags, you can also specify a certain property on a
JavaBean. The <put> tag will then call that method to set the attribute value:

<tiles:put name="title" beanName="myBean" beanProperty="myProperty"/>

This would call the equivalent of myBean.getMyProperty() to set the value of the
title attribute.

Specifying the attribute type
The <put> tag is used to set an attribute that will be used by another tag, usually
either <tiles:insert> or <tiles:get>. The corresponding tag may use the value
passed in various ways. It may represent a direct string, a page URL, or another
Definition to insert. The type of data the attribute is meant to represent can be
specified in the put tag with the optional type property. This can help the corre-
sponding tag insert the value as intended:

<tiles:put name="footer" value="/tiles/footer.jsp" type="page"/>

The type, when specified, can be any one of the tokens: string, page, or defini-
tion. Table 11.2 provides a description of each of the tokens.

Specifying the security role
When container-based authentication is being used, you can also specify the role
for a tile. If the user is not in the specified role, then the attribute value is not set.
This allows you to specify a tile for each security role and let the framework select
the appropriate one for the current user:

Table 11.2 Valid tokens for the type property of the put tag

Token Description

string The value property denotes a String.

page The value property denotes a URL.

definition The value property denotes a Definition name.

Migrating an application to Tiles 343
<tiles:put name="title" value="myValue" role="myManager"/>
<tiles:put name="title" value="myValue" role="myStaff"/>

If <put> is being used in a <tiles:insert> tag, the role is checked immediately. If
<put> is being used within a <tiles:definition> tag, the role is checked when the
Tiles context is initialized.

11.4.4 putList and add

In addition to accepting single objects, Tiles attributes can be of type
java.util.List. You can specify a series of objects for an attribute and pass them
as a single attribute. The <tiles:add> tag is nested within <tiles:putList> to
specify the items to be placed on the list:

<tiles:insert page="menu.jsp" >
 <tiles:putList name="items">
 <tiles:add value="home" />
 <tiles:add value="documentation"/>
 </tiles:putList>
</tiles:insert>

The <putList> tag is often used with the <useAttribute> or <importAttribute>
tag to make the list accessible to other tags on the page:

<tiles:importAttribute/>
<TABLE>
<logic:iterate id="item" name="items" >
<TR>
 <TD>
 <bean:write name="item">
 </TD>
</TR>
</logic:iterate>
</TABLE>

11.5 Migrating an application to Tiles

At the beginning of this chapter we portrayed Tiles as a means of making your
applications more consistent and easier to use. We also mentioned that consis-
tency is a hallmark of good design. This is because consistency implies reuse.
Reuse leads to applications that are hard to break and easy to maintain.

 Often, you will have an existing application that you would like to adapt for
Tiles. You may want it to improve the look so it is more consistent, or you may
want to improve its functional design—or both. Improving the design of existing
software is called refactoring [Fowler].

344 CHAPTER 11

Developing applications with Tiles
 If you are familiar with conventional refactoring techniques, migrating an
application to Tiles resembles the Extract Method. The tiles equate to methods that
are called to render the page. When we are done, pages are reduced to a layout
and a punch list of tiles to call. This works much like the central method in a class
that just calls one member method after another.

 Once we have extracted our tiles and reduced the page to a punch list, we can
take the process a step further and replace the page with an XML element. Struts
can use this element to render the tiles directly without bothering with a punch
list page. But like all good refactorings, ours begins with the smallest step.

11.5.1 Setting up the Tiles framework

First, make an extra backup of everything, regardless of how many backups are made
in the normal course. Migrating to Tiles can be tricky at first, and, realistically,
you may need to make more than one pass before everything clicks into place. So
be ready to roll back and try again. An extra backup on your desktop may be
enough to lure you away from a three-hour debugging session spurred by some
incidental typo.

Struts 1.0
If you haven’t done so, the first step is to install the Tiles 1.0 package and load the
Tiles servlet through your application’s deployment descriptor. (See the package
for details.) The 1.0 version of Artimus (see chapter 16) is based on Tiles and can
be used for a working example. Then, test your application to be sure all is well by
clicking through a few pages.

 Also, be sure to set up a skeleton Tiles Definitions XML document so you can
start filling it out as the refactoring proceeds.

Struts 1.1
Tiles is integrated with Struts 1.1. We cover the steps for enabling Tiles in
Struts 1.1 in section 4.8 of this book.

11.5.2 Testing the default configuration

Set the debug and detail parameters in the deployment descriptor (web.xml) to
level 2, and restart the application. Check the log entries carefully for any new
error messages. Run any unit tests and click through the application to confirm
that operation is still nominal.

Migrating an application to Tiles 345
11.5.3 Reviewing the pages

With Tiles up and running, the next thing is to take a good hard look at your
pages and determine the overall layout types and the regions within each layout.
It’s also time to start thinking about a naming scheme. Each component will need
its own identifier.

Identifying the layouts
When you look through an application, you will find varieties of menu or dialog
pages—list pages, view pages, and edit pages—among others. Here the focus
should not be on what the pages contain but how the parts of the page fit
together. Does it have a header or a footer? Does it have a menu? Is the menu
along the side or at the top? At this point, the relative position of elements like
the navigation bar is more important than the actual links on the bar.

 From this group, try to identify some common layouts. Again, the focus is on
the visual layouts used throughout your application, not on the page content.

Identifying the tiles
Next take a closer look at each of the common layouts and identify the individual
tiles. Determine how the parts of the page fit together. Then take a look at the
page itself and identify the individual tiles. The presentation code for each tile
will be saved as a separate file. We can use it in multiple layouts or edit it without
touching the other tiles.

 As mentioned, this process is similar to applying the Extract Method to a large
Java class. One clue is to look for any existing comments in the presentation code,
like <!-- menu starts here -- >. A block of markup prefaced with a comment is
often a tile waiting to happen, like the block shown in listing 11.12.

<%-- messages --%>
<TR class="message">
<TD colspan="3">
<logic:messagesPresent>
 <bean:message key="errors.header"/>
 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>
 <bean:message key="errors.footer"/>
</logic:messagesPresent>
</TD>
</TR>

Listing 11.12 A good candidate for a tile

346 CHAPTER 11

Developing applications with Tiles
Style changes in a page are also a good indicator of a potential tile. If the designer
put in a style to set off a portion of the page, that portion of the page may make
for a good tile.

 The best candidate is a block of self-contained code with a single, coherent
purpose—again, not unlike a Java method.

 If the presentation code does not have comments like these, it can be helpful
to add them to some representative pages before making a pass to extract the
tiles. If a page segment looks like a tile, except that each page prints something
different on the tile, don’t despair. Tiles can also pass string constants to a tile so
that the rest of the markup can be reused. For now, just put in a marker, like
${subtitle}, where the replacement string would go.

Naming the candidates
It can help to start working on a naming scheme early in the process. What we call
a component can crystallize its purpose. We will need names for the individual
regions, the general layouts, and each page in the system.

 Table 11.3 shows the Tiles nomenclature for these entities: tile, layout, and
definition.

The tiles are coherent fragments of text and markup that you will extract from
your existing pages. Tiles can host static content or markup, or a mix of both.
Most tiles represent navigational controls and other common assets and will be
reused between pages. Common assets might include a table that positions a logo
somewhere on a page or a set of buttons, like Save and Cancel, that are used on
several forms. If a style is already associated with the asset, consider naming the
tile after the style.

Table 11.3 Tiles nomenclature

Entity Description

Tile A reusable page fragment with HTML markup and JSP code.

Layout A JSP that describes where to position the tiles on a page.

Definition A JavaBean that represents a particular page. The Definition combines a layout
with a set of tiles and other runtime options to generate a distinct page. The Defi-
nition may be expressed as a JSP or contained in an XML configuration file.

Migrating an application to Tiles 347
DEFINITION Markup is the collection of commands placed in a file to provide format-
ting instructions rather than visible text or content. HTML uses a tag-
based markup system.

Other tiles will contain content that is used on a single page. These tiles are often
found at the center of the page surrounded by other tiles that provide the menu
bars and other HTML chrome.

DEFINITION The chrome is that part of the application window that lies outside a win-
dow’s content area. Toolbars, menu bars, progress bars, and window title
bars are all examples of elements that are typically part of the chrome.
HTML chrome is created by markup and lies within the application win-
dow but serves the same purpose.

You can use the same conventions to name the tiles that you would use for any
HTML or JSP. It can be useful to separate the shared tiles from those designed for
a particular page. An easy way to do this is to open a tiles folder next to the folder
you would usually use for your pages:

/pages
 ./article/Form.jsp
 ./channel/Channels.jsp
/tiles
 ./header.jsp
 ./message.jsp

If a file resides in the tiles folder, it means that the file is meant to be used in more
than one Definition. If a file resides in the pages folder, it means that the file con-
tains unique content and is not expected to be shared.

 The layouts are the containers for the tiles that describe where each component
appears on the page. The layouts can be reused between Definitions. To keep
everything together, you can create a layouts subdirectory beneath the tiles folder:

/tiles
 ./header.jsp
 ./message.jsp
 ./layouts
 ./Base.jsp
 ./Remote.jsp

The Definitions are stored as elements in an XML document. Each Definition ele-
ment needs its own name. In practice, the Definitions share namespace with the

348 CHAPTER 11

Developing applications with Tiles
ActionForwards. The scheme should ensure that the ActionForward and Defini-
tion names do not collide. It can be helpful to group Definitions together in a
directory/subdirectory type structure, so a name separator is also needed. One
convention is to use a dot (.) for a separator in Definition names where many
people might use a slash (/) in an ActionForward. To be sure there is no conflict
with file system names, a leading dot can also be used where a leading slash
would usually go:

<definition name=".account.logon"> . . . </definition>

Of course, any convention will do. You could use @ signs instead of dots, or pref-
ace each Definition with TILES: and then use slashes. Since these are logical refer-
ences, any valid URI will do.

 Once you have a general idea of what tiles, layouts, and Definitions you will
need, and what you will call them, the next step is to extract the tiles and refactor
a page.

11.5.4 Refactoring a page with <tiles:insert>

As with any refactoring, it’s best to start slow, making one small change after
another, until the first iteration is complete. As the process continues, you can
take larger and larger steps, building on the prior work (and learning from your
mistakes).

 In most cases, the goal will be to reduce the pages to a Definition that can be
declared in the Tiles configuration file and called from within an ActionForward
(see section 11.3 for details). This approach saves creating an extra punch list
page to insert the tiles. But to get started, it’s simplest to build a page using the
<tiles:insert> tags.

 To get off on the right foot, remember to:

� Select a good starter page.

� Thoughtfully extract the tiles from that page.

� Develop a set of good (and bad) practices along the way.

Selecting a good starter page
It’s best to start with a simple page, extract the common components, and insert
them one at a time back into the original page. Your application’s welcome or logon
page can be a good candidate. These tend to be relatively simple pages with a nice
mix of reusable and custom content. An interior page can also be a good choice, if
it does not contain too much chrome. Listing 11.13 shows an interior page from the
Artimus example application [ASF, Artimus] before it was migrated to Tiles.

Migrating an application to Tiles 349
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%@ taglib uri="/tags/request" prefix="req" %>
<!-- HEADER -->
<HTML>
<HEAD>
<html:base/>
<LINK rel="stylesheet" type="text/css" href="<html:rewrite

forward='baseStyle'/>">
<TITLE>Artimus - Article</TITLE>
</HEAD>
<BODY>
<TABLE class="outer">
<TR>
<TD>
<TABLE class="inner">
<!-- MESSAGE -->
<TR>
<TD class="message" colspan="3" width="100%"><html:errors/></TD>
</TR>
<TR>
<TD class="heading" colspan="3">
<H2><bean:write name="articleForm" property="title"/></H2></TD>
</TR>
<TR>
<TD class="author" colspan="3">by <bean:write name="articleForm"

property="creator"/>
</TD>
</TR>
<TR>
<TD class="article" colspan="3">
<bean:write name="articleForm" property="content" filter="false"/></TD>
</TR>
<%-- CONTRIBUTOR PANEL --%>
<req:isUserInRole role="contributor">
<TR>
<TD colspan="3"><HR /></TD>
</TR>
<TR>
<%-- DELETE --%>
<logic:equal name="articleForm" property="marked" value="0">
<html:form action="/admin/article/Delete">
<TD class="input"><html:submit >DELETE</html:submit></TD>
<html:hidden property="article"/>
</html:form>
</logic:equal>
<%-- RESTORE --%>
<logic:equal name="articleForm" property="marked" value="1">

Listing 11.13 Our starter page: /pages/View.jsp

350 CHAPTER 11

Developing applications with Tiles
<html:form action="/admin/article/Restore">
<TD class="input">
<html:submit>RESTORE</html:submit>
</TD>
<html:hidden property="article"/>
</html:form>
</logic:equal>
<html:form action="/admin/article/Edit">
<TD class="button" colspan="2">
<html:hidden property="article"/>
<html:submit>EDIT</html:submit>
<html:cancel>CANCEL</html:cancel>
</TD>
</html:form>
</TR>
</req:isUserInRole>
<!-- NAVBAR -->
</TABLE>
</TD>
</TR>
<TR>
<TD class="navbar">
<html:link forward="done">DONE</html:link>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Once you’ve selected your starter page, go through it and extract each logical
block into its own tile and insert it back again. After each extraction, test the page
to be sure it still renders. Listing 11.14 shows a fragment extracted into its own tile.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<HTML>
<HEAD>
<html:base/>
<LINK rel="stylesheet" type="text/css" href="<html:rewrite

forward='baseStyle'/>">
<TITLE>Artimus - View Article</TITLE>
</HEAD>
<BODY onload="document.forms[0].elements[0].focus();">
<!-- OUTER TABLE -->
<TABLE class="outer">
<TR>
<TD align="center">

Listing 11.14 An extracted tile: /tiles/header.jsp

Migrating an application to Tiles 351
<!-- INNER TABLE -->
<TABLE class="inner">
<TR>
<TD class="navbar" colspan="3">View Article</TD>
</TR>

Listing 11.15 shows how the View.jsp can include the Header tile again after it has
been extracted.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<%@ taglib uri="/tags/request" prefix="req" %>
<!-- HEAD -->
<tiles:insert page="/tiles/header.jsp"/>
<!-- MESSAGE -->
<TR>
<TD class="message" colspan="3" width="100%"><html:errors/></TD>
</TR>

<!-- ... -->

</HTML>

As soon as your first tile is extracted and inserted back, be sure to test opening the
page before moving on to the next tile.

 When this process is complete, the page will consist of a series of insert tiles, as
shown in listing 11.16.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:insert page="/tiles/header.jsp"/>
<tiles:insert page="/tiles/message.jsp"/>
<tiles:insert page="/tiles/view.jsp"/>
<tiles:insert page="/tiles/navbar.jsp"/>

If the text in some of the tiles has to be customized, say with the page title, you can
use the <tiles:put> tag to send a custom value along to the tile. The <tiles:
getAsString> tag can then write it out when the page renders. Listing 11.17 shows

Listing 11.15 Inserting an extracted tile: /pages/article/View.jsp

Listing 11.16 A refactored page: /pages/View.jsp (completed)

352 CHAPTER 11

Developing applications with Tiles
how to send the text to the tile; listing 11.18 shows how to write the dynamic text
out again.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:insert page="/tiles/header.jsp">
<tiles:put name="title" value ="Artimus - View Article"/>
<tiles:put name="subtitle" value ="View Article"/>
</tiles:insert>
<tiles:insert page="/tiles/message.jsp"/>
<tiles:insert page="/tiles/view.jsp"/>
<tiles:insert page="/tiles/navbar.jsp"/>

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<HTML>
<HEAD>
<html:base/>
<LINK rel="stylesheet" type="text/css" href="<html:rewrite

forward='baseStyle'/>">
<TITLE><tiles:getAsString name="title"/></TITLE>
</HEAD>
<BODY onload="document.forms[0].elements[0].focus();">
<!-- OUTER TABLE -->
<TABLE class="outer">
<TR>
<TD align="center">
<!-- INNER TABLE -->
<TABLE class="inner">
<TR>
<TD class="navbar" colspan="3"><tiles:getAsString name="subtitle"/></TD>
</TR>

If you prefer, the Struts <bean:write> or <bean:message> tag can also be substi-
tuted for <tiles:getAsString>. The attributes are being saved to the standard
contexts, so any standard tag will work as well.

Extracting tiles
The main work of the refactoring is to determine which part of the page is part of
which tile, moving that fragment into its own file and then inserting it back again.
Here’s a step-by-step checklist:

1 Select and cut the block.

Listing 11.17 Inserting dynamic content: /pages/View.jsp (revised)

Listing 11.18 Writing dynamic content with getAsString

Migrating an application to Tiles 353
2 Open a new file.

3 Paste in the block.

4 Save and name the file as a JSP (or HTML file if you can).

5 Insert any taglib import statements the tile requires.

6 Close the new tile.

7 Place a <tile:insert page="/path/to/new/page"/> tag where the segment
used to be.

NOTE The Tiles Definitions represent the set of pages that were in use before
the refactoring began. The pages are being composed differently, but the
content and appearance should remain the same. Most often, the Defini-
tion includes a body or content tile as part of the Definition. Some dis-
tinct pages may not have a unique tile but are represented by a unique list
of shared tiles. You may have a form that uses different buttons under dif-
ferent circumstances. One page may include the set of buttons for creat-
ing a new record. Another page may include the set of buttons for
updating a record. But other pages may share the sets of buttons and oth-
er tiles in the Definition. Distinct pages may also be created from the
same Definition by passing a title string and the dynamic content re-
trieved from a data service. You might have several different ways of
searching for records but display them all using the same Definition.

Extraction practices
Here are some caveats and practice notes regarding the extraction process. Since
this will become a routine, it is important to have clear practices and to learn from
past mistakes:

� All custom tags used by the tile must be imported into the tile.

� All custom tag elements must begin and end in the same tile.

� Avoid carrying HTML elements over to another tile.

� Mark up by contract.

� Consider trade-offs.

� Leverage technology.

All custom tags used by the tile must be imported into the tile. The t i le wi l l inheri t
HTML assets, like style sheets. It will not inherit references to JSP assets, like tag
libraries. The web browser applies the style sheet when the page renders, but

354 CHAPTER 11

Developing applications with Tiles
since each tile is in fact a stand-alone JSP servlet, it needs its own references to JSP
resources.

All custom tag elements must begin and end in the same tile. If you use the <html:html>
tag in your file, place the elements for this tag at the top and bottom of your layout
(which is a single tile). This restriction does not apply to HTML elements. You can,
for example, open the <BODY> element in a header tile and close the </BODY> ele-
ment in a footer tile, but custom tags are validated when the tile is compiled. JSP
tag elements must begin and end within the same tile.

Avoid carrying HTML elements over to another tile. In practice, you may decide that
one tile should open an element, like a table; a second should provide the con-
tent, like the rows in a table; and a third should close the element. When this pat-
tern is useful, you should use it but still try to begin and end as many elements as
possible in the same tile. This makes finding markup errors much easier. Even if
the middle tile only provides the rows for a table, it can do so as complete
<TR>...</TR> rows.

Mark up by contract. When you decide to use something like Tiles, you are also
deciding to treat markup like code. Accordingly, all the usual paradigms apply,
like assertions and program by contract. When you design your tiles, think about
the preconditions and postconditions for each tile, just as you would for a method
in a class. Don’t hesitate to document the conditions for each tile, just as you
would for a method. A good approach is to just use standard JavaDoc conventions
in a JSP comment, which avoids creating a new wheel:

<%--
/**
 * Global page header, without automatic form select.
 * See headerForm.jsp for version with form select.
 * Imports global style sheet.
 * Opens HEAD, BODY, and TABLE. Another tile must close these.
 * @author Ted Husted
 * @license ASF 1.0
 */
--%>

For HTML tiles, just use HTML comment braces instead. Unlike JSP comments,
HTML comments will be visible in the source of the page. You may wish to be brief
and discreet when using HTML comments.

Consider trade-offs. Dissembling a page into tiles is much like normalizing a data-
base. You can strip out absolutely all the redundant information, but if you do,

Migrating an application to Tiles 355
some of the parts become so small that maintenance and performances issues can
appear. In practice, you may have two or three varieties of header or footer files
that may replicate markup. But if the markup changes, it is still easier to conform 3
files than 30 or 300. As with any programming task, the usual trade-offs apply.

Leverage technology. If you are also introducing style sheets and other markup
changes at the same time, don’t hesitate to create skeleton files and use editing
macros with search-and-replace to automate some of the work. It’s easy to forget
how much time you can save with these old friends.

11.5.5 Extracting the <tiles:insert> tags into a Definition

After you have applied the process in section 11.5.3 to your starter page and
have confirmed that it still works, you can finish the job by extracting the
<tiles:insert> tags into an XML Definition. This is a four-step process:

1 Move the page to the layouts folder.

2 Rename the body tile.

3 Convert the insert tag to a layout and Definition.

4 Update the ActionForward.

Move the page to the layouts folder
Move the refactored page to the location you’ve chosen for layout tiles, under
/tiles/layouts, for example. At this point, the refactored page should be a
punch list of <tile:insert> tags, and the original content of the page should
have been reduced to a set of tiles.

Rename the body tile
One of the extracted tiles probably represents the body, or “guts,” of the original
page. If so, consider renaming it as the original page you just moved. The implica-
tion is that the core content of the original page will still be where the original page
stood. This helps to minimize change. If you need to edit the page’s content, the
content will still be where it always was. If you do this, update the <tiles:insert>
tag after moving or renaming the file. Working from listing 11.16, we would change

<tiles:insert page="/tiles/view.jsp"/>

to

<tiles:insert page="/pages/view.jsp"/>

356 CHAPTER 11

Developing applications with Tiles
Convert the insert tag to a layout and Definition
Add a name property to each of the insert tags. This will often match the name of
the JSP. The exception might be the tile representing the original body of your
page. This will usually have a more generic name, like content.

 Copy the <tiles:insert> statements from your refactored page into the
starter tiles.xml configuration file that we set up at the beginning of this section
and place them inside a <definition> element. If you used any <tiles:put> ele-
ments, you can promote those to top-level elements now:

<definition>
 <tiles:insert put="title" value ="Artimus - View Article"/>
 <tiles:insert put="subtitle" value ="View Article"/>
 <tiles:insert name="header" page="/tiles/header.jsp"/>
 <tiles:insert name="message" page="/tiles/message.jsp"/>
 <tiles:insert name="content" page="/pages/view.jsp"/>
 <tiles:insert name="navbar" page="/tiles/navbar.jsp"/>
 </definition>

Then, rename the <tiles:insert> tags as <tiles:put> elements and the page
attribute as a value attribute. To the <definition> element, add name and path
properties. The path property should be to your layout page (see step 1). The
name property can correspond to the name of your original page, but substitute
dots for the slashes. Listing 11.19 shows our complete tiles.xml file.

<!DOCTYPE tiles-definitions PUBLIC
 "-//Apache Software Foundation//DTD Tiles Configuration//EN"
 "http://jakarta.apache.org/struts/dtds/tiles-config.dtd">

<tiles-definitions>
 <definition name=".article.view" path="/pages/tiles/layouts/Base.jsp>
 <tiles:put name="title" value ="Artimus - View Article"/>
 <tiles:put name="subtitle" value="View Article"/>
 <tiles:put name="header" value="/tiles/header.jsp"/>
 <tiles:put name="message" value="/tiles/message.jsp"/>
 <tiles:put name="content" value="/pages/view.jsp"/>
 <tiles:put name="navbar" value="/tiles/navbar.jsp"/>
 </definition>
</tiles-definitions>

Now, in the layout page, change the <tiles:insert> tags to <tiles:get> tags and
delete the page attribute (since that is now part of the Definition)

Listing 11.19 A Tiles configuration file: /WEB-INF/conf/tiles.xml

Migrating an application to Tiles 357
 Any <tiles:put> tags can be changed to <tiles:useAttribute> tags. Keep the
name attribute, but delete the value attribute (since the value is part of the Defini-
tion now).

 Listing 11.20 shows a complete layout JSP.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<tiles:useAttribute name="title"/>
<tiles:useAttribute name="subtitle"/>
<tiles:get name="header">
<tiles:get name="message"/>
<tiles:get name="content"/>
<tiles:get name="navbar"/>

Update the ActionForward
Finally, replace the ActionForward that referred to the original JSP with a refer-
ence to the Tiles Definition:

<action
 path="/article/View"
 type="org.apache.scaffold.struts.ProcessAction"
 parameter="org.apache.artimus.article.FindByArticle"
 name="articleForm"
 scope="request"
 validate="false">
 <forward
 name="success"
 path=".article.View"/>
</action>

As shown in figure 11.6, the Tiles ActionServlet will intercept the reference and
apply the Definition to the layout page.

Listing 11.20 A Tiles layout page: /tiles/layouts/Base.jsp

layout (JSP)

< get header >
< get content >
< get footer >

definition (XML)

< put header >
< put content >
< put footer >

tiles (JSP/HTML/text)

[header fragment]
[content fragment]
[footer fragment]

response

request

Figure 11.6 The Tiles ActionServlet uses the definition to help create the response.

358 CHAPTER 11

Developing applications with Tiles
 If you were forwarding directly to the JSP before, you can use the standard Scaf-
fold SuccessAction to route control through the controller so the Definition can
be used to select and render the layout. You can use the Definition anywhere you
were using a system path to the JSP. If there are enough references, you can even
use the search-and-replace feature of your editor to change them all automatically.

 At runtime, the Tiles ActionServlet will intercept the ActionForward and check
its path against the Definitions in the Tiles configuration. If it finds a match, it
includes each tile of the Definition in the response. The container then processes
each included tile normally. The HTML tiles are rendered by the container’s
HTML service, and the JSP tiles are rendered by the container’s JSP service.

 If the ActionForward path is not the name of a Definition, the ActionServlet
handles it as a normal URI, same as always.

NOTES If your refactored page does not display the same as the original, first
make sure that you have imported any needed tag libraries in the tiles. If
the taglib is not included, the tag will not be rendered and will be ig-
nored by the browser (and you will see it in the HTML page source). If
that is not the problem, create a new page and start reassembling the
page by hand to uncover the error. Most often, you will find that a tile
broke its “API contract” by opening or closing an element improperly.
Another API contract to check is the path for the input property of the
ActionMapping. This should also point to the Definition name rather
than the physical JSP page.

If you expose the Path must be absolute error after switching over to Tiles, it
means that you’ve tried to use a Definition as the path for a forward but it
was not found in the Tiles configuration. After checking for a Definition,
Tiles passes the path up to the super class method, and Struts treats it like
a system path. Our leading dot is being interpreted as a relative reference
to a directory, hence the Path must be absolute advice. The bottom line is
there is usually a typo in either the Struts or Tiles configuration file.

To test your changes, be sure to reload the application so that the current Struts
and Tiles configurations are loaded into memory. If you’ve been following along,
you can try this now.

 Once you have gone through the process of refactoring a page with
<tiles:insert> and then converting it to a Definition, you may wish to convert
other pages directly to a Definition. To do this, you:

Migrating an application to Tiles 359
� Copy an existing Definition using the same layout and give it a new name.

� Clip out and save the content segment of the page you are refactoring.

� Change the new Definition to refer to the segment you just saved and converted.

� Test and repeat.

NOTE When you first switch a block of pages over to Tiles, it may take a little ex-
tra time for the pages to render at first. This is because the JSPs for the
new tiles are being created in addition to the usual one you need for the
content. Once the JSP for each tile is created, it will not be re-created un-
til it is changed, and everything goes back to normal. In the future, if you
edit the content tile, only that one JSP will be recompiled.

11.5.6 Normalizing your base layout

Back in listing 11.20, we showed the layout file as a series of <tiles:insert> tags. If
you like, you can also use regular HTML and JSP code on your layout page. This is a
good place to put the topmost tags, like <HTML> or <html:html>, so that these do not
need to be put inside other tiles, which might really be intended to do other things.

 Listing 11.21 shows a revised base layout page that extracts the topmost ele-
ments from the header and navbar tiles and puts them on the base layout. We’ve
also renamed it from Base.jsp to Article.jsp to indicate its role as the Article layout
tile. Other pages in the application may need to use a different layout.

<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<html:html>
<HEAD>
<html:base/>
<LINK rel="stylesheet" type="text/css" href="<html:rewrite

forward='baseStyle'/>">
<TITLE>Artimus - <bean:write name="title"/></TITLE>
</HEAD>
<tiles:useAttribute name="title"/>
<tiles:get name="header"/>
<tiles:get name="message"/>
<tiles:get name="content"/>
<tiles:get name="navbar"/>
</BODY>
</html:html>

Listing 11.21 Revised layout tile (/tiles/layouts/Article.jsp)

360 CHAPTER 11

Developing applications with Tiles
11.5.7 Refining your Definitions into base and extended classes

As you commute your pages to layouts and Definitions, it’s easy to end up with sets
like this:

<definition name=".article.View" path="/tiles/layouts/Article.jsp">
 <put name="title" value="View Article" />
 <put name="header" value="/tiles/header.jsp" />
 <put name="messages" value="/tiles/messages.jsp" />
 <put name="content" value="/pages/articles/view.jsp" />
 <put name="navbar" value="/tiles/navbar.jsp" />
 </definition>

<definition name=".article.View" path="/tiles/layouts/Article.jsp">
 <put name="title" value="Search Result" />
 <put name="header" value="/tiles/header.jsp" />
 <put name="messages" value="/tiles/messages.jsp" />
 <put name="content" value="/pages/articles/result.jsp" />
 <put name="navbar" value="/tiles/navbar.jsp" />
 </definition>

If you look closely, you’ll see that the first and third items differ but the others are
the same. A better way to write them, and any like them, is to create a base Defini-
tion. The Tiles Definition supports an extends property, which lets a Definition
inherit attributes and overload only what needs to be changed. Here, we extend
.article.Base and overload title and content:

<definition name=".article.Base" path="/tiles/layouts/Article.jsp">
 <put name="title" value="${title}"/>
 <put name="header" value="/tiles/header.jsp"/>
 <put name="message" value="/tiles/message.jsp"/>
 <put name="content" value="${content}"/>
 <put name="navbar" value="/tiles/navbar.jsp"/>
 </definition>
 <definition name=".article.View" extends=".article.Base">
 <put name="title" value="View Article"/>
 <put name="content" value="/pages/article/view.jsp"/>
 </definition>
 <definition name=".article.Result" extends=".article.Base">
 <put name="title" value ="Article Search Result"/>
 <put name="content" value="/pages/article/result.jsp"/>
 </definition>

With the base Definition in place, we now have to supply only two lines for each of
our subDefinitions. The other settings fall through and do not need to be speci-
fied. If there are attributes that will be used throughout your site, you can put
those in a base Definition and extend everything else from that. Then, if any of
the base attributes change, you need to make the change in only one place.

Migrating an application to Tiles 361
 As a convention, we put markers in for the values of the first and third items
(title and content) to indicate that these are extension points that subDefinitions
need to override. If the base Definition were used directly, then these markers
would just print out as literals. The ${} markers have no special meaning to Tiles.

 Another convention shown here is to use an initial capital letter for the layout
JSP but an initial lowercase letter for the tile JSPs. This is to indicate that the layout
page can be called directly, because it is a fully formed JSP class. The tile pages are
like methods invoked by the layout JSP, and so use the same naming convention as
a method. But this is only a convention; any other consistent naming scheme
would work just as well.

11.5.8 Developing a routine

After the first few pages, you should be able to develop a routine that goes some-
thing like this:

1 Create a new Definition (in tag.xml), often by copying a similar one.

2 Update the Definition with the path to the existing page, page title, and
any other custom information.

3 Open the existing page.

4 Delete the top and bottom, leaving the core content and tag import state-
ments.

5 Review and revise the core content to ensure that the markup keeps its
API contract with the tiles before and after it in the Definition. One tile
may need to open an element, like a <TABLE>, and another tile may need
to close it. Remove any unneeded tag import statements. Optionally, add
a comment block.

6 Update the paths in the Struts configuration (struts-config.xml) to refer-
ence the new Definition, including any input properties.

7 Reload the tag configuration and the Struts configuration.

8 Review the page.

9 Rinse and repeat.

At first, you will probably start with pages as they appear in your application’s flow.
Once you have the procedure down, it is not difficult to step through the page
tree and refactor each page in turn. This will ensure that you don’t miss any. It
may also uncover some obsolete pages left over from prior development efforts.

362 CHAPTER 11

Developing applications with Tiles
DEFINITIONS A popular way to view a method’s signature is as a contract between the
method and its caller. The caller agrees to provide certain parameters
and the method agrees to provide a certain result based on those param-
eters. Since an API is a collection of method signatures, the paradigm of
seeing interactions between components as a binding agreement is gen-
erally referred to an API contract.

API is an acronym for application programming interface, any set of rou-
tines generally available for use by programmers. The operating system,
for example, has APIs for a variety of disk/file-handling tasks. APIs are
written to provide portable code. The programmer only has to worry
about the call and its parameters and not the details of implementation,
which may vary from system to system. [CKNOW]

11.5.9 Managing the migration

Moving an application over to Tiles is not difficult but neither is it trivial. Be sure
to schedule enough time for the project. The first few pages may take several
hours, but once the pattern is established, additional pages may take only a few
minutes each.

 If you also need to apply a new look to the site, it may be best to first convert it
to Tiles and then apply the new design so that you are not doing two new things at
once. Once the layout is migrated to Tiles, bringing up the new design will go
more quickly.

 A good time to schedule a migration is when you know a visual redesign is
coming but don’t have the new design in hand yet. If you can have the application
migrated to Tiles while the redesign is being finalized, applying the changes will
be a smoother process. Doing both at once is not recommended—especially for
your first migration.

 So what’s the bottom line of a migration? Your mileage will vary, but a small
application with 25 presentation pages consuming about 140,000 kbytes of
markup code was migrated to 55 tiles of about 120,000 kbytes—the 15% differ-
ence being redundant markup that was removed.

 Moving forward, new pages for the application can now be created much more
quickly and will be more consistent with existing pages. To change the overall lay-
out, you can edit the layout or a few individual tiles instead of every page on the site.

Summary 363
11.6 Summary

Dynamic template systems, like the Tiles framework, can bring familiar program-
ming patterns to the presentation layer of a web application. They let us slice and
dice the HTML markup and JSP commands into manageable pieces. We can then
assemble a page by calling the individual pieces, or tiles, the way we would call
Java methods to perform a larger process. A tile encapsulates a block of markup,
much like a method encapsulates a block of Java code.

 The pages of a web application are built around a common look and feel, or
layout, that helps users navigate the site. When we assemble pages using Tiles, we
start with a base layout that defines where the tiles are placed and gives each posi-
tion a logical name. The paths to the tiles a particular page uses can then be
passed at runtime. A typical page may use five or six tiles, with only one or two of
those changing from page to page.

 In Tiles, a complete page, including the layout and the paths to its tiles, can be
represented as an object called a Definition. To assemble a particular page, we
can simply refer to its Tiles Definition. Like the Struts framework components,
the Definitions can be configured using an XML document and loaded at startup.

 The Struts framework uses ActionForwards to encapsulate paths to system
resources, including presentation pages and Action classes. The framework’s con-
troller, the ActionServlet, uses ActionForwards to route control. The other com-
ponents refer to the ActionForward by name and rely on the controller to invoke
the resource indicated by the forward’s path.

 A standard extension to the controller allows Definitions to be used as the
ActionForward path. When a Definition is the target of an ActionForward, the
controller includes the fragments in a combined response. The standard service
for each fragment then finishes the job.

 When an application is migrated to Struts, one consequence is that system
paths become encapsulated in the Struts configuration. The presentation pages
can then refer to other resources using a logical name rather than an actual path
or URI. This lets us focus on what the page wants to do rather than the particulars
of how it is done.

 In the same fashion, when an application is migrated to Tiles, the configura-
tion encapsulates the system paths. Struts can then refer to the page Definition by
name and leave the particulars of assembling the page to the Tiles framework.

 Tiles can be of most use to larger systems with dozens or hundreds of pages.
Like decomposing a process into constituent methods, refactoring an application
to use Tiles creates more component parts, but each individual part is simpler to

364 CHAPTER 11

Developing applications with Tiles
understand and maintain. More important, the individual tiles can be reused,
avoiding the need to make the same change in multiple places. As applications
grow, the need to eliminate redundancy becomes increasingly important.

 The focus of this chapter has been to provide you with enough information
to put Tiles to work in your application. But it by no means covers everything
that is possible with the Tiles framework. The Artimus example application (see
chapter 15) is based on Tiles and demonstrates several of the best practices
described in this chapter.

 In the next chapter, we explore another “optional” component, the Struts
Validator.

12Validating user input
Co-authored by David Winterfeldt and Ted Husted
This chapter covers
� Understanding the need to validate data
� Configuring and using the Commons Validator
� Using multipage and localized validations
� Writing your own validators
365

366 CHAPTER 12

Validating user input
Us: Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs, and the
Universe trying to produce bigger and better idiots. So far, the

Universe is winning.

—Rich Cook

Them: I never know how much of what I say is true.
—Bette Midler

12.1 I know it when I see it

Most web applications need to collect data from their users. The input may come
via freeform text fields or GUI elements such as menu lists, radio buttons, and
checkboxes. In practice, what the user enters does not always make sense. Some
menu options may be mutually exclusive. A phone number may be lacking a digit.
Letters might be entered into a numeric field. Numbers may be entered where
letters are expected. This may be because the data-entry form isn’t clear or
because the users are not paying attention. But in any event it happens—and with
great regularity.

 Nothing is more frustrating for a user than getting garbage out of an applica-
tion, even if it was the user who put the garbage in. A prudent application scruti-
nizes all input, guards against all foreseeable errors, and protects users from
themselves. After all, if they mess up, we still have to fix it.

12.1.1 Input we can’t refuse

In a conventional application, data-entry controls can simply refuse to accept bad
values, but they have luxury of being modal.

DEFINITION A user interface element is modal when it claims all the user input for an
application. Other elements of the application cannot be accessed until
the element is dismissed. To proceed, the user must either complete the
modal dialog box or close the application. Most user interface elements
are nonmodal.

Web applications, being inherently nonmodal, have fewer options. By default, the
HTML elements displayed by the browser will accept anything typed into them. A
given element has no clue what was entered elsewhere on the form. We can play
tricks with JavaScript, but there is no guarantee that the user has enabled JavaScript.

I know it when I see it 367
 Of course, we can validate the data when it reaches the business tier. (For more
about application tiers and business objects, see chapter 2.) Many business logic
objects do have some validation built in, but most business objects do not vet data
before accepting it. Business-tier methods tend to be trusting creatures. They
expect friendly objects will be offering reasonable data and just do as they are
told. Even when business objects are more pessimistic, usually all they can do is
throw an exception. It is not the responsibility of business objects to enter into a
patient dialogue with the user to correct the erroneous input.

 Of course, it is the responsibility of a business object to validate data in con-
text—to see, for example, if a username and password correspond. But there are
many objective validation rules that can be applied before data is ever commuted
to the business tier. In a distributed application, the business object may reside
on a remote machine. Creating roundtrips to resolve simple data-entry errors
may be costly.

12.1.2 Web-tier validations

In real life, it often falls to the web application framework to provide objective val-
idation routines and narrow the gap between model and view. In a nonmodal, dis-
tributed environment, we need validation routines that can do the following:

� Require that certain fields have values

� Confirm that a given value is in an expected pattern or range

� Check the entire form at once and return a list of messages

� Compare values between fields

� Return the original input for correction

� Display localized messages when required

� Perform server-side validations if JavaScript is disabled

Two other important hallmarks of a validation system are loose coupling and
optional client-side validations.

Loose coupling
As a practical matter, input needs to be validated by the controller, but business
validations are tied to the business tier. This implies that the validation rules
should be stored separately from markup or Java code so that they can be
reviewed and modified without changing any other source code. Keeping the vali-
dation rules loosely coupled makes it much easier to keep validations synchro-
nized with business requirements.

368 CHAPTER 12

Validating user input
DEFINITION The degree of coupling refers to the strength of a connection between two
components. Coupling is a complement to cohesion. Cohesion describes
how strongly the internal contents of a component are related to each
other. The goal is to create components with internal integrity (strong
cohesion) and small, direct, visible, and flexible relations to other com-
ponents (loose coupling). [McConnell]

Some validation rules may also need to be localized. When support for a new
locale is added, we should be able to update the validation rules as easily we
update the resource bundle.

 While the validation rules may be provided as a convenience to the presenta-
tion layer, it is important to recognize they actually “belong” to the business tier.
Validation rules should not be commingled with presentation source code.

Client-side validations
Client-side validations are inherently insecure. It is easy to spoof submitting a web
page and bypass any scripting on the original page. While we cannot rely on
client-side JavaScript validations, they are still useful. Immediate user feedback
avoids another trip to the server, saving time and bandwidth for everyone. So,
another ideal feature would be to generate JavaScript and server-side validations
from the same set of rules. When JavaScript is enabled, the input can be validated
client-side before it is submitted. If not, the input is still validated server-side to
ensure nothing is amiss.

12.1.3 Validator consequences

Using the Jakarta Commons Validator [ASF, Validator] brings several consequences:

� The Validator is a framework component that meets these requirements—
and more.

� The Validator is configured from an XML file that generates validation rules
for the fields in your form.

� Rules are defined by a Validator that is also configured through XML.

� Validators for basic types, like dates and integers, are provided. If needed,
you can create your own.

� Regular expressions can be used for pattern-based validations such as postal
codes and phone numbers.

I know it when I see it 369
� Multipage and localized validations are supported, so you can write wizards
in any language.

DEFINITION A regular expression is a formula for matching strings that follow some pat-
tern. Regular expressions are used by many Unix command-line and pro-
gramming utilities. For more about regular expressions, see the “Using
Regular Expressions” web page by Stephen Ramsay. [Ramsay]

Using the Jakarta Commons Validator in your application yields several benefits:

� Optimal use of resources: JavaScript validations are provided when enabled,
and server-side validations are guaranteed.

� A single point of maintenance: Both client-side and server-side validations
are generated from the same configuration.

� Extendibility: Custom validations can be defined as regular expressions or
in Java code.

� Maintainability: It is loosely coupled to the application and can be main-
tained without changing markup or code.

� Localization: Localized validations can be defined only when and where
they are needed.

� Integration with Struts: By default, validations share the Struts message bun-
dle. Localized text can be centralized and reused.

� Easy deployment of server-side validation: To make use of the server-side val-
idations, your Struts ActionForm can simply extend the ValidatorForm or
ValidatorActionForm class. The rest is automatic.

� Easy deployment of client-side validation: To make use of the client-side val-
idations, you just add a single JSP tag to generate the validation script and
use that script to submit the form.

� Easy configuration: The Validator uses an XML file for configuration, just
like the web application deployment descriptor and the Struts configuration.

 But, of course, there are also drawbacks:

� Nonmodal client-side validations: The generated JavaScript is nonmodal; it
does not engage until the form is submitted.

370 CHAPTER 12

Validating user input
� Dependencies: The validations are detached from the fields and from the
ActionForm properties. The page markup, the ActionForm, and the Valida-
tor and Struts configuration files must all be synchronized.

� Lack of data conversions and transformations: The package does not offer
data conversions or transformations. When needed, conversions and trans-
formations must be programmed separately.

Keep in mind that using the Jakarta Commons Validator in your application is not
a panacea. Some validations may only be performed server-side. If these fail, the
error messages are displayed differently than the JavaScript messages. Interface
discontinuities confuse users.

DEFINITION Data conversion is moving data from one type to another, as from a String
to an Integer. Data transformation is changing the internal format of data,
such as adding punctuation to a String before it is displayed or removing
unwanted punctuation from a String before it is stored. Localization can
require transforming data into a display format.

In this chapter, we show you how to make the best use of the Commons Validator
framework in your application. We cover the overall design of the Validator, and
present a simple example. We then look at each component of the Validator in
depth along with often-needed techniques, such as overriding default messages,
canceling validations, using multipage workflows, validating collections, and more.

 It is important to emphasize that objective, data-entry validations are not an
omnibus solution. There are many types of errors that cannot be found without
accessing the model. We can look to see if a username and password meet the
business requirements for length and composition. But to see if the username
and password combination is valid, we need to go up to the business tier and talk
to a data service. However, by checking to see whether data could possibly be valid
before we even ask, we can eliminate expensive data-access transactions, which
benefits everyone.

NOTE You might be wondering, “So would I be using the Struts framework to
build my application or the Struts Validator framework?” Both, actually.
Most applications are built using several sets of framework components,
including some that development teams create in-house. Struts builds on

Overview of the Struts Validator 371
Sun’s Java J2SE framework. Likewise, the Struts Validator builds on the
Struts framework. So, just as your application may use several classes in
several packages, it may also use several frameworks. For more about
working with framework architectures, see chapter 2.

Chapter 4 covers setting up the Validator with Struts 1.1. This chapter is a devel-
oper’s guide to putting the Validator to work in your application.

12.2 Overview of the Struts Validator

Let’s look at how the Struts Validator interacts with other components to provide
both server-side and client-side validations from the same set of validation rules.
You may be surprised at how easy it can be to validate your data once the Validator
puts all the pieces together. Table 12.1 lists the various pieces that make up the
Struts Validator.

Originally, the Commons Validator was created as an extension to the Struts
framework. But since it could also be used outside the framework, the developers
contributed it to another Jakarta subproject, the Commons.

Table 12.1 Major Struts Validator components

Component Description

Validators Handle native and other common types. The basic validators include
required, mask (matches regular expression), minLength, maxLength,
range, native types, date, email, and creditCard. Custom (or plug-in)
validators may also be defined.

Resource bundle Provides (localized) labels and messages. Shares Struts messages by
default.

XML configuration file Defines form set and validations for fields as needed. The validators can
be defined in a separate file.

JSP tag Generates JavaScript validations for a given form name or action path.

ValidatorForm Automatically validates properties based on the form bean's name
(passed to the validate method through the ActionMapping parameter
at runtime). Must be extended to provide the properties expected on the
form.

ValidatorActionForm Automatically validates properties based on the action path (passed to the
validate method through the ActionMapping parameter at runtime).
Must be extended to provide the properties expected on the form.

372 CHAPTER 12

Validating user input
 The Struts distribution includes a Validator package with several classes that
integrate the Commons Validator with Struts. This package, along with the Com-
mons Validator package it extends, constitutes the Struts Validator. In the balance
of this chapter, we refer to the Struts Validator as a superset of the Commons Vali-
dator. The Validator package is actually a collection of several Validator objects,
written in Java. Each Validator object enforces a rule regarding a property on
another object. In the Struts Validator, these objects are ActionForms. The valida-
tors have standard entry methods, like a Struts Action, that are used to call the
Validator when needed. The Validator configuration file lets you associate one or
more validators with each property in a form.

 In practice, most applications need to perform a number of common valida-
tions. Some fields may require data to be entered. A postal code abbreviation may
always be of a known length. Other common field types include numbers, dates,
and credit card numbers.

 The Validator comes equipped with several basic validators to handle these
common needs, among others. If your Validator needs can’t be met by one of the
basic validators or a regular expression, you can roll your own Validator and plug
it into the package. The basic validators are really just bundled plug-ins them-
selves. Your custom validators can do anything the basic validators do, and more.

 The validators your application needs to use, basic or custom, can be specified
in an XML configuration file, usually named validation.xml. To make mainte-
nance easier, you can specify the rules that associate a Validator with your Action-
Form properties in a separate file, usually named validator-rules.xml.

1.0 vs 1.1 The version of the Validator for Struts 1.0 uses a single validation.xml
file that contains both the Validator definitions and the form valida-
tions. Struts 1.1 lets you split these components into separate files. In
this chapter, we will refer to the separate files used by Struts 1.1. If you
are using Struts 1.0, all configuration elements are kept in the single val-
idation.xml file.

The validator-rules file has a <form> element that usually corresponds to the
<form-bean> element in your Struts application. The <form> element in turn has
<field> subelements. Each <field> can specify that it must pass one or more vali-
dators to succeed. If a validator fails, it can pass back a key to a message template
in the application resources, along with any replacement parameters. Struts uses
the key and parameters to generate a localized error message. If client-side

Overview of the Struts Validator 373
validations are being used, the same message can be displayed in a JavaScript win-
dow, as shown in figure 12.1.

 The validation file is where you plug in whatever basic or custom validations
are needed by the validator rules. Here you specify which Validator classes to use,
along with the optional client-side JavaScript validations. When used, the Java-
Script validations must pass before the form is submitted back to the application.

 Besides the JavaScript element in the validator configuration file, the other
piece of client-side validations is the <validator:javascript> tag (Struts 1.0) or
<html:javascript> tag (Struts 1.1). If you place this anywhere on your JSP, it will
combine the JavaScript for all the validators into a single script that can be called
from a standard entry method. You can then call the entry method using the
onsubmit attribute to the <html:form> tag. If the JavaScript validations pass, the
form is submitted. If not, a window pops up with the localized error messages.

 To enable the server-side validations, you can simply extend your Action-
Forms from one of the base classes in the Struts Validator package. The
ValidatorForm (org.apache.struts.validator.ValidatorForm) class corre-
sponds to the standard ActionForm. The ValidatorDynaForm class (org.apache.
struts.validator.DynaValidatorForm) corresponds to the DynaActionForm.

 By default, the Validator <form> elements are matched to the ActionForms using
the attribute or form bean name. Alternatively, you can use ValidatorActionForm

Figure 12.1 A JavaScript message window generated by the Struts Validator

374 CHAPTER 12

Validating user input
(org.apache.struts.validator.ValidatorActionForm) or DynaValidatorAction-
Form (org.apache.struts.validator.DynaValidatorActionForm) to match up
the <form> elements using the ActionMapping path.

 In the next section, we show you how to put it all together by using the logon
application as the backdrop for both client-side and server-side validation.

1.0 vs 1.1 In the 1.1 release, the Struts Validator was bundled into the Struts JAR
and made an optional component of the formal distribution. The im-
ports and some minor implementation details changed, but the package
is essentially unchanged. Where there are implementation differences,
we show separate listings for each release.

12.2.1 Logon example

Adapting the logon application from chapter 3 for the Struts Validator will help
illustrate how these components fit together. Then, in section 12.3, we explore
each component in depth.

 After you set up the package (see chapter 4), your next step is to be sure the
validators you need are on hand. These can be kept in a separate file, named
validator-rules.xml by default. Our example only uses the required validator,
though most applications will use several others as well.

 In the following sections, we will look at what we need in order to validate a
username and password using the Struts Validator.

validator-rules.xml
The Struts Validator distribution includes validators for native types and other
common needs, like e-mail and credit card validations. In practice, it’s likely that
the basic validators will cover all your needs. If not, you can write your own and
define them in the validator-rules.xml file along with the basic validators. (As
noted, in Struts 1.0, both the validators and the form validations are defined in
the single validation.xml file.)

 Listings 12.1 and 12.2 show the Java and XML source code for the required val-
idator under Struts 1.1. For more about writing your own pluggable validators, see
section 12.9.

Overview of the Struts Validator 375
<validator name="required"
<!-- b -->
 classname="org.apache.struts.util.StrutsValidator"
 method="validateRequired"
 <!-- c -->
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 msg="errors.required">
 <!-- d -->
 <javascript><![CDATA[
 function validateRequired(form) {
 var bValid = true;
 var focusField = null;
 var i = 0;
 var fields = new Array();
 oRequired = new required();
 for (x in oRequired) {
 if ((form[oRequired[x][0]].type == 'text' ||
 form[oRequired[x][0]].type == 'textarea' ||
 form[oRequired[x][0]].type == 'select-one' ||
 form[oRequired[x][0]].type == 'radio' ||
 form[oRequired[x][0]].type == 'password') &&
 form[oRequired[x][0]].value == '') {
 if (i == 0)
 focusField = form[oRequired[x][0]];
 fields[i++] = oRequired[x][1];
 bValid = false;
 }
 }
 if (fields.length 0) {
 focusField.focus();
 alert(fields.join('\n'));
 }
 return bValid;
 }
]]>
 </javascript>
</validator>

b This section contains the reference to the server-side validator (see listing 12.2).

c methodParams are used in Struts 1.1 only.

d The client-side JavaScript is included with the XML element.

Listing 12.1 The XML source for the required validator (Struts 1.1)

376 CHAPTER 12

Validating user input
 As shown, the Validator elements are defined in two parts:

� A Java class and method for the server-side validation

� JavaScript for the client-side validation

The Java method the required validator invokes is shown in listing 12.2.

 public static boolean validateRequired(Object bean,
 ValidatorAction va, Field field,
 ActionErrors errors,
 HttpServletRequest request) {
 String value = null;
 if (isString(bean)) {
 value = (String) bean;
 } else {
 value = ValidatorUtil.getValueAsString(bean, field.getProperty());
 }
 if (GenericValidator.isBlankOrNull(value)) {
 errors.add(field.getKey(),
 StrutsValidatorUtil.getActionError(request, va, field));
 return false;
 } else {
 return true;
 }
 }

application.properties
If a validator fails, it passes back a message key and replacement parameters,
which can be used with a standard resource bundle. By default, the Struts Valida-
tor shares the resource bundle used by the rest of your application. This is usually
named ApplicationResources.properties, or just application.properties. When
another message is not specified, the Struts Validator will automatically look for a
message in the default resource bundle. Concatenating errors with a dot and the
validator name usually creates the key for the message. Here is what the entry for
our required validator looks like:

errors.required={0} is required.

When we configure a field to use the required validator, we also pass the field’s
label as a replaceable parameter. The validator can then reuse the same message
for all the required fields. Alternatively, you can define your own messages to
selectively override the defaults. (See section 12.4.3.)

Listing 12.2 The Java source for the validateRequired method (Struts 1.1)

Overview of the Struts Validator 377
 The resource bundle will contain whatever other messages are needed by your
application, along with specific labels and messages needed by the Struts Valida-
tor. Here is the block we will need for our username and login validations:

-- logon --
logon.username.maskmsg=Username must be letters and numbers, no spaces.
logon.password.maskmsg=Password must be five characters long and contain a

special character or numeral.

We also need labels for the username and password fields. However, these would
already be provided if the application were localized:

logon.username.displayname=Username
logon.password.displayname=Password

Note that we prefix the labels and messages with logon. By giving each form its
own namespace, we can avoid collisions as the application grows.

validator.xml
The validators and message keys are used when defining our formset element in
the validator.xml file, as shown in listing 12.3.

<!-- b -->
<formset>
<!-- c -->
<form name="logonForm">
<!-- d,e -->
<field
 property="username"
 depends="required,mask">
<!-- f -->
 <msg
 name="mask"
 key="logon.username.maskmsg"/>
<!-- g -->
 <arg0
 key="logon.username.displayname"/>
<!-- h,i -->
 <var>
 <var-name>mask</var-name>
 <var-value>^[a-zA-Z0-9]*$</var-value>
 </var>
</field>
<!-- J -->
<field
 property="password"
 depends="required,minlength">

Listing 12.3 A formset element

378 CHAPTER 12

Validating user input
 <arg0
 key="logon.password.displayname"/>
 <var>
 <var-name>minlength</var-name>
 <var-value>5</var-value>
 </var>
</field>
</form>
<!-- ... -->
</formset>

b A formset is a wrapper for one or more forms.

c Each form element is given its own name. This should correspond to either the
form bean name or the action path from your Struts configuration.

d Each form element is composed of a number of field elements.

e The field elements designate which validator(s) to use with the depends attribute.

f The optional msg element lets you specify a custom message key for a validator
and the message key to use for any replacement parameters.

g The arg0 element specifies the first replacement parameter to use with any mes-
sages that need them.

h The var element is used to pass variable properties to the validator.

i Here we pass a regular expression to the mask validator. The expression says user-
names can contain only the alphabet characters and numerals.

j Here we say that a password is required and must be at least five characters long. The
password length is a business requirement to help make the accounts more secure.
The password validation message uses the default minlength or required messages,
defined in validation-rules.xml (errors.minlength and errors.required).

JSP tag / logon.jsp
JavaScript validations are optional but easy to implement if you would like to use
them in your application. Listing 12.4 shows the logon.jsp modified to display
JavaScript validations.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<!-- b -->
<%@ taglib uri="/tags/struts-validator" prefix="validator" %>
<HTML><HEAD><TITLE>Sign in, Please!</TITLE></HEAD>
<BODY>

Listing 12.4 logon.jsp prepared for JavaScript validations

Basic validators 379
<!-- c -->
<html:form action="/logonSubmit" focus="username"
 onsubmit="validateLogonForm(this)">
<TABLE border="0" width="100%">
<TR><TH align="right">Username:</TH>
<TD align="left"><html:text property="username"/></TD>
</TR>
<TR><th align="right">Password:</TH>
<TD align="left"><html:password property="password"/></TD>
</TR>
<TR>
<TD align="right"><html:submit property="submit" value="Submit"/></TD>
<TD align="left"><html:reset/></TD>
</TR>
</TABLE
</html:form>
<!-- d -->
<validator:javascript formName="logonForm"/>
</BODY>
</HTML>

b Here we import the validator taglib.

c This section calls the validation script. Then, the form is submitted.

d Here, we add the tag to output the JavaScript anywhere on the page.

The validate method
To enable the server-side validations, all that needs to be done is to have the form
bean extend ValidatorForm instead of ActionForm

public final class LogonForm extends
 org.apache.struts.validator.action.ValidatorForm {

and remove the old validate method. When the controller calls the validate
method, the ValidatorForm method will kick in and follow the rules we defined in
the validation.xml file.

12.3 Basic validators

As shown in table 12.2, the Struts Validator ships with 14 basic validators. These
should cover the needs of most applications. If the need arises, as we will see in
section 12.9, you can add custom, or plug-in, validators.

380 CHAPTER 12

Validating user input
12.3.1 The required validator

The required validator is both the simplest and the most commonly used of the
validators:

<field
 property="customerId"
 depends="required"/>

If nothing or only whitespace is entered into a field, then the validation fails, and
an error is passed back to the framework. Otherwise, the validation succeeds. To
determine whether the field contains only whitespace, the standard String.trim()
method is called (value.trim().length() == 0).

 Since browsers do not submit empty fields, any field that isn’t required will skip
all validations if the field is null or has a length of zero.

12.3.2 The mask validator

The mask validator checks the value against a regular expression and succeeds if
the pattern matches:

<field property="postalCode" depends="mask">
 <arg0 key="registrationForm.postalCode.displayname"/>
 <var>
 <var-name>mask</var-name

Table 12.2 Basic validators

Validator Purpose

required Succeeds if the field contains any characters other than whitespace.

mask Succeeds if the value matches the regular expression given by the mask attribute.

range Succeeds if the value is within the values given by the min and max attributes
((value >= min) & (value <= max)).

maxLength Succeeds if the field’s length is less than or equal to the max attribute.

minLength Succeeds if the field’s length is greater than or equal to the min attribute.

byte, short,
integer, long,
float, double

Succeeds if the value can be converted to the corresponding primitive.

date Succeeds if the value represents a valid date. A date pattern may be provided.

creditCard Succeeds if the value could be a valid credit card number.

email Succeeds if the value could be a valid e-mail address.

Basic validators 381
 <var-value>^\d{5}\d*$</var-value>
 </var>
</field>

The Jakarta RegExp package [ASF, Regexp] is used to parse the expression. If an
expression needs to be used by more than one field, it can also be defined as a
constant in the validation.xml file—for example:

 <constant>
 <constant-name>zip</constant-name>
 <constant-value>^\d{5}\d*$</constant-value>
 </constant>

Like most of the other standard validators, the mask validator is declared to be
dependent on the required validator. Therefore, if a field depends on both
required and mask, then the required validator must complete successfully before
the mask validator is applied.

12.3.3 The range validator

The range validator checks that the value falls within a specified minimum and
maximum:

<field property="priority"
 depends="required,integer,range">
 <arg0 key="responseForm.priority.displayname"/>
 <var>
 <var-name>min</var-name>
 <var-value>1</var-value>
 </var>
 <var>
 <var-name>max</var-name>
 <var-value>4</var-value>
 </var>
</field

This validator would succeed if the digit 1, 2, 3, or 4 were entered into the field. In
practice, the error message should display the minimum and maximum of the
range, to help the user get it right. You can use the arg elements to include the
min and max variables in the message by reference:

<field property="priority"
 depends="required,integer,range">
 <arg0 key="responseForm.priority.displayname"/>
 <arg1 name="range" key="${var:min}" resource="false"/>
 <arg2 name="range" key="${var:max}" resource="false"/>
 <var>
 <var-name>min</var-name>
 <var-value>1</var-value>

382 CHAPTER 12

Validating user input
 </var>
 <var>
 <var-name>max</var-name>
 <var-value>4</var-value>
 </var>
</field

This implies that the template for the range messages looks something like this:

errors.range=Please enter a value between {1} and {2}.

If the range validator fails for the priority field, the validation message would read:

Please enter a value between 1 and 4.

By default, the validator assumes that the key of an arg element matches a key in
the resource bundle and will substitute the value of the resource entry for the
value of the key attribute. The resource=false switch tells the validator to use the
value as is. If the values are being rendered by a select element, you may wish to
map the messages to the first and last items on the select list:

 <arg1 name="range" key="priority.range.first"/>
 <arg2 name="range" key="priority.range.last"/>

This implies that there are also entries like these

priority.range.first=do-it-now
priority.range.last=forget-about-it

in the resource bundle. If validation failed, the message for priority would read:

Please enter a value between do-it-now and forget-about it.

12.3.4 The maxLength validator

The maxLength validator checks the high end of the range; it succeeds if the field’s
length is less than or equal to the max attribute:

<field property="remarks"
 depends="maxlength">
 <arg0 key="responseForm.remarks.displayname"/>
 <arg1 name="maxlength" key="${var:maxlength}" resource="false"/>
 <var>
 <var-name>maxlength</var-name>
 <var-value>1000</var-value>
 </var>
</field

This field element makes sure that the length of the remarks (probably a text area
field) does not exceed 1000 characters. Note that we pass the length as an argu-
ment to the validation message, as we did with the range validator.

Basic validators 383
12.3.5 The minLength validator

The minLength validator checks the low end of the range; it succeeds if the field’s
length is greater than or equal to the min attribute:

<field property="password"
 depends="required,minLength">
 <arg0 key="logon.password.displayname"/>
 <arg1 name="minlength" key="${var:minlength}" resource="false"/>
 <var>
 <var-name>minlength</var-name>
 <var-value>5</var-value>
 </var>
</field

The field element stipulates that the password must be entered and must have a
length of at least five characters.

12.3.6 The byte, short, integer, long, float, and double validators
These validators all apply the standard type.parseType methods to the value. If an
Exception is caught, the validator returns false. Otherwise, it succeeds:

<field property="amount"
 depends="required,double">
<arg0 key="typeForm.amount.displayname"/>
</field

12.3.7 The date validator
The date validator checks to see if the value represents a valid date:

<field property="date"
 depends="required,date">
 <arg0 key="typeForm.date.displayname"/>
</field>

The validator passes the standard Locale object (java.util.Locale) maintained
by the framework to the date utilities, so the result is automatically localized. The
datePattern attribute will pass a standard date pattern to a java.text.Simple-
DateFormat object:

 <var>
 <var-name>datePattern</var-name>
 <var-value>MM/dd/yyyy</var-value>
 </var>

Internally, the datePattern attribute is used in the SimpleDateFormat constructor
and then used to parse the value:

384 CHAPTER 12

Validating user input
SimpleDateFormat formatter = new SimpleDateFormat(datePattern);
Date date = formatter.parse(value);

If the parse succeeds, the validator succeeds.
 If the datePatternStrict attribute is set instead, the length is also checked to

ensure a leading zero is included when appropriate:

 <var>
 <var-name>datePatternStrict</var-name>
 <var-value>MM/dd/yyyy</var-value>
 </var>

When no pattern is specified, the DateFormat.SHORT format for the user’s Locale is
used. If the Struts Locale object is not available, the server’s default Locale is used.
The setLenient method is set to false for all date transformations.

12.3.8 The creditCard validator

The creditCard validator analyzes the value to see if it could be a credit card number:

<field property="creditCard"
 depends="required,creditCard">
 <arg0 key="typeForm.creditCard.displayname"/>
</field>

Credit card numbers include a parity-check digit. The validation checks for this
digit and other business rules, such as whether the card’s prefix matches one of
the credit card vendors (American Express, Discover, MasterCard, VISA) and
whether the length of the number is correct for the indicated vendor.

12.3.9 The email validator

The email validator employs an extensive check of the format of a prospective e-
mail address to be sure it is in accordance with the published specification:

<field property="email"
 depends="required,email">
 <arg0 key="typeForm.email.displayname"/>
</field>

12.4 Resource bundles

The underlying purpose of validation is to get the user to fix the input and try
again. Since that process involves displaying field labels and messages, the Struts
Validator makes good use of the Java localization features and the framework’s sup-
port for those features. (The Java localization features are covered in chapter 13.)

Resource bundles 385
 Of course, the framework also needs to provide localized labels for the fields.
Since the Struts resource bundle is offered as an application-level resource, the
Validator is able to share the same bundle with the framework, so you can keep all
your labels and messages together. You simply need to add default messages for
the validators you are using and any custom messages needed while validating a
particular field.

12.4.1 The default bundle

The Struts bundle is configured through the deployment descriptor (see
chapter 4). It is usually named ApplicationResources.properties or just applica-
tion.properties. In our example applications, the bundles are stored in a package
under /WEB-INF/src/java/resources. Our default Properties files (java.util.
Properties) are named application.properties. Files for supported locales are
then named appl icat ion_ en .propert ies , appl icat ion_ e s .propert ies ,
application_fr.properties, and so forth. (Again, see chapter 13 for more about
localization.)

 You do not need to do anything special to start using the Struts resource bun-
dle with the Validator. Just add whatever messages or labels you may need and
then refer to the resource key in the Validator’s configuration file. If the applica-
tion is being localized, keys for the field labels should already be present, and you
can share them with the rest of the framework, as shown here:

<field property="lastName"
 depends="required">
 <arg0 key="registrationForm.lastName.displayname"/>
</field>

12.4.2 Default validator messages

If a custom message is not provided by a field element, the default message for the
validator is used when the validation fails. The key for a validator’s default mes-
sage is specified when it is defined. The convention is to add an errors. prefix to
the validator’s name. The default message for the required validator then
becomes errors.required.

 This convention dovetails with the Struts <html:error> tag, which looks for
errors.header and errors.footer entries. Listing 12.5 shows the keys and templates you
could add to an English resource bundle for the basic validators.

386 CHAPTER 12

Validating user input
Struts Validator Basic Error Messages
errors.required={0} is required.
errors.minlength={0} cannot be less than {1} characters.
errors.maxlength={0} cannot be greater than {1} characters.
errors.invalid={0} is invalid.
errors.byte={0} must be a byte.
errors.short={0} must be a short.
errors.integer={0} must be an integer.
errors.long={0} must be a long.
errors.float={0} must be a float.
errors.double={0} must be a double.
errors.date={0} is not a date.
errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is not a valid credit card number.
errors.email={0} is not a valid e-mail address.

You may note that there is no entry for errors.mask. For historical reasons, the
definition for the mask validator specifies errors.invalid instead of errors.mask.

 Each of the validator messages can take up to four replacement parameters,
which are specified as arg elements within the field definition. The first parame-
ter, arg0 or {0}, is usually the key for the field label. The validator will then look
up the display text for the label from the resource bundle and merge the localized
text into the message template.

12.4.3 Custom validator messages

A field can also specify a custom validation message to use instead of the default.
This often happens when the mask validator is being used, so you can explain what
pattern the regular expression expects. The key for the message is given in a msg
element. Since more than one validator may be used by a field, the name of the
validator is included as the msg element’s name attribute:

<field
 property="username"
 depends="required,mask">
 <msg
 name="mask"
 key="logon.username.maskmsg"/>
 <arg0
 key="logon.username.displayname"/>
 <var>
 <var-name>mask</var-name>
 <var-value>^[a-zA-Z0-9]*$</var-value>
 </var>
</field>

Listing 12.5 Default messages for the basic validators

Configuration files 387
In the Properties file, we could then place a key/template entry like this:

logon.username.maskmsg={0} must be letters and numbers, no spaces.

12.5 Configuration files

The strength of the Struts Validator is that the validations are declared outside the
application source code using an XML configuration file. The configuration spec-
ifies which fields on a form need validation, the validators a field uses, and any
special settings to be used with a field. Alternate formsets can be configured for
different locales and override any locale-sensitive validations.

 All of the validators used by the framework are configured through XML,
including the basic validators that ship with the package. You can omit validators
that your application doesn’t need and plug in your own custom validators to use
alongside those that ship with the framework.

 This makes for a very flexible package, but combining all these configurations
into a single file can result in a verbose document. As shown in table 12.3, the
Struts Validator can actually use two XML files: one to set up the validators and
another with the settings for your applications. (As noted, Struts 1.0 uses a single
configuration file.)

This makes for a very convenient arrangement. This way, it’s easy to copy a stan-
dard set of validation rules between applications and then customize the valida-
tion.xml file. Or, if you prefer, you can still combine all the elements in a single
validation.xml.

 In Struts 1.1, the paths to the Validator configuration files are declared in the
struts-config.xml file, as shown here:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"

 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>

Table 12.3 Struts Validator configuration files

Filename Description

validator-rules.xml Configuration files for the validators

validation.xml The validations for your application

388 CHAPTER 12

Validating user input
See chapter 4 for more about installing the Struts Validator 1.1 components into
your application.

12.6 Validator JSP tags

The Struts Validator framework combines the (optional) JavaScripts needed to
validate a form into a single script. You insert the script into your JavaServer Page
via a custom tag. The script can then be called when the form is submitted. If the
validation fails, the script displays an error message window, like the one back in
figure 12.1, and the submit fails.

 Otherwise, the submit succeeds and control passes to the validate method on
the Struts ActionForm. This ensures that the validations are triggered even when
JavaScript is not available.

 In listing 12.4, we introduced the <javascript> tag. For simplicity, this listing
retained the original <html:errors> tag. The original <errors> tag is quite easy
to use on the page but requires that you mix markup in with the message. Oth-
erwise, if the messages are presented as a block, they all run together into a sin-
gle paragraph.

 Under the Struts Validator framework, error messages are shared with the Java-
Script validations. In practice, using the same markup in both cases is problem-
atic. A much better way to go would be to use plain messages all around.

 The Struts Validator taglib provides additional tags that help with this very
problem. The <errorsPresent> or <messagesPresent> tag reports whether any
messages are pending. The <messages> tag works like an iterator, so your page can
loop through the queue, providing any markup entries needed along the way.

 Listing 12.6 shows the code from listing 12.4 again, this time outfitted with the
messages tags. Listing 12.7 shows the Struts 1.1 version.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<!-- b -->
<%@ taglib uri="/tags/struts-validator" prefix="validator" %>
<HTML><HEAD><TITLE>Sign in, Please!</TITLE></HEAD>
<BODY>
<!-- c -->
<validator:errorsPresent>

<!-- d -->
<validator:errors id="error">
<bean:write name="error"/>
</validator:errors>

Listing 12.6 Logon page with validations and additional JSP tags (1.0)

Validator JSP tags 389

</validator:errorsPresent>
<!-- e -->
<html:form action="/logonSubmit" focus="username"
 onsubmit="validateLogonForm(this)">
<TABLE border="0" width="100%">
<TR><TH align="right">Username:</th>
<TD align="left"><html:text property="username"/></TD>
</TR>
<TR><th align="right">Password:</TH>
<TD align="left"><html:password property="password"/></TD>
</TR>
<TR>
<TD align="right"><html:submit property="submit" value="Submit"/></TD>
<TD align="left"><html:reset/></TD>
<!-- f -->
<TD align="left"><html:cancel onclick="bCancel=true"/></TD>
</TR>
</TABLE>
</html:form>
<!-- G -->
<validator:javascript formName="logonForm"/>
</BODY>
</HTML>

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<!-- b -->
<%@ taglib uri="/tags/struts-validator" prefix="validator" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<HTML><HEAD><TITLE>Sign in, Please!</TITLE></HEAD>
<BODY>
<!-- c -->
<logic:messagesPresent>

<!-- d -->
<logic:messages id="error"
<bean:write name="error"/>
</validator:messages>

</validator:messagesPresent>
<!-- e -->
<html:form action="/logonSubmit" focus="username"
 onsubmit="validateLogonForm(this)">
<TABLE border="0" width="100%">
<TR><TH align="right">Username:</th>
<TD align="left"><html:text property="username"/></TD>
</TR>
<TR><th align="right">Password:</TH>
<TD align="left"><html:password property="password"/></TD>

Listing 12.7 Logon page with validations and additional JSP tags (1.1)

390 CHAPTER 12

Validating user input
</TR>
<TR>
<TD align="right"><html:submit property="submit" value="Submit"/></TD>
<TD align="left"><html:reset/></TD>
<!-- f -->
<TD align="left"><html:cancel onclick="bCancel=true"/></TD>
</TR>
</TABLE
</html:form>
<!-- g-->
<validator:javascript formName="logonForm"/>
</BODY>
</HTML>

Here are some remarks that apply to both listings 12.6 and 12.7:

b Since we will be using the Struts Validator tags, we need to import the taglib. In
Struts 1.1, we should also import the logic taglib, since it now includes tags we can
use here.

C The Struts 1.0 error tags, or Struts 1.1 message tags, let us keep the HTML in the page
and out of the error messages. If there are no messages, this entire block is skipped.

D The <errors> or <messages> tag works like an iterator. The tag will expose each
message under the id errors so that the bean tag can write them out in turn.

e A JavaScript onsubmit event has been added to the <html:form> tag. This will call
our validator JavaScript when any Submit button is pushed or a JavaScript submit
event is triggered.

f To allow the user to cancel the submit and bypass the validations, a JavaScript flag
can be set. If the Submit button sets bCancel to true, then the Struts Validator will
pass control through to the Action.

g Last, but not least, is the actual <javascript> tag. At runtime, this will be replaced
with a script combining the JavaScript validators for this form. The script, like the
ActionForm, is named after the action-mapping attribute name, which in this case
is logonForm.

The basic validators provided with the framework all include JavaScript validations.
If a pluggable validator (section 12.9) provides a JavaScript validation, it will be
included here as well. For the script to succeed, all the validations must succeed.

 The generated JavaScript observes the page property of the ValidatorForm and
will only generate validators for fields with a page number equal to or less than
the form’s page number. The default page number for both is 0. This is useful for
multipage wizard forms. (See section 12.10.1.)

ValidatorForm and ValidatorActionForm 391
12.7 ValidatorForm and ValidatorActionForm

To enable the Struts Validator for Struts 1.1, just follow the initial setup instruc-
tions in chapter 4 and extend your ActionForm from ValidatorForm and Validator-
ActionForm. The ValidatorForm will match the formset name with the form-bean
name. The ValidatorActionForm will match the formset name with the action-
mapping path.

 In most cases, the Struts Validator can completely replace the need to write a
custom validate method for an ActionForm. However, should you still need a
validate method, it can easily work alongside the validation framework. In most
cases, you would want to call the validator framework first, and then run your own
validations if these pass. Listing 12.8 shows how this is done.

public ActionErrors validate(
 ActionMapping mapping,
 HttpServletRequest request) {

 // b
 ActionErrors errors = super.validate(mapping, request);

 // c
 if (errors==null) errors = new ActionErrors();
 if (errors.empty()) {
 // d
 if (notGood(mapping,request)) errors.add(ActionErrors.GLOBAL_ERROR,new
 ActionError("errors.notGood","goodProperty"));
 }

 if (errors.empty()) return null;
 return errors;

 return (errors);

}

b First, we call the ancestor validate method. In this case, we’re calling the Valida-
tor framework.

c Since the ancestor method could return null, we need to check for null first.
Since we want to run our own validations, which may need to post errors, we cre-
ate a new ActionErrors object if one wasn’t returned. This implementation does
not run our validations if the ancestor returns errors, though you could just as eas-
ily run your own if that was appropriate.

Listing 12.8 Logon page with validations

392 CHAPTER 12

Validating user input
d Our sample validation calls a helper method called notGood, which returns the
result of our custom validation. We pass the parameters from the validate
method to be sure notGood knows everything validate knows.

12.8 Localized validations

The Validator configuration files include a formset element. The formset is a
wrapper for a collection of forms that share a common locale setting. While
some fields in some forms do need to be localized, usually the majority do not.
The Struts Validator allows you to localize selected fields and use the default vali-
dations for the rest. The default formset omits the language, country, and variant
properties. The localization is properly scoped; you can define a format to
override just the language, or just the country, or both if need be. For more
about internationalizing your applications, see chapter 13.

12.9 Pluggable validators

Each field element can specify a list of validators on which it depends. Some appli-
cations will use very few validators; others will use several. To allow developers to
load only the validators their application needs and to make it easy to load custom
objects, the validators are declared from a configuration file, essentially making
them all pluggable.

DEFINITION Pluggable refers to an object-oriented design strategy that allows objects to
be developed independently of an application and then incorporated
without changing the base code. Pluggable components are often creat-
ed by a third party.

12.9.1 Creating pluggable validators

Creating your own validator and plugging it in is a two-step process:

1 Create a method in a Java class to handle the server-side validations.

2 Update the validator-rules.xml file with an element for your validator. If
your validator will have a client-side JavaScript component, you can make
this part of the validator element.

Pluggable validators 393
Creating a validation method
Any class can be used to store your validate method. For Struts 1.0, the method
must follow a specific signature:

public static boolean validateMyValidator(
 Object bean,
 ValidatorAction va,
 Field field,
 ActionErrors errors,
 HttpServletRequest request);

Table 12.4 provides a key to the parameters passed to your validate method.

In Struts 1.1, you may specify the signature for your method as part of the
configuration.

 For coding hints on how to get your pluggable validator to do what you need,
see the org.apache.struts.validator.util.StrutsValidator class. This class
contains the methods for the basic validators that ship with the distribution. Your
validations should work in exactly the same way as the basic ones, which them-
selves are essentially all plug-ins.

STRUTS TIP When developing pluggable validators, keep an eye on the log file. Many
programming errors will only be logged and will not be exposed in the
application. A good example is getting the package name wrong in the
validator-rules.xml. A ClassNotFound exception will be logged, but the
application will act as if the validation succeeded!

Table 12.4 Validator method properties

Property Description

Object bean The bean on which validation is being performed.

ValidatorAction va This is a JavaBean that represents the validator element for
this validator from the validator-rules.xml. The bean is declared in
the org.apache.commons.validator package.

Field field This JavaBean represents the element for the field we are to
validate. The bean is declared in the org.apache.commons.
validator package.

ActionErrors errors An ActionErrors object that will receive any validation errors that
may occur.

HttpServletRequest request The current request object underlying this operation.

394 CHAPTER 12

Validating user input
Declaring a validator element
Listings 12.1 and 12.2 show the configuration element, which is the same one you
would use for your own plug-in. The required portion is simply:

<validator
 name="required"
 classname="org.apache.struts.validator.util.StrutsValidator"
 method="validateRequired"
 msg="errors.required"/>

This element tells the Struts Validator which method to call on what class, and the
message key to use when the validation fails. (Hey, it has to fail some time; other-
wise, what’s the point?)

 In Struts 1.1, you can also specify the parameters your validate method will use:

<validator name="required"
 classname="org.apache.struts.util.StrutsValidator"
 method="validateRequired"
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 msg="errors.required"/>

In addition to declaring the server-side validation, you can specify a client-side
JavaScript to use with your validator. The various JavaScript elements in the
stock validator-rules.xml provide several working examples of how to write a
compatible script.

12.10 Techniques

In addition to the everyday uses we’ve covered so far, there are several special
techniques you can use with the Struts Validator. These include:

� Multipage validations

� Cancel buttons

� Custom messages

� Interrelated fields

� The combining of validators with the validate method

Techniques 395
12.10.1 Multipage validations

Many developers like to use wizard forms. A wizard gathers the information
needed for an operation through several different forms. Then, it combines the
results at the end. Since not so much information is provided at once, it can be
easier for a user to complete a large form. Some developers use a different form
for each page. Others like to use one big form and expose only part of it at a time.

 If you are using the one-big-form wizard approach, the Struts Validator
includes a page property on the field element and provides a corresponding
page property on the ValidatorForm. Before performing the validation on a
field, the framework checks to see if the field page is less than or equal to the
ValidatorForm page. This means that as part of validating page 3, we also double-
check the validations for pages 1 and 2. This is to help to keep people from skip-
ping pages.

 If your one-big-form wizard has a reset method, you can also use the page
property to reset values only for the current page:

if (page==1) {
 // reset page 1 properties
}
if (page==2) {
 // reset page 2 properties
}

12.10.2 Cancel buttons

Most forms give the user the opportunity to cancel the operation altogether, usu-
ally with a Cancel button. The problem here is that the Cancel button submits the
form—so the JavaScript tries to validate it. The server-side pieces can be made to
acknowledge the Cancel button, but the JavaScript is client-side and unaware of
the framework. So, to cancel a form, a user must first appease the JavaScript vali-
dations. Not good.

 To resolve this dilemma, the Struts Validator provides a bCancel JavaScript vari-
able. If bCancel is set to true, the JavaScript validations will also return true, allow-
ing the cancel request to pass through to the container. The server-side
validations know about the Struts <cancel> button and will not fire if they see it in
the request. The rest is up to the Action, which should check its own isCancelled
method before committing any operation that a user might relay:

<html:cancel onclick="bCancel=true;">
<bean:message key="button.cancel"/>
</html:cancel>

396 CHAPTER 12

Validating user input
12.10.3 Custom messages

Each validator can define a default error message to use when the validation fails.
For example,

errors.integer={0} must be an integer.

would automatically display

Quantity must be an integer.

when someone tried to enter a letter into a field labeled Quantity.
 For most validators, this works just fine, and the default message is all you

need. The exception is the mask validator, which is used with regular expressions.
Here, the default message is

errors.invalid={0} is invalid.

If used with a mask on a form for entering a new password that needed to be at
least five characters long, the default message would be

Password is invalid.

which doesn’t tell users what they need to do to fix it. A better message would be

Password must be five or more characters long.

Of course, that message would not work as well for some other field that used the
mask validator with a different regular expression.

 In most cases, whenever you use a mask validator, you should also specify a cus-
tom error message that explains what the regular expression expects:

<field property="password" depends="required,mask">
 <msg name="mask" key="accountForm.password.mask"/>
 <arg0 key="nameForm.password.displayname"/>
 <var>
 <var-name>mask</var-name>
 <var-value>^{5}*$</var-value>
 </var>
</field>

And in the application resources:

accountForm.password.mask ={0} must be five or more characters long.

While the message attribute is most often used with the mask validator, you can
override the message for any validator on a field-by-field basis.

Techniques 397
12.10.4 Interrelated fields

If users change their password, it’s commonplace for a program to have users
input the new password twice, to help ensure they have typed it correctly. Many
other fields in a form may also be interrelated in some way. You can compare
fields in any way you like by defining your own plug-in validator.

 Used together in the same application, the components shown in listings 12.9,
12.10, and 12.11 create a plug-in validator that compares two fields to be sure they
are identical.

<validator name="identical"
 classname="com.mysite.StrutsValidator"
 method="validateIdentical"
 depends="required"
 msg="errors.identical"/>

<field property="password"
 depends="required,identical">
 <arg0 key="accountForm.password.displayname"/>
 <var>
 <var-name>secondProperty</var-name>
 <var-value>password2</var-value>
 </var>
</field

public static boolean validateIdentical(
 Object bean,
 ValidatorAction va,
 Field field,
 ActionErrors errors,
 HttpServletRequest request) {

 String value = ValidatorUtil.getValueAsString(bean,
 field.getProperty());
 String sProperty2 = field.getVarValue("secondProperty");
 String value2 = ValidatorUtil.getValueAsString(bean, sProperty2);

 if (!GenericValidator.isBlankOrNull(value)) {
 try {
 if (!value.equals(value2)) {
 errors.add(field.getKey(),
 ValidatorUtil.getActionError(application, request, va, field));
 return false;

Listing 12.9 validator-rules.xml

Listing 12.10 validate.xml

Listing 12.11 apps.ValidateUtils

398 CHAPTER 12

Validating user input
 }
 }
 catch (Exception e) {
 errors.add(field.getKey(), ValidatorUtil.getActionError(
 application, request, va, field));
 return false;
 }
 }
 return true;
}

12.10.5 Combining validators with the validate method

Plug-in validators, like the one shown in section 12.10.4, can be used to ensure
more complex relationships between fields are maintained. For example, if some-
thing may be picked up or shipped, and users choose Ship, you could plug in a
validator to be sure a shipping option had been chosen.

 The best candidates for plug-in validators are ones that you can reuse on several
forms. If the validation would not be reusable, you can also override the validate
method and use it in the normal way. Just be sure to also call the ancestor validate
method, to ensure that any framework validations are triggered. Listing 12.12
shows how to combine a custom validate method with the Struts Validator.

public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = super.validate(mapping, request);

 if (errors==null) errors = new ActionErrors();
 // If selects shipping
 if ("S".equals(deliveryType)) {
 // Vendor required
 if ("".equals(getShipVendor().trim())) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("item.shipVendor.maskmsg"));
 }

 if (errors.empty()) return null;
 return errors;
}

Listing 12.12 Combining validate with validators

Migrating an application to the Struts Validator 399
12.11 Migrating an application to the Struts Validator

While many Struts applications are written to use the Struts Validator from the
get-go, most start out using their own routines before moving to the Validator. In
this section, we walk through migrating a simple ActionForm validate method
to its Struts Validator counterpart. The point of the exercise is not the example
validate method, which is trivial, but the process of moving the method to the
Struts Validator.

 In chapter 11, we followed a similar process by migrating some example pages
to Tiles.

12.11.1 Setting up the Validator framework

Setting up the validator varies slightly between Struts 1.0 and 1.1, but works just as
well with either version.

NOTE Before you begin, make an extra backup of everything, regardless of how
many backups are made in the normal course. Migrating to the Validator
can be tricky at first, and, realistically, you may need to make more than
one pass before everything clicks into place. So, be ready to roll back and
try again. ’Nuff said.

Struts 1.0
If you haven’t done so, the first step is to install the Validator package and load the
Validator servlet through your application’s deployment descriptor. (The Validator
servlet is just a resource loader and so does not conflict with the Tiles servlet.)
Then, test your application to be sure all is well by clicking through a few pages.

 The Blank application for Struts 1.0 on the book’s website [Husted] includes
an empty Validator configuration file and sample setup.

Struts 1.1
The Validator is integrated with Struts 1.1. The steps for enabling the Validator in
Struts 1.1 are covered in section 4.9 of this book.

12.11.2 Testing the default configuration

Set the debug and detail parameters in the deployment descriptor (web.xml) to
level 2, and restart the application. Check the log entries carefully for any new
error messages. Run any unit tests and click through the application to confirm
that operation is still nominal.

400 CHAPTER 12

Validating user input
12.11.3 Reviewing your validations

With the Validator up and running, the next step is to take a good hard look at
your validate methods. Identify which will correspond to a standard Struts Vali-
dator validation and which will have to be handled on a custom basis. The Valida-
tor is not an either/or proposition. You can continue to use the ActionForm
validate method to handle some things, and the Validator to handle the rest.

 Listing 12.13 shows a code skeleton that calls the Struts Validator and then
tries any custom validations.

public ActionErrors validate(
 ActionMapping mapping,
 HttpServletRequest request) {

 // b
 ActionErrors errors = super.validate(mapping, request);

 // c
 if (null==errors) errors = new ActionErrors();

 /* d
 if (!(dateCheck()))
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.invalid","Expiration Date"));
 */

 // e

 // f
 if (errors.empty()) return null;
 return errors;

} // end validate

b This method is meant to be used with a ValidatorForm subclass. By calling and
capturing the super class validate method, we run any of the Struts Validator val-
idations but leave room for calling our own.

c If the super class validations all pass, validate will return null. We might still find
some errors of our own, so we create an ActionErrors collection to hold them. If
the ValidatorForm super class returns some errors, we continue to use the same
collection. This will provide a unified set of error messages to the user, regardless
of which validate method ran the validation.

d This is an example of a commented-out validation that has been replaced by the
Struts Validator. Once the method is fully tested, this would be removed.

Listing 12.13 Calling the Validator and your own custom routines

Migrating an application to the Struts Validator 401
e Other validation routines that have not been moved to the Struts Validator can
run here.

f If there were no errors, this code returns null; otherwise, it returns the combined
list of errors—the Struts Validator’s and any of our own.

The moral of this method? If a standard validation won’t be able to handle some
of your validation routines, plan to leave them in for now. You might want to
replace these routines with a custom validator later, but pick the low-hanging fruit
first, and get the standard versions working.

12.11.4 Extending ValidatorForm or the Scaffold BaseForm

Before making any code changes to your ActionForm, ensure that it extends
either the ValidatorForm or the Scaffold BaseForm:

import com.wintecinc.struts.action.ValidatorForm; // Struts 1.0.x
// import org.apache.struts.validator.ValidatorForm; // Struts 1.1

public class ActionForm extends ValidatorForm {
 // . . .
}

or

import org.apache.scaffold.struts.BaseForm;

public class ActionForm extends BaseForm {
 // . . .
}

In either case, you should be able to rebuild and test the application without
error. Neither class changes the default ActionForm functionality. If you do
expose any errors at this point, be sure to resolve them before continuing.

12.11.5 Selecting a validation to migrate

Let’s look at a simple example validation from an early version of the Artimus
example application [ASF, Artimus]. It tests to be sure that some required fields
were present before storing an article. Listing 12.14 shows the complete class.

402 CHAPTER 12

Validating user input
package org.apache.artimus.article.struts;
import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionMapping;
import org.apache.artimus.struts.Form;

public class ArticleForm extends Form {

 // b
 private boolean isNotPresent(String field) {
 return ((null==field) || ("".equals(field)));
 }

 public ActionErrors validate(
 ActionMapping mapping,
 HttpServletRequest request) {

 // c
 ActionErrors errors = new ActionErrors();

 // d
 String title = getTitle();
 if (isNotPresent(title)) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required","Title"));
 }
 String content = getContent();
 if (isNotPresent(content)) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required","Article text"));
 }
 String creator = getCreator();
 if (isNotPresent(creator)) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required","Author"));
 }

 if (errors.empty()) return null;
 return errors;

 } // end validate
// end ArticleForm

b isNotPresent is a simple utility method to test whether a field is null or empty.

c This code creates an ActionErrors collection, so that it’s there if we need it.

Listing 12.14 A simple validate method
(org.apache.artimus.articles.struts.ActionForm)

Migrating an application to the Struts Validator 403
d This code runs our three simple validations. If any fail, it creates an ActionError.
The errors.required template is used to create the ActionError, and the field is
merged into the message.

As validation routines go, this is no biggie, but it’s better to start with something
simple and work your way up. Let’s see how the title validation routine would be
migrated to the Struts Validator.

12.11.6 Adding the formset, form, and field elements

First, add a default <formset> to the Validator configuration file (validation.xml),
and add to that an element for the form and a field element for the property.
Listing 12.15 shows the initial <formset> for our articleForm example.

 <formset>
 <form name="articleForm">
 <field
 property="title"
 depends="required">
 <arg0 key="Title" resource="false"/>
 </field>
 </form>
 </formset>

The title validation routine in listing 12.11 is just a test that it is required. Of
course, the Struts Validator has a standard validator for that. In listing 12.15, we
specify that in the form articleForm, the field title depends on the required val-
idator. Our error message includes the field’s name as the {0} replacement
parameter, so we can pass that to the field as the <arg0> element.

12.11.7 Adding new entries to the ApplicationResources

The <field> element in listing 12.15 uses the resource="false" attribute to pass a
literal String. At this point, it’s better to get on the right track and extract the lan-
guage elements into the ApplicationResources bundle. When you are writing your
own validation methods, it’s easy to embed these language elements into the Java
code. But when you are using the Struts Validator, it’s just as easy to put them in
the ApplicationResources bundle (where they belong). Listing 12.16 shows our
initial <formset> with a reference to the ApplicationResources bundle.

Listing 12.15 An initial <formset> for the Struts Validator

404 CHAPTER 12

Validating user input
 <formset>
 <form name="articleForm">
 <field
 property="title"
 depends="required">
 <arg0 key="article.title.displayname"/>
 </field>
 </form>
 </formset>

We then need to add the appropriate entry to our ApplicationResources file
(/WEB-INF/src/java/resources/application.properties):

<formset>
 <form name="articleForm">
 <field
 property="title"
 depends="required">
 <arg0 key="article.title.displayname"/>
 </field>
 <field
 property="creator"
 depends="required">
 <arg0 key="article.creator.displayname"/>
 </field>
 <field
 property="contentDisplayHtml"
 depends="required">
 <arg0 key="article.content.displayname"/>
 </field>
 </form>
</formset>

12.11.8 Calling the Struts Validator

In the Java source for the ArticleForm class, we can now call the ValidatorForm
super class to validate our title field. Initially, we can just comment out the origi-
nal validation and leave everything else intact. Listing 12.17 shows the revised
validate method for our articleForm example. This is the code skeleton from
listing 12.13 applied to listing 12.16.

Listing 12.16 An initial <formset>for the Struts Validator

Migrating an application to the Struts Validator 405
public ActionErrors validate(
 ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = super.validate(mapping, request);
 if (null==errors) errors = new ActionErrors();
/*
 String title = getTitle();
 if (isNotPresent(title)) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required","Title"));
 }
*/
 String content = getContent();
 if (isNotPresent(content)) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required","Article text"));
 }
 String creator = getCreator();
 if ((isNotPresent(creator)) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("errors.required","Author"));
 }
 if (errors.empty()) return null;
 return (errors);
 } // end validate
// end ArticleForm

12.11.9 Test and repeat

Rebuild and reload the application to be sure the latest versions of everything are
in place. Try to defeat the validation. When operation is deemed nominal, con-
tinue to the next validation routine. In our example, we ended up with this:

<formset>
 <form name="articleForm">
 <field
 property="title"
 depends="required">
 <arg0 key="article.title.displayname"/>
 </field>
 <field
 property="creator"
 depends="required">
 <arg0 key="article.creator.displayname"/>
 </field>
 <field

Listing 12.17 A revised validate method

406 CHAPTER 12

Validating user input
 property="contentDisplayHtml"
 depends="required">
 <arg0 key="article.content.displayname"/>
 </field>
 </form>
</formset>

12.11.10 Removing the ActionForm subclass

Our sample ActionForm subclassed a coarse-grained ActionForm (see chapter 5).
The ArticleForm class itself provided nothing but a validate method that acted
on the inherited properties. All of the bean’s properties are defined in a base class.

 In this case, once all the validations are transferred to the Struts Validator, we
can just remove the class and update the <form-bean> element to use the base
class instead.

 What was:

 <form-beans>
 <form-bean
 name="baseForm"
 type="org.apache.artimus.struts.Form"/>
 <form-bean
 name="articleForm"
 type="org.apache.artimus.article.struts.ActicleForm"/>
 <!-- ... -->
 </form-beans>

can now be:

 <form-beans>
 <form-bean
 name="baseForm"
 type="org.apache.artimus.struts.Form"/>
 <form-bean
 name="articleForm"
 type="org.apache.artimus.struts.Form"/>
 <!-- ... -->
 </form-beans>

The same ActionForm class can be used by any number of form beans, just as an
Action class can be used by any number of action mappings. Each instance is just
given a different attribute name, and the Struts Validator matches the <form> ele-
ments by the attribute name. With a coarse-grained ActionForm in place to define
our properties, the Struts Validator <form> element does the work of a subclass.

 In Struts 1.1, you can use the DynaValidatorForm class to avoid declaring any
new ActionForm class whatsoever. You can declare whatever simple properties
your form needs as part of the <form-bean> element.

Migrating an application to the Struts Validator 407
 Here's the <form-bean> configuration for the Artimus 1.1 ArticleForm:

 <form-bean
 name="articleForm"
 type="org.apache.struts.validator.DynaValidatorForm">
 <form-property
 name="keyName"
 type="java.lang.String"/>
 <form-property
 name="keyValue"
 type="java.lang.String"/>
 <form-property
 name="marked"
 type="java.lang.String"
 initialValue="0"/>
 <form-property
 name="hours"
 type="java.lang.String"/>
 <form-property
 name="articles"
 type="java.lang.String"/>
 <form-property
 name="article"
 type="java.lang.String"/>
 <form-property
 name="contributor"
 type="java.lang.String"/>
 <form-property
 name="contributedDisplay"
 type="java.lang.String"/>
 <form-property
 name="creator"
 type="java.lang.String"/>
 <form-property
 name="title"
 type="java.lang.String"/>
 <form-property
 name="contentDisplayHtml"
 type="java.lang.String"/>
 </form-bean>

The validator <form> for this DynaBean is shown in section 12.11.9.
 These two XML constructs replace writing a conventional ActionForm class

and its Validate method.

408 CHAPTER 12

Validating user input
12.12 Summary

The Struts Validator is a powerful addition to the framework. It allows validations
to be managed in a separate configuration file, where they can be reviewed and
modified without changing Java or JavaServer Page code. This is important since,
like localization, validations are tied to the business tier and should not be mixed
with presentation code.

 The framework ships with several basic validators that will meet most of your
routine needs. You can easily add custom validators for special requirements. If
required, the original Struts validate method can be used in tandem with the
Struts Validator to be sure all your needs are met.

 Like the main Struts framework, the Struts Validator is built for localization
from the ground up. It can even share the standard message resource file with the
main framework, providing a seamless solution for your translators.

 Validating input is an essential service that a web application framework must
provide, and the Struts Validator is a flexible solution that can scale to meet the
needs of even the most complex applications.

13Localizing content
This chapter covers
� Understanding the importance of localization
� Using the Struts internationalization features
� Localizing your Struts application
409

410 CHAPTER 13

Localizing content
Life is a foreign language; all men mispronounce it.
—Christopher Morley (1890–1957)

13.1 By any other name

A key feature of the Struts framework is the way it collects input from users, vali-
dates the input, and (if necessary) redisplays the input for correction. To help redis-
play the input, Struts provides custom tags that can create HTML input controls and
populate them from a JavaBean [Sun, JBS]. In order to alert users as to what data
needs to be corrected, the framework also provides a system for posting messages.

 While it would be easy to have these components use hardcoded strings, that
would make the text difficult to change. To rephrase a label or message, both pre-
sentation code and Java code may need to be updated, perhaps by different
teams. It would also mean that the same application could not be reused for dif-
ferent languages without recompiling the source code.

 To avoid these sorts of problems, the Struts framework lets developers define
labels and messages in a separate file, called a resource bundle (java.util.Resource-
Bundle). When a message or label needs to be written, it can refer to the message
by its key. The framework then retrieves the appropriate text for the label at run-
time. The source path for an image or image button and its text alternative can
also be read from a resource bundle. Resource bundles are part of Java’s interna-
tionalization features. Like Java, Struts was internationalized from the ground up.
This is one reason the framework is popular the world over.

DEFINITION Internationalization is the process of designing an application so that it can
be adapted to various languages and regions without engineering chang-
es. Sometimes the term internationalization is abbreviated as i18n because
there are 18 letters between the first i and the last n.

Struts builds directly on the standard features provided by the Java platform.
Developers can then continue to use the same techniques to localize their own
components without becoming directly dependent on the Struts framework.

By any other name 411
DEFINITION Localization is the process of adapting software for a specific region or lan-
guage by adding locale-specific components and translating text. The
term localization is often abbreviated as l10n, because there are 10 letters
between the l and the n. Usually, the most time-consuming portion of the
localization phase is the translation of text. Other types of data, such as
sounds and images, may require localization if they are culturally sensi-
tive. Localizers also verify that the formatting of dates, numbers, and cur-
rencies conforms to local requirements.

In this chapter, we first look at why so many developers localize their applications
and how Java internationalization works. We discuss the Struts i18n components
and how they can localize your application. Popular Struts add-ins, like the Struts
Validator and Tiles, can also be localized, along with collections you may pass to
HTML control elements. We close the chapter with a look at how localization for
these components is handled.

13.1.1 Why localize?

A great deal of effort goes into creating today’s web applications. Every organiza-
tion wants to get the most mileage out of its investment. Given the worldwide span
of the Internet, every web application is available to an international audience. If
an application can be localized, it can be instantly accessible to a much wider
audience. This is especially true in multilingual countries, such as Belgium, Can-
ada, Switzerland, and even the United States.

 Unfortunately, many applications are not internationalized, and making them
so can be a tremendous effort. Since Struts has internationalization features built
in, most applications based on Struts can be localized without much trouble. If a
Struts application is built to use internationalization features from the start, local-
ization may just be a matter of translating a single message file.

 Even without localizing, making good use of the techniques described here
can help you build a more robust application that will be easier to maintain.
Localization helps to group common resources together, where they can be
reviewed and updated together. Applications that are hard to localize may have
other bad habits. Many of the internationalization techniques are based on gen-
eral best practices, such as encapsulation, modularity, and separation of concerns.

 While language is often the most important part of localization, it is not the
only consideration. Dates, currency, and images also need to be localized. The

412 CHAPTER 13

Localizing content
Java platform has built-in features to help you handle dates and currency; Struts
conveniently adds support for selecting images by locale.

13.1.2 How Java internationalization works

To be internationalized, an application should be able to:

� Distinguish between different localities

� Display appropriate messages and labels for different localities using the
same executable

� Provide support for new localities without compiling a new executable

� Automatically format elements sensitive to locality, such as dates and cur-
rencies, as appropriate to a given region and language

Java helps applications meet the requirements of internationalization through the
use of three key classes: Locale, ResourceBundle, and MessageFormat, shown in
table 13.1.

Let’s discuss each of these in turn.

Locale
The absolute core of Java’s support for internationalization is the Locale object
(java.util.Locale). This deceptively simple object lets you combine a language,
a country, and an optional variant into a single Locale entity. The languages and
countries are defined by ISO standards [IS0-3166, ISO-639]. Some sample language
and country codes are shown in table 13.2.

Table 13.1 Key classes for Java internationalization

Internationalization requirement Java class

Distinguish between different localities java.util.Locale

Display appropriate messages and labels for different localities
using the same executable and provide support for new localities
without compiling a new executable

java.util.ResourceBundle

Automatically format elements sensitive to locality, such as dates
and currencies, as appropriate to the locality’s region and language

java.text.MessageFormat

By any other name 413
The optional variant is often used to represent a dialect but can be any code use-
ful to an application (perhaps to represent which browser is being used). The
Struts framework does not make use of the variant field. But since the standard
libraries are used, the variant field is available to applications if needed.

 To create a Locale object, pass the language and country code in the construc-
tor. The locale for French-speaking Canadians can be created like this:

locale = new Locale("fr", "CA");

Most often, the Locale object is passed to a utility method that formats output
based on the Locale object’s settings. Components that can alter their behavior by
locality are called locale-sensitive. The locale is simply an identifier provided for
informational purposes only. It’s up to the locale-sensitive method to do the actual
work of localization.

 Several methods in the JVM are locale-sensitive and can render numbers, cur-
rencies, and dates using the conventions of a given locality:

NumberFormat.getInstance(myLocale)
NumberFormat.getCurrencyInstance(myLocale)
NumberFormat.getPercentInstance(myLocale)

A number of Struts components are also locale-sensitive and make use of a Locale
object that the framework manages for each user. For more about the Struts i18n
components, see section 13.2.

 The Locale object can render user-friendly descriptions of its settings. This is
helpful when you’re displaying the current Locale setting to the user or when
generating a list of supported Locales. Several methods are available for render-
ing the description that nicely fulfill the Locale object’s role as an identifier. Most

Table 13.2 Sample language and country codes

Language code Description Country code Description

de German CN China

es Spanish CA Canada

en English DE Germany

fr French FR France

ja Japanese IN India

jw Javanese US United States

ko Korean zh Chinese

414 CHAPTER 13

Localizing content
of these are overloaded so that you can also display the description in another
Locale object. Table 13.3 shows two examples.

The Locale object is immutable. If you need to change locales, a new Locale
object must be created and used to replace the original. There are several ready-
made Locale objects in the JVM for the commonly used locales. See the Java API
for details (java.util.Locale).

ResourceBundle
When designing an internationalized application, you place your initial focus on
the user interface. The various menus and dialog boxes used by an application are
often called program resources. Many programming environments have been
designed so that the user interface can be loaded from a separate file, or, in Java
terminology, a resource bundle.

 The Java ResourceBundle class (java.util.ResourceBundle) is not designed for
reading in the application’s entire user interface, but it is quite handy for storing
the text and messages used with interface elements. Your application can request
the bundle for a user’s locale and retrieve the appropriate element. The same key
is used for the element regardless of locale, but the String or Object it returns
may be very different. To support another locale, just add a source file for that
locale to your bundle.

DEFINITION A resource bundle (java.util.ResourceBundle) is a collection of Proper-
ties objects (java.util.Properties). Each Properties object is keyed to
a locality. Localities are identified by region and language using a Locale
object (java.util.Locale). When a key is requested, a locale can also
be specified. If a Properties object for the locale is not found in the bun-
dle, the value from the closest matching locale is returned. In practice,
ResourceBundles use the principle of inheritance. If the entry is not
found for the closest locale, the next closest is checked, and so on. The
bundle can include a default Properties object to be used when a better
match is not found.

Table 13.3 Two overloaded methods for rendering the Locale object’s description

Method Purpose

getDisplayName() Returns a name for the locale that is appropriate for display to the user

getDisplayName(Locale) Returns a name for the locale that is appropriate for display to the user

By any other name 415
ResourceBundle is an abstract class with two stock implementations, ListResource-
Bundle and PropertyResourceBundle.

 The PropertyResourceBundle class (java.util.PropertyResourceBundle) is
used to manage a set of text messages, and it is the one most commonly used with
Struts applications. The messages can be loaded from a Properties file
(java.util.Properties), usually with a call to a static method, like this:

message = ResourceBundle.getBundle("application",userLocale);

A Properties file is a simple text file that can be created with any plain text editor.
The locale for each text file can be indicated using a simple naming convention.
The language and country code is appended to the end of the filename, before
the extension. The first argument in the preceding sample code, application,
refers to a family of Properties files, like these:

application_es_ES.properties
application_fr_FR.properties
application.properties

A Properties file contains key-value pairs, called entries. The key is a token your
application will use to retrieve a certain message. The value is the text to use as the
message. The file for each locale can contain messages translated for the given
language and country.

 A Properties file for the es_ES locale (Spanish/Spain) might look like this:

greetings = Hola
farewell = Adios
inquiry = Como estas?

Translated, the same set of properties for the fr_FR (French/France) locale would
look like this:

greetings = Bonjour.
farewell = Au revoir.
inquiry = Comment allez-vous?

The default bundle is always used when the requested locale cannot be found.
This means that you do not need to provide a separate bundle for your server’s
default locale. If your server’s default locale is en_US, you can just provide an
application.properties file and forego a duplicate application_en_US.properties
file. You could just use this as the default application.properties file instead:

greetings = Hello
farewell = Goodbye
inquiry = How are you?

416 CHAPTER 13

Localizing content
The Struts framework will automatically use the default ResourceBundle with its
locale-sensitive components. See section 13.3 for the particulars of loading the
default bundle.

 The ListResourceBundle class (java.util.ListResourceBundle) can be used to
load arbitrary non-String objects. The use of a ListResourceBundle is outside the
scope of this chapter, but if it were used, the object could make use of the Locale
object already managed by the framework. The same holds true for any standard
Java, locale-sensitive object.

NOTE For historical reasons, Struts 1.0 and Struts 1.1 do not use the actual Re-
sourceBundle classes from the java.util package. However, the Struts
versions are designed to work in the same way. For the purpose of develop-
ing your own applications, you can consider the classes interchangeable.

MessageFormat
To be useful, many messages must include runtime information or data particular
to the instant user. These may be record numbers, or the current date, or an
amount. In a non-internationalized application, we often concatenate Strings
with runtime variables to create such messages, applying formatting along the way.

 For an internationalized application, simple concatenation is not an option.
The language elements being concatenated will vary from user to user and can’t
be hardcoded. Instead, message templates are loaded from a resource file and
merged with other data. The MessageFormat class (java.text.MessageFormat) is
designed to help you merge the message template with replaceable parameters
at runtime.

 A runtime message like this:

The disk named MyDisk contains 300 files.

can be based on a template like this:

The disk named {0} contains {1} files.

At runtime, the application can pass an array of objects to a formatter that merges
the two together:

diskParameters[0] = (Object) diskName;
diskParameters[1] = (Object) fileCount;
formatter.applyPattern(messages.getString("disk.inventory"));
String output = formatter.format(diskParameters);

Struts’ internationalized components 417
The first object in the array is merged with the {0} marker, the second with the
{1} marker, and so forth.

 As we will see in section 13.2, the Struts framework provides components that
help you do the following:

� Manage a Locale object for each user.

� Automatically load a message bundle for your supported locales.

� Merge runtime parameters with message templates.

13.2 Struts’ internationalized components

Before creating Struts, Craig McClanahan spent a couple of years telecommuting
to Belgium to manage a software development project there. Many of the basic
ideas for Struts originated with this web application, including its fundamental
support for internationalization. Struts’ worldwide popularity shows in its develop-
ment team, which has members from Australia, France, Russia, Scotland, and
even the United States. It is also interesting to note that, coincidentally, the illus-
tration on the book depicts a character from the Bordeaux region, not so far from
Brussels, Struts’ ancestral home.

 As shown in table 13.4, Struts provides several internationalized components
that work together to help you localize your application.

Let’s take a look at how all these components fit together.

13.2.1 Session Locale attribute

As we saw in section 13.1.2, all of the standard Java localization tools rely on the
Locale object. So the trick to localization then becomes maintaining a Locale
object for each user.

 The Java servlet framework provides a facility for temporarily storing an object
for each user called the session context. By default, Struts will store a Locale

Table 13.4 Struts’ i18n components

Standard Locale object for each user Session Locale attribute

Framework class for handling a message resource MessageResources

Automatic loading of application-wide message templates Default resource bundle

Special classes for queuing errors and other messages ActionErrors and ActionMessages

Locale-sensitive view components JSP tags

418 CHAPTER 13

Localizing content
attribute for each user in their session context under a known key. Initially, this
attribute is set to the server’s default locale. If your application replaces this object
with one for the user’s locale, the locale-sensitive objects in the framework will
select messages written for the user’s locale instead of the default locale.

NOTE But what about ServletRequest.getLocale()? This returns the locale
set by the user’s browser (passed via the HTTP Accept-Language head-
er). Unfortunately, this setting is outside the application’s direct con-
trol, and there is no guarantee that it has been set properly. For an
alternative, Struts provides a locale in the session context that your ap-
plication can control.

Of course, localization is not magic. The application must provide a set of mes-
sages for each locale it supports and provide a mechanism for selecting and
updating the user’s locale.

13.2.2 MessageResources

To streamline retrieving messages, Struts provides a MessageResources class
(org.apache.struts.util.MessageResources). Struts developers rarely call this
object directly, but work through other classes that use MessageResources behind
the scenes to return the appropriate message.

 MessageResources describes an API for retrieving locale-sensitive messages.
The API can also use the MessageFormat class to merge parameters and customize
messages at runtime (java.text.MessageFormat). The MessageResources inter-
face does not specify how or where the messages are stored, only how they are
retrieved. The default implementation uses a standard PropertyResourceBundle,
but, with some effort, any storage mechanism, such as an XML file or SQL data-
base, could be used instead.

 Typically, the messages will be retrieved by JSP tags or another presentation sys-
tem. The Action can also prepare a localized message by calling Message-
Resources. Here’s an example of retrieving the user’s locale from the session
context, passing it to MessageResources to obtain the appropriate message for
that locale, and storing it in a bean for later use:

Locale locale = (Locale) session.getAttribute(Action.LOCALE_KEY);
MessageResources messages = servlet.getResources();
String message = getMessage(locale,"important.message");
((messageForm) form).setMessage(message);

Struts’ internationalized components 419
The getMessages signature is overloaded so that it can take up to five replacement
parameters ({0}...{4}):

String message = getMessage(locale,"important.message",new Date());

The parameters are often Strings but can be any Java object. When other objects
are used, the MessageFormat class can help format the object. See section 13.3
for more.

 There are also getMessage signatures that omit the Locale object. In this case,
the default locale for the server is used.

13.2.3 The default resource bundle

The framework uses an instance of MessageResources to provide access to a
default resource bundle, loaded by the controller servlet. Each resource in the
bundle is loaded from disk the first time is it needed and then retained in mem-
ory for the life of the application. The other Struts i18n components will retrieve
message templates from this bundle unless another is specified.

 Since by default Struts uses standard Properties files and a standard Property-
ResourceBundle, all the usual features apply for formatting your message strings,
like those shown in table 13.5.

Message formatting
Since the standard Java libraries are used, the conventional techniques for format-
ting numbers, dates, and currencies can be used with your Struts messages. For
example, if a message involved a date, the Properties file for the resource bundle
might read:

detected.ufo = At {2,time,short} on {2,date,long}, we detected
{1,number,integer} spaceships on the planet {0}.

A single date property could be passed to the message template as the second
parameter. It would then be used to display the time and the date at separate
points in the message.

Table 13.5 Formatting features for resource property files

Feature Template Example

Literal character \ WEB-INF\\lib

Single quote '' Struts'' ancestral home

Special formatting {#,type,style} {2},real,currency

420 CHAPTER 13

Localizing content
 If the user’s locale were en_US:

At 1:15 PM on April 13, 1998, we detected 7 spaceships on the planet Mars.

If the user’s locale were de_DE:

Um 13.15 Uhr am 13. April 1998 haben wir 7 Raumschiffe auf dem Planeten Mars
entdeckt.

In the Action class, the Date object can be passed to ActionError or ActionMessage:

Date today = new Date(System.currentTimeMillis());
messages.addActionMessages.GLOBAL_MESSAGE,
 new ActionMessage("detected.ufo",ufoCount,today,ufoPlanet));
saveMessages(requestmessages);

Displaying special characters
The Java platform is fully Unicode-based and capable of rendering characters
from any language. However, the Java compiler and other Java tools can process
only files that contain Latin-1 [ISO 8859-1] or Unicode-encoded characters. A
Unicode-encoded character is expressed using a /u escape sequence followed by
the character’s number in the Unicode set—for example, /u0084.

DEFINITION Unicode provides a unique number for every character, no matter what
the platform, no matter what the program, no matter what the language.
It is supported in many operating systems, all modern browsers, and
many other products. The emergence of the Unicode Standard, and the
availability of tools supporting it, are among the most significant recent
global software technology trends. [Sun, i18n]

To help convert files using characters outside the Latin-1 group, the JDK provides
a utility called native2ascii. This converts a file with native-encoded characters
(non-Latin 1 and non-Unicode) to one with Unicode-encoded characters. While a
Unicode-encoded file would not make much sense to a human being, the Java
components won’t give it a second thought.

 You can also use the Message Tool in the Java Internationalization and Local-
ization Toolkit 2.0 [Sun, JILKIT] to do the same thing. The toolkit has a number
of other utilities that you might find useful if you are translating files on a larger
scale. It’s definitely worth the download if you are managing several large
resource files.

Struts’ internationalized components 421
13.2.4 ActionErrors

As mentioned in the introduction to this chapter, the Struts workflow (submit/val-
idate/correct/submit) is an essential part of the framework. When validation is
performed, the method needs a way to pass error messages back to the input
form, where they can be displayed to the user. The ActionErrors (org.apache.
struts.Action.ActionErrors) object is used to carry these messages.

 Since more than one error may be detected during validation, ActionErrors is
a collection. Any number of error messages can be queued and displayed to the
user at once. Each message can be optionally associated with a particular property
on the form. This gives developers the chance to display the error message next to
its property.

 Not surprisingly, ActionErrors is a collection of ActionError objects (org.
apache.struts.Action.ActionError). Each error object holds the message key and
an optional property name. The key is used to look up the message from a resource
bundle (see section 13.1.2). To add an error message to the queue, a call like

errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("prospect.statusDate"));

is used, where prospect.statusDate is a key in the resource bundle. Parameters
can also be passed and merged into the message string:

errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("record.updated",recordId));

When you have added all the errors you need, the collection can be saved to the
request under a known key. The Action’s saveErrors method can be used to do this:

saveErrors(request,errors);

Since it uses keys and resource bundles, localization support for ActionErrors is
built in and will automatically display the correct message for each user’s locale.

13.2.5 ActionMessages

ActionMessages (org.apache.struts.Action.ActionMessages) were introduced
in Struts 1.1 along with a corresponding JSP tag. ActionMessages are intended to
supplant the original ActionErrors, but, for backward compatibility, the original
ActionError classes were left in place.

 So, what’s wrong with the ActionError classes? The design of the <html:errors>
tag encouraged developers to place HTML markup in the messages file. But this
can cause problems when the messages are reused in a different context, say in a

Since
Struts 1.1

422 CHAPTER 13

Localizing content
JavaScript. It also confuses language translators who may also be working with
the file.

 The ActionMessages tag (org.apache.struts.taglib.html.MessagesTag) pro-
vides additional functionality so that developers do not need to mix markup with
messages. (See chapter 10 for more about the Struts JSP tags.)

 Since they are meant as an enhanced version of the ActionErrors set, by
default the message tags will use the ActionErrors queue. This makes it very easy
to drop in ActionMessages where ActionErrors were previously used.

 If you would like to pass both messages and errors, there is also a separate
ActionMessages queue. To access the alternate queue, just call saveMessages
instead of saveErrors

saveMessages(request,messages);

and then specify messages=true in the JSP tag:

<html:messages id="message" messages="true">
<bean:write name="message"/>

</html:messages>

The messages queue can be used to send confirmation notices to the page, like
Record inserted or Message sent. This leaves the errors queue open for actual Hous-
ton, we have a problem alerts. The same page could use the messages markup (see
the previous code snippet) and also use the following markup to also display
errors elsewhere on the page:

<html:messages id="error" messages="false">
<bean:write name="error"/>

</html:messages>

In these examples, it is important to note that while the <bean:write> tag is being
used to output localized data, it is not is not the locale-sensitive component. The
<html:messages> tag pulls localized data from the ActionMessages or Action-
Errors object, which in turn retrieves it from the default MessageResource object
(a ResourceBundle).

 In section 13.3, we look at other ways standard components can be used to out-
put localized data. Several of the Struts tags do have locale-sensitive features,
which we discuss in section 13.2.6.

13.2.6 Locale-sensitive JSP tags

We cover the fundamentals of using the Struts JSP tags in chapter 10. If you’re just
getting started with the Struts tags, you should read that chapter first. Here we
focus on the localization features of the Strut tags.

Struts’ internationalized components 423
 As shown in table 13.6, the Struts tag libraries include several locale-sensitive
tags. These tags can retrieve text messages from a resource bundle and customize
the presentation for the instant user.

Most of these tags simply offer keys for retrieving the alternative text and advisory
title for an element. The image-related tags accept additional key properties to
allow both the sources of the image and its alternate text to be localized.
Table 13.7 summarizes the common property names in the locale-sensitive tags.
The tags that use the property are listed as part of the description.

Table 13.6 Locale-sensitive tags

bean:message
bean:write
html:errors
html:html
html:image
html:img
html:messages
html:option
html:button
html:cancel
html:checkbox

html:file
html:hidden
html:multibox
html:password
html:radio
html:select
html:submit
html:text
html:textarea
html:form
html:link

Table 13.7 Common property names in locale-sensitive tags

Property Description and tags

arg0 ...
arg4

Parametric replacement values, if any. [message write]

bundle The name of the application scope bean under which the MessageResources object
containing our messages is stored. If not specified, the default is used. [message
write image img option errors messages]

key The message key of the requested message that must have a corresponding value in
the message resources. If not specified, the key is obtained from the name and prop-
erty attributes. [message write image img option]

locale The name of the session scope bean under which our currently selected Locale object
is stored. If not specified, the default is used. [message write image img errors
messages]

altKey,
titleKey

The message resources key of the alternate text and advisory title for this element.
[button cancel file hidden image img multibox password radio reset
select submit text textarea]

titleKey The message resources key for the advisory title. (No alternative text.) [form link]

424 CHAPTER 13

Localizing content
Let’s take a closer look at the more interesting tags: <bean:message>, <bean:write>,
<html: errors>, <html:messages>, <html:html>, <html:image>, <html:img>, and
<html:option>.

<bean:message>
<bean:message> is the primary JSP tag for rendering localized messages and labels.
Although other tags can render error and confirmation messages, <bean:mes-
sage> is most often used in HTML forms:

<html:cancel><bean:message key="button.cancel"/></html:cancel>

<bean:write>
In the Struts 1.1 release, <bean:write> gained the format property. This provides a
way to apply a standard formatting template against the value being written:

<bean:write name="inputForm" property="amount" format="$#.##"/>

A formatKey property is provided that reads the template from the resource bundle:

<bean:write name="inputForm" property="amount" formatKey="pattern.currency"/>

A locale property is also provided if another Locale object is to be used instead of
the framework’s default. The locale property indicates the name of a session-
scope attribute:

<bean:write name="inputForm" property="amount" formatKey="pattern.currency"
locale="myLocale"/>

STRUTS TIP Don’t use custom tags to format data. Instead, localize data inside an Ac-
tionForm or (even better) on the business tier. You can easily pass the
Struts Locale object to the ActionForm (or your business bean) and apply
the localization in the getter. To store the user’s Locale object in your Ac-
tionForm, add a locale property and put this code in the reset method:

 HttpSession session = request.getSession();
 if (session!=null) {

 setLocale((Locale)

pageKey,
srcKey

The key of the message resources string specifying the image for this input tag, either
as an application-relative path or as a source URL. [image img]

formatKey Specifies a key for a format string to retrieve from the application resources. [write]

Table 13.7 Common property names in locale-sensitive tags (continued)

Property Description and tags

Since
Struts 1.1

Since
Struts 1.1

Struts’ internationalized components 425
 session.getAttribute(Action.LOCALE_KEY));
 }
 else {
 setLocale(Locale.getDefault());
 }

You can then use the locale property with the standard MessageFormat
objects. For more about using display properties to transform output, see
chapter 5.

<html:errors> and <html:messages>
Both <html:errors> and <html:messages> will automatically print pending error
messages from the resource for the user’s locale. No additional effort is needed to
localize these messages; it’s already been done. For more about using the
<html:errors> and <html:messages> tags in your application, see chapter 10.

<html:html>
Many browsers (or user agents) also support localization. Things that an interna-
tionalized user agent might localize include:

� Glyph variants for high-quality typography

� Quotation marks

� Decisions about hyphenation, ligatures, and spacing

To indicate to a user agent which language is being used on a page, you can pro-
vide a lang element within the standard <HTML> tag that encloses the rest of the
markup. The corresponding <html:html> JSP tag creates this element automati-
cally when Struts localization is enabled.

 This could result in

<html:html> -> <html lang="en">

or

<html:html> -> <html lang="fr">

depending on the user’s locale.
 As a practical matter, your pages should localize fine without this element, but

including it is a nice touch and may save you some trouble later.

<html:image> and <html:img>
Images in a web application often contain language elements. Images may also
relate to a particular region or culture. The <html:image> and <html:img> tags

426 CHAPTER 13

Localizing content
provide properties that help you localize the images and image buttons in an
application.

 Consider these three factors when localizing an image or image button:

� The source of the binary image file

� The alternative text associated with the image

� The advisory title associated with the element

NOTE The roles of the alt and title properties overlap when applied to an
image. Refer to the HTML specification [W3C, HTML] for guidance on
how these properties are to be used.

Each of these elements is represented by a property to the <image> and tags,
as shown in table 13.8. The page property allows the image URL to be given in
application-relative terms.

To support localization, a set of corresponding properties can be used instead
that read the text or path from the resource file using a key. Table 13.9 describes
these properties.

Table 13.8 The alt, title, src, and page properties

Property Description

alt The alternate text of this element

title The advisory title for this element

src The URL of this image

page The application-relative URI of the image

Table 13.9 The altKey, titleKey, srcKey, and pageKey properties

Property Description

altKey The message resources key of the alternate text of this element

titleKey The message resources key of the advisory title for this element

srcKey The message resources key of the URL of this image

pageKey The message resources key of the application-relative URI of the image

Localizing a Struts application 427
These properties can be specified just like the corresponding properties:

<html:image pageKey="images.sign" altKey="images.sign.alt"
titleKey="images.sign.title">

This tag will insert the values assigned to the given keys from the resource file for
the instant user’s locale. This allows you to specify image files appropriate to each
locale, along with translated alt and title elements.

<html:option>
The <html:option> tag usually accepts a text and a value property. The text
property is displayed to the user. If the option is selected, the value is submitted
with the request. To localize the <option> tag, you can specify a key in place of the
text. This key will look in the resource file for the instant user and insert the value
assigned to the given key.

Other properties
Each of these tags—message, write, errors, messages, image, img, and option—
accept two other properties (shown in table 13.10) that you can use to fine-tune
your localization effort.

These properties are provided because developers sometimes use separate bun-
dles for certain elements, like images. An alternative locale is also sometimes use-
ful in this case. In addition, these properties can be helpful when developers are
migrating to Struts from another localized application.

13.3 Localizing a Struts application

Let’s put it all together and step through the process of localizing a Struts
application.

Table 13.10 The bundle and locale properties

Property Description

bundle The name of an application-scoped attribute for an alternate MessageResources
object

locale The name of a session-scoped attribute for an alternate Locale object

428 CHAPTER 13

Localizing content
13.3.1 Enabling localization

There are just three points on the Struts localization checklist:

� Is the locale servlet parameter set correctly?

� Is the default application resource bundle parameter set correctly?

� Are localized JSP pages using the <html:html> tag?

Setting the locale servlet parameter
By default, the Struts framework will provide a Locale object in each user’s session
that any locale-sensitive component can use. Whether or not this object is auto-
matically created is controlled by the locale parameter to the ActionServlet,
which you set in the web application deployment descriptor (see chapter 4):

<init-param>
<param-name>
locale
</param-name>
<param-value>
true
</param-value>
</init-param>

The default is true, which enables localization.

Setting the application resources servlet parameter
The Struts locale-sensitive components rely on the MessageResources class, which
in turn relies on the framework Locale object and the default application
resource bundle. The location of the application resource file is also specified as a
parameter to the Struts ActionServlet. The default is an empty string, so it is
important that you specify a name for this file:

<init-param>
<param-name>
application
</param-name>
<param-value>
application
</param-value>
</init-param>

This tells the ActionServlet to look for a file named application.properties along
the CLASSPATH. If a specific locale is requested, the ActionServlet will look for a file
named application_xx_XX.properties, where _xx_XX is a given locale, like _fr_CA
or _es_US (see also section 13.2).

Localizing a Struts application 429
You can also specify the default resource bundle as being part of a package:

<init-param>
<param-name>
application
</param-name>
<param-value>
resources.application
</param-value>
</init-param>

This example implies that your resources files can be found under

<app-context>/WEB-INF/classes/resources/application.properties
<app-context>/WEB-INF/classes/resources/application_fr_CA.properties
<app-context>/WEB-INF/classes/resources/application_es_US.properties

or packaged as a JAR in the WEB-INF/lib folder.
 Generally, you would want to keep the properties with your other source files,

and so you should make copying these into the classes directory part of the Ant
build process. If your source files were under /WEB-INF/src/java, such an Ant task
would look like this:

<target name="resources">
<copy todir="classes" includeEmptyDirs="no">
<fileset dir="src/java">
<patternset>
<include name="**/*.properties"/>
</patternset>
</fileset>
</copy>
</target>

This copies any *.properties files found in any of your source packages to the
classes file tree.

 Whenever the Properties files are stored in a directory outside /WEB-INF/, be
sure to build the application after any change to the resource Properties files. The
updated file must be deployed under classes where the application can find it.
Whether or not an updated resource bundle is automatically reloaded depends
on your container.

STRUTS TIP Use Ant to build and deploy your application for you. Along with compil-
ing your Java classes, Ant can also copy source, configuration, and JSP
files from your source tree to your deployment tree. See the Artimus ap-
plication in chapter 15 for a working example.

430 CHAPTER 13

Localizing content
See chapter 4 for more about the ActionServlet parameters and Ant build files.

13.3.2 Using the framework Locale object

With localization enabled, the Struts ActionServlet places a Locale object in the
user’s session. The object is placed there for the benefit of the entire application.
As we explained in section 13.2, the Struts i18n components will automatically
make use of this object when it is present, and your components can do the same.

Checking the user’s locale
You can retrieve the framework Locale object in an Action, like this:

Locale locale = request.getSession().getAttribute(Action.LOCALE_KEY);

If you base your Actions on the BaseAction class in the Scaffold package, you can
use this instead:

Locale locale = getLocale(request); // BaseForm version

You can then pass this object to any locale-sensitive method, including those in
the standard java.text package. This makes it easy to create localized data in the
Action and pass it along to the presentation layer, ready to display.

Changing the user’s locale
When the user’s session is first created, the ActionServlet will simply create a
default Locale object for the user. If the user is not in the default Locale for the
application server, your application will need to replace the Locale object. Since
Locale objects are not mutable, you do have to replace it with a new object. Of
course, the best place to do this is in an Action, using code like this:

Locale locale = new Locale(myForm.getLanguage(),myForm.getCountry());
HttpSession session = request.getSession(true);
session.setAttribute(Action.LOCALE_KEY,locale);

If your Action is based on the Scaffold package’s BaseAction, you can do this
instead:

Locale locale = new
 Locale(myForm.getLanguage(),myForm.getCountry());
setLocale(request,locale);

If your application only localizes by language, an empty string can be used for
the country.

Localizing a Struts application 431
Using the Struts locale-sensitive components
With Struts localization enabled, and the user’s framework Locale object property
set, the Struts locale-sensitive components will automatically localize data. See sec-
tion 13.2 for more about using these components in your application.

13.3.3 Placing labels and messages in Properties files

By default, Struts uses a standard Properties file for the labels and messages used
in your application. This is a simple text file that you can create with any text edi-
tor. The file itself is just a list of key-value pairs. The key is what your application
passes in its request. The value is the label or message to be returned. See section
13.2.3 for more default properties files.

13.3.4 Creating language-specified Properties files

Your application will have a Properties file for every locale you will support. If
properly named, these files will be loaded automatically. You just need to get the
values translated and the new file stored where the application can find it (see sec-
tion 13.3.1). If the application cannot find a key in the resource for a user’s locale,
it will use the resource for the default locale instead.

13.3.5 Specifying an appropriate key in localization-aware components

As outlined in section 13.2, the Struts locale-sensitive components will accept a
key into the resource bundle and output the appropriate label or message for the
current user. For more about each of these components, see section 13.2.

13.3.6 Using <bean:message> with other components

For components that do not have localization built in, you can usually use
<bean:message> to provide the localized message. For example, to create a local-
ized Cancel button, have <bean:message> provide the value:

<html:cancel><bean:message key="buttons.cancel"></html:cancel>

For a user in a German locale, this might render a button labeled Abbrechen. In a
Norwegian locale, it might render Kanseller.

432 CHAPTER 13

Localizing content
13.4 Localizing other components

To complete your internationalization task, you must also localize other parts of
your application. These include any Struts add-ins, such as the Struts Validator
and Tiles, as well as the collections your Action may pass to HTML elements.

13.4.1 Localizing the Struts Validator

The Struts Validator, covered in chapter 12, uses an XML configuration file to
validate user input. This configuration can be used to generate JavaScript using
a JSP tag. The same configuration can also be used by the Struts ActionForm
validate method.

 The Validator’s configuration file is composed of one or more FormSet ele-
ments, which correspond to the form-bean elements in the Struts configuration.
Each FormSet is composed of a collection of Field elements. Each Field element
can have its own validation settings. The settings include labels and messages to
display when the Field element’s validation fails.

 All the labels and messages used by the Validator are linked to the Struts mes-
sage resource and will be automatically localized. If additional localization is
needed, say to verify the format of a postal code or telephone number, you can also
define a locale-specific FormSet element. A locale-specific FormSet element acts like
a subclass of the default FormSet—you can just define the fields that change.

 Given a default FormSet like this:

<form name="registrationForm">
<field property="name" depends="required">
<arg0 key="registrationForm.name.displayname"/>
</field>
<field property="address" depends="required">
<arg0 key="registrationForm.address.displayname"/>
</field>
<field property="postOffice" depends="required">
<arg0 key="registrationForm.postOffice.displayname"/>
<var>
<field property="postalCode" depends="required,mask">
<arg0 key="registrationForm.postalCode.displayname"/>
<var>
<var-name>mask</var-name>
<var-value>^\d{5}\d*$</var-value>
</var>
</field>
</form>

an application can provide an alternate validator for the postalCode field like this:

Localizing other components 433
<form name="registrationForm" locale="fr" country="CA">
<field property="postalCode"
depends="required,mask">
<arg0 key="registrationForm.postalCode.displayname"/>
<var>
<var-name>mask</var-name>
<var-value>^[a-zA-Z]*$</var-value>
</var>
</field>
</form>

For more about the Struts Validator, see chapter 12.

13.4.2 Localizing Tiles

We covered the Tiles framework in chapter 11. As you saw, the powerful Tiles Def-
inition feature allows you to create a high-level description of your application
pages that builds the view up from smaller fragments. You can store the Defini-
tions in an XML configuration file, much like the configuration files for Struts and
the Struts Validator.

 Just as you can create a Properties file for specific locales, you can also create
a Tiles configuration file for each locale. You follow the same conventions. If
you needed a Tiles configuration file for the French Canadian locale, it would
be named

tiles_fr_CA.xml

and stored next to the default tiles.xml file.
 In the locale-specific file, you need to replace only the Definitions that change.

If an application does not find a Definition in a configuration for the user’s
locale, it uses the Definition in the default configuration instead.

 This makes it very easy to create entire sub-sites that are locale specific. Just
create a Tiles Definition file for each locale and change the paths in the Defini-
tions to point to the localized version of each Tile. That way, you can reuse the lay-
out tiles so that the site has a consistent look and feel, but change all the content
tiles so that the site reads well in each locale.

13.4.3 Localizing collections

Some of the Struts JSP tags display select lists to the user based on a collection.
Since these collections are often passed to the page from the Action, the Action
has the opportunity to localize the collection before it is passed along.

434 CHAPTER 13

Localizing content
<html:options>
The <html:options> tag supports two parallel lists: one for the values (what will be
returned to the server for this field) and one for the labels (what the user sees in
the combo box). The challenge is to select the labels in a locale-sensitive way with-
out modifying the values.

 In the Action, create an array or ArrayList (java.util.ArrayList) under a
request attribute named values for the values component. Build a corresponding
ArrayList or array under labels that does the MessageResource lookups based on
the user’s locale.

 The MessageResource can be obtained from the servlet:

org.apache.struts.utils.MessageResources resources = servlet.getResources();

The locale can be obtained from the request:

Locale locale = request.getSession().getAttribute(Action.LOCALE_KEY);

And together they are used to look up the localized messages for each value:

String[] messages = new String[keys.length];
for (int i=0; i<keys.length; i++) {
 messages[i] = resources.getMessage(locale,keys[i]);
}

To save you the trouble of coding this, the Scaffold package provides a get-
Messages method in the MessageUtils class (org.apache.scaffold.text.Mes-
sageUtils) that does the same thing:

String[] messages = MessageUtils.getMessages(resources,locale,keys);

A similar method can also return a collection of LabelValueBeans if you prefer to
use those instead:

ArrayList labelValueBeans =
MessageUtils.getLabelValueBeans(resources,locale,keys);

For more about the <options> tag and LabelValueBeans, see chapter 10.

<html:multibox>
The <html:multibox> tag uses a collection of values to generate a set of checkbox
elements. If the values and labels match, you can generate a set of checkboxes
like this:

<logic:iterate id="item" property="items">
 <html:multibox property="selectedItems">
 <bean:write name="item"/>
 </html:multibox>

Summary 435
 <bean:write name="item"/>
</logic:iterate>

If you need localized labels for your checkboxes, you can use MessageUtils.
getLabelValueBean() to create localized labels, and use those instead:

<logic:iterate id="item" property="labelValueBeans">
 <html:multibox property="selectedItems">
 <bean:write name="item" property="value"/>
 </html:multibox>
 <bean:write name="item" property="label"/>
</logic:iterate>

13.5 Summary

In this chapter, you learned why so many developers localize their applications
and how Java internationalization works. Since Struts builds directly on Java’s
internationalization, localizing Struts components takes very little effort. The pop-
ular Struts add-ins, Jakarta Tiles and the Struts Validator, are also easy to localize.
The same techniques used to localize other Struts components can be applied to
other objects, such as Collections.

 This chapter covered only the highlights of the Java internationalization fea-
tures. For more extensive coverage, see the Sun Java Tutorial, Internationalization
Trail [Sun, i18n].

14Using data services
with Struts
This chapter covers
� Understanding why and how applications use databases and other

data services
� Integrating your application with a data service
� Using layers when connecting with a data service
� Defining the business layer of an application
� Connecting data access components with the business layer
� Connecting other data services, such as search engines and content

syndication, with the business layer
437

438 CHAPTER 14

Using data services with Struts
There is a tendency to mistake data for wisdom.
—Norman Cousins (1912–1990), American editor, author

14.1 Stepping out

In addition to storing and retrieving their own data, today’s applications need to
access a variety of data maintained by others. Each system might have its own
method, or protocol, for transmittal and storage. These include authentication
services using the Lightweight Directory Access Protocol (LDAP) and publishing
systems using XML.

 Today’s applications may also need to offer different “perspectives” on the
same data. In addition to standard database retrievals, an application might
require full-text search capabilities so that people can find the straws lost in our
abundant haystacks. An application might also want to share its hard-earned con-
tent with others, using services like Rich Site Summary (RSS).

 This chapter shows how your application can attach to various data services like
these without compromising its design. We explore specific examples of using a
database, a search engine, and content syndication in an application, but the tech-
niques shown should be applicable to any data service. The strategies follow the
classic Layers pattern [POSA] that is used throughout the Struts framework.

 Let’s look at how a familiar duo—a JDBC driver and its database—fit into the
Layers pattern.

14.1.1 JDBC from a patterns perspective

From a patterns perspective, the JDBC driver used by a conventional database is
part of the integration layer, while the actual database lives in the resource layer.

 To the developer, the exchange between the driver and the database is transpar-
ent. It appears as if the application is talking directly to the database, but in fact Java
is providing a thin layer between the two components. This arrangement is illus-
trated in figure 14.1. The benefit of this approach is that a developer can change
databases without changing how the databases talk to the driver. All JDBC drivers
accept SQL statements in the same way, even if the underlying databases do not.

Uncovering the business layer
The driver:device, or facade, pattern used by the JDBC driver is a strategy you can
use when integrating any data service. In general, all your applications want to say
is, “I have this piece of data; take care of it for me” or “What is the rest of the

Stepping out 439
record for this identifier?” The design goal is to provide an interface (or driver)
that the application can use without it having to know anything about the data ser-
vice behind that interface.

 The part of an application that says, “This is what I have and this is what I want”
is commonly called the business layer, or Model (the M in MVC). It’s what makes
your application different from all other applications.

 Just as a Java application connects to a JDBC driver (which connects to a data-
base), most pundits [Go3] advise that you have your application connect to a busi-
ness layer, which then connects to an integration layer. The integration layer
accesses the database and returns the result to the business layer, as shown in
figure 14.2.

The hallmark of the Layers pattern is that a class within a given layer may only
interact with other classes in that layer or with classes in an adjacent layer. By layer-
ing your code, coupling within the application is reduced, and your application
becomes easier to maintain and enhance [Ambler]. We put this principle into
practice throughout this chapter as we attach different data services to a single
application.

 Of course, like a lot of good advice, creating separate business and integration
layers is a step often ignored in practice. Many applications connect directly to the
resource layer (and have developers who live to regret it). The business and inte-
gration layers are still there, but they are buried in SQL commands, which makes
it hard to see the forest for the trees.

Database driver
Application

Actual database

Figure 14.1 The application talks to the driver, and the driver talks
to the database.

Database
Application

layer
Business

layer
Integration

layer
Resource

layer (JDBC)

Figure 14.2 The application that Jack built [Jack]. The application connects to the
business layer, which connects to the integration layer, which connects to the resource
layer (JDBC), which connects to the database.

440 CHAPTER 14

Using data services with Struts
14.1.2 Introducing our data services

For the purposes of this chapter, let’s follow the best practice and hook Struts up
to different data services using the recommended layers [Go3]. We start with a
working example of a business layer and then hook that up to different imple-
mentations of the integration and resource layers.

 First, we connect to a JDBC database service using the StatementUtils and
ResultSetUtils classes from the Scaffold package. This is a simple, baseline strategy
that uses reflection and metadata to transfer a SQL ResultSet into a collection of
JavaBeans. You have to define the JavaBeans and SQL statements yourself, but the
system is easy to understand and use.

 Then, we step out of the “database box” and hook up with Lucene, a popular
full-text search engine. Lucene is another open source product hosted at Jakarta.
Adding Lucene to our resource layer is an important proof of concept. Here we
show that a good layered design lets you integrate new services into your applica-
tion without disruption.

 Finally, we demonstrate how easy it can be to continue adding services, like Rich
Site Summary (RSS), to your application. RSS is a great way for your application to
selectively share information with others and is already a web services standard.

 Our focus throughout the chapter is mainly on the techniques used to attach
these products to your business layer, rather than the products themselves. The
Struts framework is model-neutral and can be used with any general-purpose data
access tool. You can deploy these examples as is or use them as a guide to attach-
ing your own data-access solution.

14.2 Exploring the business layer

In the introduction to this book, we discussed the Model-View-Controller (MVC)
pattern. Using this terminology, the business layer is part of the Model along with
the aforementioned resource and integration layers. Development projects start
by designing some type of business layer (even if they don’t realize it) and then
attach the resource and integration layers (even if they are all jumbled together).
Accordingly, we first explore the ins and outs of the business layer and then attach
our database system.

14.2.1 Struts—bringing your own Model

I like to say that Struts is a BYOM (Bring Your Own Model) framework. It brings
data up from the HTTP layer and stops. Getting data to the Model and back again
is an exercise that the framework leaves to the developer. The Struts User Guide

Exploring the business layer 441
[ASF, Struts] recommends that we fill this void with business logic beans, also known
as business objects. But just what are business objects, anyway? Not surprisingly, they
are the movers and shakers of the business layer.

14.2.2 Defining business objects

We’ve already touched on business objects in chapter 8, as part of our discussion
of Action objects. In general terms, the business objects can be the hardest part of
an application to describe because they are the application. They represent the
logic that makes your application different from every other application: your API.

 To define the business objects, you must first isolate your application’s core
business logic. If your application relies on a JDBC database, then most of your API
may be represented by your SQL queries. If so, your business object will look like a
punch list of the queries your application uses (or will use). If you are using pre-
pared statements, there will also be a close relationship between the replaceable
parameters and the parameters to your bean’s methods.

 Here’s a sample query from a poll application. It’s used to tell whether some-
one from a given IP (host) has already voted in an online poll:

public static final String RESP_VOTED =
 "SELECT COUNT(*),poll,host FROM polls_resp " +
 "WHERE poll=? AND marked=0 AND host=? GROUP by poll;";

From a business logic perspective, however, we don’t really care what the SQL
command looks like. We just want to ask if a given voter is eligible to vote in a
given poll. The signature for an eligibility method could look like this:

boolean isEligible(String poll, String host);

The method takes just two Strings, one to identify the poll and another to iden-
tify the voter. There’s no mention of SQL or HTTP, just the bottom line of who
and what.

 From a web application’s perspective, the who is usually an IP address (or the
RemoteHost). The what is something that would be passed in from a data-entry
form (as represented by a Struts ActionForm). Here’s how a Struts application
might call the isEligible() business method. Remember that the method is
only looking for Strings; it doesn’t care where they come from:

boolean voted = Access.isEligible(
 pollForm.getPoll(), request.getRemoteHost()
);

This call could be used in a Struts Action class. The Action just takes data from the
ActionForm and request, both denizens of the web tier, and passes it along to the

442 CHAPTER 14

Using data services with Struts
business object. The Action has no clear idea what the business object does with
the data or what it means to be “eligible.” It just knows that it needs to pass these
Strings, catch this boolean, and watch for an exception. If the method comes
back false, the Action can do one thing. If it comes back true, the Action can do
something else. But that’s all the Action needs to know.

 This same pattern would hold true for any client that used this business object.
The client acquires the data and interprets the result, but determining the result
is delegated to another object.

 So, is this a Business Delegate pattern? Yes, this strategy is an example of the Busi-
ness Delegate pattern described in Core J2EE Patterns [Go3].

 Does this work with Enterprise JavaBeans? Yes. You could change the implementa-
tion of a business method to use EJBs, and the rest of the application would not
know the difference. The data requirements of a business method are the same
regardless of the technology used to access the persistent store.

14.2.3 Designing business objects

To be an effective middleman, a business object should avoid dependencies on
other classes and be as self-contained as possible (for example, it should be weakly
coupled). Ideally, business methods should accept and return properties using ordi-
nary Java types and throw their own set of exceptions.

 So, business logic beans should:

� Represent the core logic of your program—its API

� Accept and return native Java types and classes as parameters when possible

� Define their own class of exceptions

� Expose minimal dependencies to other classes

Why a bean? A business object doesn’t really have to follow the JavaBean specifica-
tion. The other components of its design are much more important than the
object’s calling conventions. But if you are creating a new class these days, it’s just
as easy to follow the JavaBean design patterns, which cost little and gain much.
For more about designing JavaBeans, see Sun’s JavaBean Tutorial Trail [Sun,
Trails] and the JavaBean Specification [Sun, JBS].

 Why throw our own exceptions? First, to provide encapsulation. If we throw a SQL
exception, we reveal a dependency on SQL, even if we decide to use something else
later. Second, to provide control. By throwing its own version, a business object can
interpret an exception and provide a more meaningful response. By using chained
exceptions (see chapter 8), a business object can throw its own exception along

Exploring the business layer 443
with any underlying exception from another package. For more about writing
Exception classes, see the online article “Exceptional Practices” [Goetz].

 For more about business logic and the business object pattern, see section 14.1
of the J2EE Blueprints [Sun, Blueprints].

14.2.4 Design consequences

Table 14.1 describes some general consequences of using a business layer and
business objects in your applications.

14.2.5 Mixing business with Actions (not)

If a business layer is not used, there are number of Struts-specific consequences
to consider:

� When people write their first Struts application, they often access a database
directly from an Action class. This does work, but applications designed in
this way can grow to become difficult to expand and maintain. The prob-
lems are similar to those discovered with Model 1 JSP applications.

� Any logic implemented in an Action cannot be used outside of the Struts
framework or properly tested with tools like JUnit [JUnit].

� Data access, error handling, and other resource-layer code may be dupli-
cated among Actions, and reused only through cut and paste.

� Critical elements, like SQL commands, can become buried and difficult to
review.

Table 14.1 Design consequences of separating the business layer

Consequence Explanation

Reduces coupling,
improves manageability

A business object reduces coupling between the client and the implemen-
tation details. This makes it easier to manage changes to an implementa-
tion, since the details are encapsulated within the business object.

Introduces an additional
layer

Some people might feel that the integration layer is unnecessary and want
to connect to the resources directly.

Provides a simple, uniform
interface

A business object’s signature shows exactly what inputs are required, and
what output is desired, without the complication of implementation
details.

May hide inefficiencies Since the implementation is hidden, a developer may not realize that a
remote resource is being accessed or that several queries are being exe-
cuted and be careless with how often a business method is invoked.

444 CHAPTER 14

Using data services with Struts
� Actions become the application interface, encouraging developers to for-
ward requests between Actions.

� When Actions become the API, new mechanisms are needed, either to cre-
ate intermediate query strings or to have an Action check for semaphore
objects in the request.

� Actions become complex and bloated as they try to handle business logic
requests from both clients and other Actions.

� As Actions become interdependent and cohesive, the application can
devolve into a morass of spaghetti code, as we have often seen happen with
Model 1 JSP applications.

As discussed earlier, a better approach is to continue with the classic MVC pat-
tern and cleanly separate what happens on the web and application tiers (the
View and the Controller) from what happens on the business tier (the Model).
For more about MVC, see the introduction to this book and the Struts User
Guide [ASF, Struts].

14.2.6 A simple example

Let’s take a look at the business API for the Artimus sample application. The bal-
ance of the chapter will then describe attaching a database to this API and then
explain how to add the Lucene search engine to the mix.

 Artimus is an application for posting news articles. The articles can be
searched in various ways and also syndicated. It’s a simple but useful application.
Let’s look at the initial business requirements.

Artimus—initial business requirements
Simply put, the initial business requirements for Artimus are:

� Store the title, author, and content of an article.

� List recent articles by descending entry order (newest to oldest).

� Filter and list articles by title, author, content, and other properties.

We’ll be adding more requirements to this list later, but first let’s take a look at a
business API that realizes this set.

Artimus—starter API
A starter API for Artimus is shown in table 14.2.

Using ProcessBeans and JDBC with Struts 445
For the balance of this chapter, we implement the Artimus business requirements
using APIs like this one. We also add requirements regarding full-text searches
and content syndication and then implement the requirements without changing
the business API.

14.3 Using ProcessBeans and JDBC with Struts

There are several products that offer object-to-relational (O/R) mapping between
a hierarchy of JavaBeans and a relational database. Products like these let you con-
centrate on the design of your object hierarchy and then automatically generate
the SQL code needed to map your hierarchy to a relational database. Scott
Ambler has written two classic white papers on O/R modeling and designing a
persistence layer, both of which we highly recommend [Ambler].

 The ProcessBean class uses the techniques broadly described in the Struts
User Guide [ASF, Struts] in its discussion of business logic beans. These tech-
niques include:

� Encapsulating the functional logic of an application

� Representing the state of a pending transaction, such as a shopping cart

� Avoiding use of classes from the web tier (for example, the http packages)

� Avoiding any code that presumes interaction with a web application

� Providing an execute (or equivalent) trigger method, to engage a specific
behavior

In addition, a ProcessBean

� Uses a bulk setter to populate itself from another JavaBean

� Uses a bulk “populator” to copy values to another JavaBean

The ProcessBeans class is not an implementation of O/R mapping. Rather than
encapsulate or hide the SQL, the ProcessBeans package provides a structured
place where you can insert your query and get a collection of JavaBeans in return.

Table 14.2 Sample API for Artimus application

Requirement Method

Store the article int insert (Integer article, String title, String creator, String
content)

List recent articles Collection searchLast (int count)

Filter articles Collection searchTitle(String value)

446 CHAPTER 14

Using data services with Struts
It also autopopulates your model beans from other beans (for example, Action-
Forms) and moves data from a SQL ResultSet into a collection of your JavaBeans
as quickly as possible. This final step may resemble O/R mapping, but the overall
strategy is far too simple to earn the O/R stripe.

14.3.1 Introducing ProcessBeans

To get started, it’s useful to think of the ProcessBeans as typed versions of the
Struts ActionForm beans. The ActionForm beans need to use only String and
boolean properties, mostly to remain compatible with HTTP. The ProcessBeans
don’t have that restriction and can use whatever types best represent your data.

 So where you might have an ActionForm like this:

private String account = null;
public String getArticle() {
 return (this.account);
}
public void setArticle(String account) {
 this.account = account;
}
private String amount = null;
public String get Amount() {
 return (this.amount);
}
public void set Amount(String amount) {
 this.amount = amount;
}

you could have a ProcessBean like this:

private Integer account = null;
public Integer getArticle() {
 return (this.account);
}
public void setArticle(Integer account) {
 this.account = account;
}
private Double amount = null;
public Double getAmount() {
 return (this.amount);
}
public void set Amount(Double amount) {
 this.amount = amount;
}

Like ActionForm beans, ProcessBeans do not need to be direct representations of
the tables in some database. They represent the business model as realized by the
business API. Of course, the database will also represent the business model, and

Using ProcessBeans and JDBC with Struts 447
so the properties of these components will often intersect. Sometimes, the set of
properties may even be identical. But that is a coincidence and not a design goal.

 In relation to the database, the properties of a ProcessBean will intersect with
the values needed by a SQL query and the columns returned in a result set. This is
a necessity since the results of the queries are used to populate the ProcessBeans
(and vice versa). Sometimes these properties happen to be all the columns from a
single table. More often, the properties are a set of columns joined from several
tables, or a logical view.

 This is an important distinction. The purpose of the layers is to let the business
objects be business objects and let the database be a database. Coupling these
components too closely leads to brittle applications that are difficult to maintain.
Over time, the way a database stores values may change. Columns that were in one
table may be moved to another. Or the database may be replaced by some other
component, such as a search engine. For these reasons, and many others, it is
important for the resource and business layers to be loosely coupled and not
allowed to become a monolithic lump.

 So, again, ProcessBeans do not represent tables in a database; they represent
logical views of the database. What properties belong in these logical views is
determined by the business API.

 Is the logical view the presentation View described by the MVC pattern? The MVC pat-
tern would consider these separate objects. But, essentially, yes, we are talking
about the same set of properties. We were careful to use the phrase logical view
here, since the term has its own meaning in reference to databases. The same set
of values is simply transferred from one object to another along the way.

14.3.2 ProcessBeans as transfer objects

Since they are intended to carry data from one layer to another, ProcessBeans can
be seen as transfer objects, the flipside of ActionForm. Within the actual model,
each property of a process bean may be available separately. But to avoid having to
send each property individually, we collect them together into a single object that
can be transferred with as a single operation.

 Depending on the circumstances, some transfer objects may be read-only, or
immutable. Here, the values are set when the object is constructed and not allowed
to be changed later. (No public setters, or mutators, are provided.) Most often, this
occurs in Enterprise JavaBean environments where the database is remote and
updates are expensive. Immutable beans can specialize in displaying data as
needed while another bean is used for judicious inserts and updates.

448 CHAPTER 14

Using data services with Struts
 Since ProcessBeans are usually designed for use with local resources, they are
also usually read-write, or mutable. Like many transfer object implementations, a
ProcessBean uses a bulk mutator to set all its values at once. But unlike most trans-
fer objects, a ProcessBean will usually make good use of reflection in its bulk setter.

14.3.3 Populating ProcessBeans

The Struts ActionServlet autopopulates ActionForm beans from an incoming
HTTP request. The utilities Struts uses to do this can also be used separately and
can populate any bean from another.

 ProcessBean is actually an interface that defines two main signatures:

public Object execute() throws Exception;
public Object execute(Object parameters) throws Exception;

The ProcessBeanBase class provides an implementation of the execute(Object)
method that uses reflection to populate any properties provided by a subclass. To
work this wizardry, ProcessBeanBase uses methods from BeanUtils.

1.0 vs 1.1 In Struts 1.0, the BeanUtil class is provided in the Struts util package.
Post 1.0, it was moved to the Jakarta Commons and is provided as a stand-
alone package (jakarta.commons.BeanUtils). [ASF, Commons]

If you subclass your own ProcessBeans from ProcessBeanBase, the default imple-
mentation of execute(Object) can be used as is and doesn’t need to be overrid-
den. The magic of reflection will find whatever public properties you add.

 Is reflection performant? Yes. Each release of the JVM has made improvements in
the efficiency of reflection, and release 1.4 is a significant advance. The use of
reflection eliminates scads of custom code that simply calls getters and setters.
Instead, a single utility routine can be used throughout the application to do the
same thing. In practice, this utility code will tend to stay in the JVM’s execution
cache and be optimized by a Java HotSpot compiler and may be more performant
than any alternative.

14.3.4 Executing ProcessBeans

The other ProcessBean execute method has the ProcessBean do whatever it was
designed to do. This could be inserting data, returning a result, or whatever oper-
ation is required.

 The usual strategy is to create a base bean with the properties required by your
business model. This base object is then extended for each business process

Using ProcessBeans and JDBC with Struts 449
required by your model. To populate the bean, you can pass a Map (java.util.
Map) of the required properties to execute(Object). The default implementa-
tion will populate any match properties and trigger the execute method to finish
the job.

 The execute methods return an object. Usually, this will be a ProcessResult
object. The ProcessResult is designed to convey the result of a business operation
to another layer (making it another transfer object). The ProcessResult may con-
tain messages, data, or both, and it includes methods that can be used to auto-
mate processing the result.

 If the business operation returns data, the data is usually contained in a
ResultList object (org.apache.commons.scaffold.util.ResultList). This is
a Collection (java.util.Collection) with some helper methods to make it easy
to use with presentation pages. The ResultList is designed to take the place of a
ResultSet (java.sql.ResultSet) so that you can work with disconnected Java-
Beans instead.

 If you subclass your own model beans from ProcessBeanBase, you need to:

� Add your properties. The use of the object wrappers, such as Integer, is rec-
ommended.

� Override execute() to perform the appropriate operation.

Since the interface signature accepts and returns Object, be sure to document the
actual return type and the expected parameters.

14.3.5 Accessing data services

The ProcessBeans used by Artimus use a static class, named Access (org.apache.
artimus.article.Access), to connect the business layer to the resource layer.
This is not a requirement but simply a useful convention. The Access class repre-
sents the actual business API. The ProcessBeans represent the client objects using
the API.

 Under the hood, the Access class puts SQL commands together with SQL state-
ments and prepared statements and plays the role of data access object. If you
need to use more than one implementation, Access could be based on an inter-
face, with the ProcessBeans connecting to a singleton rather than a static class.

 The implementations of an Access class tend to be very simple. Scaffold pro-
vides some handy utilities for using SQL statements and prepared statements. The
Access class puts these together with the appropriate SQL command and the run-
time data passed by the bean. Listing 14.1 shows the findByArticle access
method (org.apache.artimus.article.Access.findByArticle).

450 CHAPTER 14

Using data services with Struts
public static final void findByArticle(
 Object target,
 Integer key) throws ResourceException {

 findElement(target,key,ARTICLE_SELECT_KEY);

 } // end findByArticle

The static findElement method is provided by a base Access class. It in turn calls
one of the Scaffold SQL utilities (org.apache.scaffold.StatementUtils). The
implementation is shown in listing 14.2.

public static final void findElement(
 Object target,
 Object key,
 String command) throws ResourceException {
 try {

 StatementUtils.getElement(null,target,
 getCommand(command),key);
 }
 catch (SQLException e) {
 throw new ResourceException(e);
 }
 } // end findElement

The getElement method populates the target JavaBean in exchange for the
parameters shown in table 14.3.

Listing 14.1 The findByArticle access method

Listing 14.2 The findElement access method

Table 14.3 StatementUtils.getElement parameters

Parameter Purpose
Value of the parameter

in listing 14.2

resource The name of a data resource; null indicates the default. null

target The bean that the program should populate with the match-
ing columns from the first row in the result set.

target

command The SQL statement that the program should execute. The
result set the statement generates will be used to populate
the target JavaBean.

getCommand(ARTICLE
_SELECT_KEY)

Using ProcessBeans and JDBC with Struts 451
Most of the other basic data access methods in Scaffold are based on a similar util-
ity, getCollection (org.apache.commons.scaffold.sql.StatementUtils.
getCollection). In this method, instead of populating the target bean, the target
is used as a factory to instantiate a bean for every row in the result set.

 The Scaffold StatementUtils package provides several convenience signatures
for passing common replacement parameters, like a String or an Integer. Under
the hood, these methods all lead to the same executeUpdate or executeQuery
method. These methods extract the replacement parameters from an array and
match them up with the parameters in the SQL queries. The convenience signa-
tures simply take care of creating the array for you.

 The getCommand method in listing 14.2 returns an ordinary SQL statement
from a standard Properties file. This keeps the SQL queries out of the Java code
and puts them where a database administrator can work with them. In the
sql_article. properties file, our query is just listed as

article.select.key = SELECT
article,marked,contributed,contributor,creator,cost,title,content FROM
artimus_article WHERE article=?;

along with the other article queries.

14.3.6 Following a typical flow

The high points of a typical workflow using a ProcessBean are:

� The Struts ActionServlet passes a populated ActionForm to the perform or
execute method of an Action.

� The Action creates, populates, and executes the appropriate ProcessBean.

� If errors occur, the Action catches the exceptions and routes control to an
error or input page.

� If the operation is successful, the Action usually refreshes the ActionForm
from the bean and posts the ResultList object to the request context.

We’ll return to this topic later in the chapter in our discussion of helper actions.
For now, let’s look at a working example from Artimus.

14.3.7 Coding a business activity

Let’s look at the code needed to provide the view-article-by-ID activity in Artimus.
 The Struts ActionServlet passes a populated ActionForm to the perform or

execute method of an Action. The ActionForm and Action are specified in the
Struts configuration, using settings like these:

452 CHAPTER 14

Using data services with Struts
<!-- Article Form bean -->
<form-bean
 name="articleForm"
 type="org.apache.artimus.article.struts.Form"/>
<!-- View Article action mapping -->
 <action
 path="/article/View"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByArticle"
 name="articleForm"
 scope="request"
 validate="false">
 <forward
 name="success"
 path="/article/pages/View.jsp"/>
 </action>

NOTE The current implementation of Artimus uses Tiles. For clarity, the code
presented here is for a pre-Tiles version of the application.

Table 14.4 describes the configuration settings.

Table 14.4 Struts configuration elements

Element or property Purpose
Value of parameter in the

example listing

form-bean element Creates an ActionForm object.

name property Associates a logical name with the
ActionForm.

ArticleForm

type property Specifies the class to use for the Action-
Form object.

org.apache.artimus.artimus.http.
Form

action element Creates an ActionMapping object.

path property Relates a URI with this mapping. /search/Article

name property The name of the ActionForm to populate
from the request (if any).

ArticleForm

type property The class of the Action object to associ-
ate with this mapping.

org.apache.commons.scaffold.util.
ProcessBean

parameter property A general-purpose property. In this case,
it is used to specify the business object
for the ProcessAction to instantiate. This
usage is an extension to the core Struts
framework.

org.apache.artimus.article.
FindByArticle

Using ProcessBeans and JDBC with Struts 453
Following the same pattern as the Struts ActionServlet, the Scaffold ProcessAction
uses reflection to create and populate a helper object. The helper is specified as the
parameter property to the ActionMapping. The process is automatic, and the pop-
ulated helper’s execute method is invoked by the ProcessAction without developer
intervention. Listing 14.3 shows a ProcessBean for a FindByArticle operation.

package org.apache.artimus.article;

import org.apache.commons.scaffold.lang.ParameterException;
import org.apache.commons.scaffold.util.ProcessResult;
import org.apache.commons.scaffold.util.ProcessResultBase;

public class FindByArticle extends Bean {

public Object execute() throws Exception {
 // b
 if (null==getArticle()) {
 throw new ParameterException();
 }

 // c
 Access.findByArticle(this,getArticle());

 // d
 ProcessResult result = new ProcessResultBase(this);
 result.setSingleForm(true);
 return result;

 } // end execute

} // end FindByArticle

Our FindByArticle bean, shown in listing 14.3, extends an article bean class
(org.apache.artimus.article.Bean). The Bean class (which extends org.apache.
commons.scaffold.util.ProcessBeanBase) provides all the properties common to
ProcessBeans. Its execute(Object) method automatically populates these proper-
ties from a Map passed as the method’s parameter and then calls the execute()
method, which is the only method defined in the FindByArticle class. At b, we
look for our base article property and do a “last chance” validation. If our arti-
cle parameter is missing, a ParameterException is thrown.

 At c, our ProcessBean calls Access.findByArticle using itself as the target
type and passing the title to match. The findByArticle data-access method will
return the records matching the title as a FindByArticle bean. If we wanted to use
another bean type instead, we could pass an instance of that type instead of this.

Listing 14.3 A FindByArticle ProcessBean

454 CHAPTER 14

Using data services with Struts
 The API contract for the Artimus ProcessBeans is that they return a Process-
Result object. So, at d, we wrap the FindByArticle bean in a ProcessResult
before returning.

 As you can see, the ProcessBean code is mainly handling the administrative
details and making sure the API contracts are fulfilled. The actual data access is
left to the Access.findByArticle method, as shown back in listing 14.1.

 In listing 14.1, we see that the findByArticle method is just a wrapper
around the Access.findElement method. Several ProcessBeans use this particu-
lar method, and so it makes sense to provide it as a utility. In other cases, the
access method may be provided in the ProcessBean itself. The utilities provided
by the Scaffold Access and StatementUtils classes make this easy to do.

 This is the end of the stack. The row is now returned to the ProcessBean class,
wrapped in a ProcessResult object. The ProcessBean, in turn, hands the Process-
Result back to the ProcessAction.

 The ProcessAction class provides a reusable infrastructure to handle excep-
tions and route control within an application. Exception handling and control
flow are an important part of using Struts with business classes and data systems.
We return to the Scaffold helper actions later in the chapter.

STRUTS TIP What if the names of the SQL columns don’t match the bean property conventions?
SQL allows you to rename columns on the fly. So if you’re stuck with col-
umn names like FIRST_NAME and LAST_NAME, you can alias them in the
SQL statement like this:

 Select FIRST_NAME firstName, LAST_NAME lastName
 From CUSTOMER_TABLE Where ...

When the statement returns, setFirstName and setLastName will now
correspond to the FIRST_NAME and LAST_NAME columns.

14.3.8 ProcessBeans as a persistence layer

Taken together, the ProcessBeans and other Scaffold objects described here form
a simple persistence layer. Table 14.5 shows how the Scaffold/Artimus classes map
to the persistence layer classes described by Scott Ambler [Ambler].

Using result objects 455
The classes in the Ambler design do provide more functionality than those pre-
sented here. For a large-scale project, you should consider a comprehensive data
persistence package like Osage [Osage] or ObjectRelationalBridge [ASF, OJB].

14.3.9 Using other persistence layers

Of course, ProcessBeans are not the only persistence layer you can use with Struts.
Since Struts is model-neutral, you should be able to use the persistence layer of
your choice. The patterns we have shown here should be adaptable to any persis-
tence product, from Simper [Simper] to EJBs [Sun, J2EE].

 If you do not already have a persistence layer, one likely candidate is Jakarta
ObjectRelationalBridge (OJB) [ASF, OJB]. ObjectRelationalBridge is a relatively new
product but is quickly attracting a substantial user base. Other open source prod-
ucts to consider include Castor [Castor], Simpler [Simper], and Osage [Osage].

14.4 Using result objects

Once the data is retrieved, you still need to commute it to the presentation layer.
While you can use standard classes, such as Vectors and ArrayLists, it is often more
convenient to create a specialized wrapper. Internally, the wrapper can use a stan-
dard collection as its data store, but externally it can expose methods to simplify
rendering a view of your data.

14.4.1 ResultList methods

A good example of such a wrapper is the ResultList class (org.apache.commons.
scaffold.util.ResultList). The ResultList class provides several methods

Table 14.5 Comparing Scaffold classes to Ambler’s persistence layer

Scaffold/Artimus class Ambler class Description

ProcessBean PersistenceObject Provides behavior needed by the business
domain

Access PersistenceCriteria Provides behavior needed to retrieve,
update, or delete collections of objects

StatementUtils, Statements PersistenceMechanism Provides access to the data services
(database, search engine, and so forth)

getCommand(), commands SqlStatement Provides SQL statements

ConnectionAdaptor PersistenceBroker Provides connections to the persistence
mechanisms (StatementUtils)

456 CHAPTER 14

Using data services with Struts
that are helpful when creating a page listing the result of a search, including those
shown in table 14.6.

Since these methods follow the standard JavaBean naming conventions, they are
easy to use with the Struts tags. Here’s some JSP code for writing a simple HTML
table from a result list. You can find the full source at pages/article/Result.jsp in
the Artimus example application:

<TABLE><TR><TD align="center" colspan="3">
<bean:write name="RESULT" property="size"/>
matches for
<bean:write name="RESULT" property="legend"/>
</TD></TR>
<logic:notEqual name="RESULT" property="size" value="0" >
<TR bgcolor="FFFFEE">
<TH>id</TH><TH>article</TH><TH>contributed</TH>
</TR>
<TR>
<logic:iterate name="RESULT" property="iterator" id="row">
<TD><bean:write name="row" property="article"/></TD>
<TD>
<html:link forward="article" paramName="row" paramProperty="key"

paramId="key">
<bean:write name="row" property="title"/>
</html:link>
</TD>
<TD><bean:write name="row" property="contributed"/</TD>
</TR>
</logic:iterate>
</TR>
</logic:notEqual>
</TABLE>

This page can be used for a number of different searches: by key, by author, or by
title, for example. Each of these terms sets a different description, or legend, for
the search, so that you can customize the page for each search type.

Table 14.6 Some ResultList methods for creating a page listing

Method Description

int getSize() Returns the number of elements on the result list

String getLegend() Returns a description of the result list

Iterator getIterator() Returns an iterator for the result list

Using helper Actions 457
 Like ProcessBean, ResultList is based on an interface that is implemented in a
base class (org.apache.commons.scaffold.util.ResultList) that you can
use in your own applications.

 ResultList extends Collection and can be used anywhere a Collection is used.
Table 14.7 contains a list of methods that ResultList implements aside from the
Collection members.

14.5 Using helper Actions

A common strategy among Struts developers is to use a single Action for several
related operations. This helps to reuse code and streamline flow, and reduces the
number of classes in an application. The helper Actions in the Scaffold package
take this idea to its logical conclusion and implement a set of framework Actions
that can be reused for nearly all operations in an application.

 The strategy used by the helper Actions is to associate a set of business objects
with an ActionMapping. The business objects are instantiated, populated, and
invoked. The Action concentrates on exception handling and flow control. The
polymorphic business objects are called in due course without the Action actually
knowing what they do. This allows you to “wire” the better part of a web applica-
tion from the Struts configuration, just by specifying which business object classes
are used by which ActionMappings.

Table 14.7 The ResultList interface (sans Collection methods)

Method Description

Iterator getIterator() Returns an iterator for the result list

int getSize() Returns the number of elements on the result list

String getLegend() Returns a description of the result list

public void setLegend(String description) Sets the description for the result list

public void setLegend(String value,
String property)

Uses the value and property to set the description
as ${property} = ${value}

boolean addMessage(String message) Adds a confirmation message to the internal list

public boolean populate(Object o, int
index) throws Exception

Populates the given object from the element at
index—the value of o may change

Map getDisplayName Returns the displayName map (a HashMap)

setDisplayName(Map displayName); Assigns a new displayName list

458 CHAPTER 14

Using data services with Struts
 We’ve been saying helper Actions since ProcessAction builds on a base class,
BaseHelperAction. ProcessAction is specialized to work with ProcessBeans, while
the BaseHelperAction can be used with any type of business object. If you like
helpers but don’t want to use ProcessBeans, you could use BaseHelperAction as
the basis of your own hierarchy. Table 14.8 shows the package references for our
Action hierarchy.

Even if you do not use the helper Action strategy, the various techniques used by
these Actions may be useful in your own classes. See chapter 8 for more about
reusable Action techniques.

14.6 Using Lucene

Databases are indispensable, but they do have limitations—especially when it
comes to searching a text field. Table 14.9 contains database behaviors and their
consequences.

Table 14.8 The helper Actions

Classname Full package name

BaseAction org.apache.struts.scaffold.BaseAction

BaseHelperAction org.apache.struts.scaffold.BaseHelperAction

ProcessAction org.apache.struts.scaffold.ProcessAction

Table 14.9 Database behaviors and consequences

Behavior Consequence

ANSI SQL text searches are case-sensitive. Text does not match TEXT.

A SQL wildcard query considers the parameter to be a
single string.

Wildcards does not match Wildcard.

SQL queries can only be ordered by the content of a field. The most likely (or relevant) matches are
not listed first.

Most database systems are not indexed for text
searches.

A search on a text field may not
be performant.

Many database systems are not optimized for complex
boolean queries.

Text searches using boolean operations
can be a bottleneck.

Database systems can only search data stored within
their own tables.

Information external to a database table
cannot be searched.

Using Lucene 459
A good search engine package, such as Jakarta’s Lucene [ASF, Lucene], solves all
of these problems and more by providing:

� Word-based full-text searches

� Efficient term-based boolean searches

� Date range searches

� Matches in order of relevance

Given a good layered design, attaching Lucene to your application is really very
simple. Let’s see how Artimus does it.

14.6.1 searchProperties redux

Earlier, in listing 14.1, we looked at a findByArticle method from Artimus. The
production version of Artimus actually uses Lucene to search for properties:

public static final Collection findByProperty(
 Object target,
 String property,
 String value) throws ParameterException, PopulateException,
 ResourceException {

 return SearchUtils.getCollection(target,
 Engine.getHits(
 Engine.getQuery(value,property)));

 } // end findByProperty

In response to a search query, Lucene returns a hit list of matching articles, much
like a SQL query returns a ResultSet of matching rows. The Scaffold package
includes a getCollection method (org.apache.scaffold.search.Lucene-
Utils) that transfers a Lucene hit list to a list of any type of JavaBean. This is the
same functional i ty provided by the SQL vers ion of getCollection
(org.apache.scaffold.sql.ResultSetUtils), making it very easy to drop in a
Lucene search to replace a SQL query.

NOTE The only changes we’ve made are within the data access method. The
Collection returned will now be taken from the Lucene index rather
than a SQL query, but the rest of the application is none the wiser. If you
peruse the data access class for Artimus (org.apache.artimus.
articles.Access), you’ll see that methods access either the Artimus da-
tabase or the Artimus search index, as best suits the intent of the method.

460 CHAPTER 14

Using data services with Struts
Lucene is a well-designed toolkit and surprisingly easy to use. A comprehensive
treatment of Lucene is outside the scope of this chapter, but we can provide an
overview to help you get started. Like Struts, Lucene is an open source project
hosted at Jakarta [ASF, Lucene].

Introducing Lucene
Lucene is both a search engine and a toolkit for building search engines. It does
not store data but simply indexes it. The data can be a record in a database or a
page on a website. The only requirement is that your application will be able to
retrieve it again later using some identifier. This could be a primary key, a URL, or
anything else that your application might use.

Key objects. Lucene works its magic using five key objects: Document, Field,
Index, Query, and Hits, as shown in table 14.10.

Typical workflow. Starting from scratch, an application using Lucene would:

� Create Documents by adding Fields

� Create an IndexWriter and add documents to it with addDocument

Table 14.10 Key Lucene classes

Object Description

Document A logical construct that may be a record from a database, a page from a website, or
any other piece of information that can retrieved again later. A Lucene Document is
maintained as a set of fields, one of which contains the location of the original data
source.

Field A Field is a section of a Lucene Document. Each Lucene Field has two parts: a name
and a value. The value may be indexed so that it can be queried and used to retrieve
the original data source. A Field may be stored with the Lucene Document, in which
case it is returned when a Query matches the Document. A Document will typically
contain at least one stored Field to uniquely identify it.

Index When Lucene analyzes the Fields in a Document, it creates an Index so that you can
apply a Query to the Fields and retrieve the Document. Your application can then use
one of the stored Fields in the Document to retrieve the original data. Documents
are returned in a Hits list in response to a Query. The Index is created and main-
tained using an IndexWriter.

Query Lucene supports several different Query types to make searches more effective. The
flexible Query object can simply take a search string and create a full-text Query
object, as is often done by directories and portals on the World Wide Web.

Hits A ranked collection containing the Documents matched by a Query.

Using Lucene 461
� Call QueryParser.parse to build a Query from a string

� Create an IndexSearcher and pass the Query to its search method

� Render the Hits returned as a list displayed to the user

How Artimus works with Lucene
To bootstrap the SQL tables and Lucene index, Artimus provides a CreateRe-
sources ProcessBean (org.apache.artimus.CreateResources). After calling an
Access method to initialize the index, CreateResources indexes any existing
records. Once the index is created, Artimus continues to maintain it as records
are added, updated, and deleted. As we have already seen, a Lucene search query
can be swapped for a database management system (DBMS) whenever we like.

Creating the index. Like most things in Lucene, the overall indexing process is
very simple:

1 Create an Index using an IndexWriter.

2 Create a Document object.

3 Retrieve your data source.

4 Add one or more Fields to the Document object, based on your data source.

5 Add the Document to the Index.

6 Repeat step 2 for each data source.

7 Optimize and close the Index.

The trickiest part is creating the Field objects for Lucene Documents. Lucene
offers three switches for Fields that can be mixed and matched as needed, as
shown in table 14.11.

You need to store fields that you want on the hit list displayed to the user and some
others that might need to be searched verbatim. This would include things like

Table 14.11 The Lucene Field switches

Switch Specifies…

store Whether to keep a copy of the field in the Document object

index Whether to analyze the field so that it can be searched by a Query

tokenize Whether to break the field down into tokens (or words)

462 CHAPTER 14

Using data services with Struts
keywords and dates. But most of the fields, especially the big ones, can be indexed
but not stored.

 You need to index fields that can be part of search query and used to find the
document again later.

 You need to tokenize fields that contain more than one word, and each of the
words should be indexed as a separate entity.

 Trying to visualize which switch you need for a given use case can make your
head swim. In practice, four common field types emerge that cover most people’s
needs: Keyword, Text, Unindexed, and Stored. As a convenience, Lucene pro-
vides static factory methods to make it easy to generate just the object you need.

 Table 14.12 correlates the static fields to the boolean properties.

This is a common pattern in Lucene. Common usages are provided in a high-level
API or base class, but the full power of the package is still available to those who
may need it.

 Artimus encapsulates the Lucene indexing in separate methods that are kept in
the Access class (org.apache.artimus.Access). Note how the Field.factory
methods are used to indicate how the field should be stored and indexed:

public static final void index (
 String article, String contributor, String creator,
 String title, String content,IndexWriter index
) throws Exception {

Table 14.12 The field factory methods

Factory method store index tokenize Description

static Field
UnIndexed(String name,
String value)

*** Constructs a String-valued Field
that is not tokenized or indexed
but is stored for return with hits.

static Field
UnStored(String name,
String value)

 *** *** Constructs a String-valued Field
that is tokenized and indexed but
that is not stored in the index.

static Field
Keyword(String name,
String value)

*** *** Constructs a String-valued Field
that is not tokenized but is
indexed and stored.

static Field
Text(String name,
String value)
static Field
Text(String name,
Reader value)

*** *** Constructs a String-valued Field
that is tokenized and indexed and
is stored for return with hits.

Using Lucene 463
 try {
 Document document = new Document();
 document.add(Field.Keyword("article",article));
 document.add(Field.Text("title",title));
 document.add(Field.UnStored("contributor",contributor));
 document.add(Field.UnStored("creator",creator));
 document.add(Field.UnStored("content",content));
 index.addDocument(document);
 }
 catch (IOException e) {
 throw new ResourceException(e);
 }
}

Lucene does not play well with null. When you are adding fields, it is your respon-
sibility to ensure that the value passed is not null. An easy way to do this is to wrap
the fields in a simple utility that returns a blank String if the property is null:

document.add(Field.Keyword("article",Engine.blankNull(article)));

This makes implementing the CreateIndex Action a very simple task. All it does is
select the Article records from the database and then pass each one to the
Access.index method:

ArrayList list = null;
Form article = null;
try {
 IndexWriter index =
 Engine.getIndexWriter(true);
 list = (ArrayList)
 Access.select(new Form());
 for (int i=0; i<list.size(); i++) {
 article = (Form) list.get(i);
 Access.index(
 article.getArticle(),
 article.getContributor(),
 article.getCreator(),
 article.getTitle(),
 article.getContent(),
 index);
}
index.optimize();
index.close();
}
catch (Exception e) {
 e.printStackTrace();
}

As shown earlier, in section 14.6.1, once the index is created, retrieving a hit list is
just a method call away.

464 CHAPTER 14

Using data services with Struts
 While on the surface Lucene seems like a very different way to access data, our
application architecture makes it surprisingly easy to plug in.

14.7 Using content syndication

Syndicating content has become a popular way for applications to provide more
data to more people. The strategy is surprisingly simple, as well as standard,
secure, and scalable.

 Here’s how it works:

� Available content is summarized in an XML file.

� The XML file is made available via HTTP, the same as any web page.

Other sites can then:

� Retrieve and cache that file.

� Render the summary to their own visitors.

If users see something they like, they can click through and retrieve the detail
from your site.

 With the help of the Struts Digester, creating and retrieving syndicated con-
tent couldn’t be simpler. As you might have guessed, the Artimus application can
act both as a content provider and syndication client.

 Let’s see how this is done.

14.7.1 Digesting RSS

Struts uses the Digester to create objects from the Struts configuration file (struts-
config.xml). This is a general-purpose utility that can be used to both create Java-
Beans from an XML description as well as write XML to represent a JavaBean.

 The Digester ships with a special RSS version designed to read and write Rich
Summary Site files. This is a popular format for content syndication. To use
another format, you can create a new set of rules for the Digester.

1.0 vs 1.1 In Struts 1.0, the Digester was packaged in the Struts JAR file. It has now
been moved to the Jakarta Commons and made a product in its own
right. Later releases of Struts use the Commons version. For more about
using the Digester in your own application, see the Jakarta Commons dis-
tribution. [ASF, Commons]

Using content syndication 465
A Rich Site Summary file is a collection of items called a channel. Each item has sev-
eral properties, including a link to the item itself, which would usually be some-
place on your own site. The channel typically puts related items together, usually
those that have just been released.

 The Digester package provides classes that represent an RSS item and its chan-
nel. Since these are just JavaBeans, using them from a Java program is very
straightforward.

14.7.2 Retrieve and render

To create an RSS channel object from an existing XML file, you simply need to cre-
ate a Channel object and hand it a path, and the RSSDigester does the rest:

RSSDigester digester = new RSSDigester();
channel = (Channel) digester.parse(path);
request.setAttribute("CHANNEL",channel);

Channel has a getItems method that you can use to iterate through the items,
either in your Action or in the presentation:

<logic:iterate name="CHANNEL" property="items" id="ITEM">
<TABLE cellspacing="2" cellpadding="4" border="1"
 width="90%" align="center">
<TR>
<TD>DESCRIPTION</TD>
<TD><bean:write name="ITEM" property="description"/></TD>
</TR>
<TR>
<TD>LINK</TD>
<TD><bean:write name="ITEM" property="link"/></TD>
</TR>
<TD>TITLE</TD>
<TD><bean:write name="ITEM" property="title"/></TD>
</TR>
</TABLE>
</logic:iterate>

Creating your own RSS file is just as easy. Simply create a new Channel object, add
your items, and use a Writer to render the result:

Channel channel = new Channel();
Iterator rows = modelResult.getIterator();
while (rows.hasNext()) {
 ArticleForm article = (ArticleForm) rows.next();
 Item item = new Item();
 item.setTitle(article.getTitle());
 item.setLink(article.getLink());
channel.addItem(item);

466 CHAPTER 14

Using data services with Struts
response.setContentType("text/plain");
channel.render(response.getWriter());
eturn(null);

We return null at the end so that the controller knows the response is complete.

14.7.3 Syndicating RSS

Once the RSSDigester converts the XML into a JavaBean, we can render it like any
other bean. But how do we close the loop and offer our own content as an RSS
channel?

 The Artimus application already offers a list of the latest stories that it sends to
a JSP. If it were rendered as XML rather than HTML, this list would make for a very
nice channel. Happily, the Digester is designed as a bidirectional filter. If we can
transform our list into a ChannelBean, the RSSDigester.render method will
gladly output the XML.

 In a typical Struts request/response cycle, the Action class will create a Java-
Bean and pass it to the view via the request context. This may be an ActionForm
or some other JavaBean, but when it leaves the Action class it is simply an ordinary
Java object. Typically, the Action class forwards the request on to a presentation
component, such as a JSP, which renders the response as HTML using the objects
in the request.

 Rather than send the list object out to a JSP to render, we can just as easily send
it to an RSS Action to render. The Action is passed the response and can render
the response directly when appropriate. It’s just usually easier to send things off to
a presentation component.

 Listing 14.4 shows the Artimus RenderRss Action (org.apache.artimus.
struts.RenderRss) that takes an incoming ArticleHelper and uses it to create a
Channel object. The Channel object renders the XML directly back to the client,
and so the method returns null at the end.

package org.apache.artimus.struts;

import java.io.IOException;
import java.io.PrintWriter;
import java.sql.SQLException;
import java.util.Iterator;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.commons.digester.rss.Channel;
import org.apache.commons.digester.rss.Item;

Listing 14.4 org.apache.artimus.struts.RenderRss

Using content syndication 467
import org.apache.scaffold.sql.AccessBean;
import org.apache.artimus.http.ArticleForm;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionServlet;

public final class RenderRss extends Action {

public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 ActionErrors errors = new ActionErrors();
Channel channel = new Channel();
ArticleHelper helper = (ArticleHelper)
 request.getAttribute(AccessBean.HELPER_KEY);
if (helper==null) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("access.missing.parameter"));
}

if (errors.empty()) {
 try {
 channel.setTitle("Articles");
 channel.setDescription(DESCRIPTION_TEXT);
 channel.setLink(CHANNEL_LINK);
 Iterator rows = helper.getRows();
 while (rows.hasNext()) {
 ArticleForm article = (ArticleForm) rows.next();
 Item item = new Item();
 item.setTitle(article.getTitle());
 item.setLink(ARTICLE_BASE +
 article.getArticle());
 channel.addItem(item);
 }
}
 catch (Exception e) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("rss.access.error"));
 servlet.log(e.toString());
 }
}

if (!errors.empty()) {
 saveErrors(request, errors);
 return (mapping.findForward("error"));
}

468 CHAPTER 14

Using data services with Struts
response.setContentType("text/plain");
channel.render(response.getWriter());
return(null);

 } // ---- End perform ----

} // ---- End RenderRss ----

Here’s how the Struts configuration is set up for the RenderRss Action:

<!-- Find recent articles -->
 <action
 path="/channel/Recent"
 type="org.apache.struts.scaffold.ProcessAction"
 name="articleForm"
 scope="request"
 validate="false"
 parameter="org.apache.artimus.article.FindByLast">
 <forward
 name="success"
 path="/do/channel/Render"/>
 </action>

 <!-- Render result as RSS channel -->
 <action
 path="/channel/Render"
 type="org.apache.artimus.struts.RenderRss"/>

This demonstrates two important ideas:

� When the view is decoupled from the data retrieval (or model), the same
data can be processed differently to provide a different result. The original
process was designed for a JSP, but we were able to extend it for RSS without
making any change to the original process. Using the same technique, we
can offer by RSS any information now being sent to a JSP. Likewise, we could
offer it using any presentation device that can use a standard Java object in a
standard servlet context.

� An Action can process the response if it chooses.

14.8 Using EJBs with Struts

Enterprise JavaBeans (EJBs) are designed to represent the model layer of an
application. Developers often choose EJBs when building applications that will be
distributed over several servers. Many developers also like to use EJBs because of
the transparent way they handle transactions. Used properly, EJBs can be a good
fit with Struts.

Using EJBs with Struts 469
 Whether or not to use EJBs for a given application is a complex question. EJBs
can provide an application with a plethora of services that developers might oth-
erwise have to write themselves. But there is no free lunch. Most developers will
agree that EJBs are a good choice for distributed, enterprise-scale applications.
But most applications do not fit in that category. Be sure to think carefully before
deciding to use EJBs with your application. However, if your application is well
designed, you should be able to switch to EJBs, or to any model layer, without
affecting the rest of your application.

 The most flexible approach is to use the Facade pattern to create a buffer zone
between the Struts Actions and your EJBs. To Struts, the facade looks and acts like
the actual model. In practice, the facade is talking to other components that do
the actual work.

DEFINITION A facade substitutes the interfaces of a set of classes with the interface of a
single class. The facade hides implementation classes behind one inter-
face. [Go4]

The Scaffold ProcessBeans (see section 14.3.1) are an example of the Facade pat-
tern. To switch an application from plain-vanilla JDBC to something else, like EJBs,
you can implement the business logic within a ProcessBean. The Action can con-
tinue to call the ProcessBean without knowing anything about EJBs, JDBC, or what-
ever else. (Of course, there is nothing special about ProcessBeans. Any similar
object of your own creation will work as well.)

 Using a facade to encapsulate calls to your business model is called the Busi-
ness Delegate pattern.

DEFINITION The Business Delegate hides the underlying implementation details of
the business service, such as lookup and access details of the EJB archi-
tecture. [Go3]

The Business Delegate pattern is often used with an EJB pattern called Session Facade.

14.8.1 Session Facade

The classic Facade pattern is also the basis of the popular Session Facade pattern
[Go3]. Here, an EJB component called a session bean is used to implement the
facade. If your application is wedded to EJBs, you might choose to have the
Actions call your Session Facade directly. This will bind your Action to EJB Session

470 CHAPTER 14

Using data services with Struts
Beans, but eliminates the need to build a generic facade between the Struts
Action and your Session Facade. Like many implementation decisions, the best
choice will depend on the circumstances.

14.8.2 Data transfer objects

To display the result of an operation, it is technically possible to pass an EJB to the
presentation layer. The Struts Tags or Velocity View tools can display the proper-
ties of an EJB, the same as any JavaBean. However, there is some overhead to every
call to an EJB. Consequently, most developers use another object to carry data
between layers. Such carriers are called data transfer objects (DTOs). The Scaffold
ResultList class is an example of a data transfer object.

 The Struts ActionForm is also a type of DTO. When displaying data on the pre-
sentation layer, you have the option of populating an ActionForm from an EJB
DTO or using the DTO directly. The deciding point is often how much control you
have over the DTO. If you can control the DTO properties, then for displaying
read-only data you might as well pass the DTO back. The Struts tags and Velocity
View tools work by reflection. As long as the property names match, any object
type can be used.

 Of course, for input you should use a Struts ActionForm. Once validated, the
ActionForm can be used to populate the EJB DTO. The DTO is then passed
through the facade to the EJBs.

 A popular tool for working with EJBs is XDoclet [XDoclet]. This component
starts out as an enhancement to the standard JavaDoc tool and ends up as a very
clever code generator. You can use it to create and maintain much of the bullwork
code needed by most EJB applications, including DTOs.

 Another EJB tool to pursue is the Struts-Expresso [Expresso] framework.
Expresso supports creating applications with or without EJBs, making it easier to
hedge your bets.

14.8.3 Implementation patterns

For the best scalability, many Struts/EJB developers follow this pattern:

� Re-create the reference to the remote interface as required.

� Use stateless session EJBs in preference to stateful EJBs.

� Avoid retaining a handle to the stateless EJBs.

� Avoid interacting directly with entities.

� Use a stateless facade that returns a data transfer object to the Action.

Summary 471
A discussion of the technologies behind EJBs (stateless versus stateful and so
forth) is beyond the scope of this book. For more about the Enterprise JavaBean
technology, we recommend Mastering Enterprise JavaBeans [Roman]. A good
online article is “Enterprise Bean Best Practices” [Dragan].

14.9 Summary

We’ve covered a lot of ground in this chapter, but we hope at a pace that made it
easy to understand. While the focus has been on techniques, you can see the
complete strategies in action by exploring the Artimus example application at
your leisure.

 The major topics we discussed were:

� Layering data access

� Defining the business layer

� Attaching resources to the business layer

� Transferring data between layers

� Communicating user gestures between layers

Of these, the most important thing is that we saw how a layered design lets us
attach different services, and different service implementations, to the same busi-
ness layer without changing the rest of the application.

 Along the way, we also peeked at the nuts and bolts of using some popular
tools and frameworks with Struts, including:

� ProcessBeans

� Lucene

� The Digester (for content syndication)

We used the Artimus example application as our case study. Its business API easily
supports using the different services we implemented:

� Storing data in a SQL table

� Indexing data with a search engine

� Providing syndicated content through XML

To conclude the chapter, we covered some best practices to follow when using
Enterprise JavaBeans with Struts.

 In part 4 of this book, “Struts by Example,” we put into practice many of the
techniques we have discussed.

Part 4

Struts by example

Part 4 returns to the hands-on lab work we started in part 1. We walk through
three case study applications. Together, these examples demonstrate using
Struts with data services, implementing applications with Tiles and the Valida-
tor, upgrading from Struts 1.0 to 1.1, and using Velocity templates in your appli-
cation.

15Artimus: pulling
out the stops
This chapter covers
� Introducing the Artimus example application
� Using Tiles, the Validator, and Scaffold in the same application
� Understanding recommended practices for production

applications
475

476 CHAPTER 15

Artimus: pulling out the stops
Just do it.
—Nike

15.1 The framework’s framework

The Artimus example application demonstrates deploying an enterprise-grade,
best-practices application using the Struts core together with all the optional com-
ponents: Scaffold, Tiles, and the Validator.

 Since many of the production applications written for Struts 1.0 will now be
migrating to Struts 1.1, we will present the 1.0 version of Artimus in this chapter,
and then show how to upgrade the codebase for Struts 1.1 in the next chapter.

WARNING Artimus is designed to show techniques that you would use in a real-life
production application. The material in this case study may be more ad-
vanced than what is often presented in a programming book. (So, you
might want to top off that cappuccino before getting started.)

Other chapters in this book are devoted to Tiles and the Validator, and we have
also introduced several Scaffold classes along the way. But before getting started
with our tour of Artimus, it might help to provide some additional background on
the Scaffold toolkit.

NOTE Throughout this chapter we refer to the Struts ActionMapping objects as
well as the Struts Action objects. In the Struts configuration file, the ele-
ment for creating an ActionMapping is termed an action. When we refer
to an action (lowercase), we are talking about the ActionMapping ele-
ment. When we refer to an Action (initial cap), we are talking about the
Action object. (The <action> element might have been better styled a
<mapping> element, but that’s not the case for Struts 1.0 or 1.1.)

15.2 Scaffold—birth of a toolset

Although originally designed to be an integrator of existing technologies, Struts is
fast becoming a proving ground for new technologies.

 The initial version of Struts gave rise to several utility packages. The Jakarta
Commons BeanUtils, Collections, Digester, and Validator packages were all
conceived within the Struts framework. Each of these packages had uses outside

About Artimus 477
the framework; so, being good citizens, the Struts developers repackaged these
utilities for the Jakarta Commons. Now other frameworks and applications can
easily import these components and avoid reinventing yet another wheel.

 Like Tiles and the Validator, Scaffold is a utility package born out of creating web
applications with Struts. Over the course of developing several Struts applications, a
number of common solutions to common needs were identified and assembled
into a set of reusable classes under the name Scaffold. The core Scaffold packages
are available through the Jakarta Commons [ASF, Commons]. An optional Struts-
specific Scaffold package is available at the Struts website [ASF, Struts].

 While Struts provides the invisible underpinnings for a web application, Scaf-
fold provides a set of higher-level objects that help you assemble an application
from component parts. Like Struts, Scaffold encourages a layered design and
helps you keep business-tier code separated from web-tier code. We’ve introduced
several Scaffold classes throughout the book. Here, we put these classes into con-
text and show how they are used to create the Artimus example application.

 Many Scaffold classes are designed to ease the transition from Struts 1.0 to
Struts 1.1. They allow you to start using many of the Struts 1.1 techniques now and
complete your migration later. When forward compatibility is not transparent,
changing over is usually a matter of changing some import and extends clauses.
This will simplify our migration from Struts 1.0 to Struts 1.1 in the next chapter.

1.0 vs 1.1 When this book went to press, the Struts 1.1 beta 2 was in circulation. It is
likely that some details will change in the Struts 1.1 final release. Check
the book’s website [Husted] for any errata.

15.3 About Artimus

Artimus is a web-based news poster. Authorized users can add, edit, or delete arti-
cles. Any visitor to the site can view the articles online using various search fea-
tures, including full text and by author, title, or time span.

 Artimus can also publish its articles as a Rich Site Summary (RSS) channel. This
hooks Artimus up with enterprise portals, such as Jakarta Jetspeed [ASF, Jetspeed].

 Meanwhile, from a developer’s viewpoint, Artimus is a full-blown example of a
ready-to-ship Struts application. Here are some of the techno-bullets:

� Application settings can be configured through the deployment descriptor
(web.xml) or an external Properties file.

478 CHAPTER 15

Artimus: pulling out the stops
� In the Struts 1.0 version, a helper servlet is used to load custom resources so
ActionServlet does not need to be subclassed. In the Struts 1.1 version, a
PlugIn Action is used instead.

� A connection pool adaptor allows use of the Struts connection pool, and
many others, from the business tier. Connection pools can be changed from
the deployment descriptor (or PlugIn configuration).

� SQL commands are also stored in external Properties files and can be
changed without recompiling.

� The business tier is represented by a set of ProcessBeans, dispatched using
the classic Command pattern. Business code is not embedded in any Struts
or HTTP-bound class.

� A standard Action is used to dispatch the ProcessBeans, drastically reducing
the number of custom Actions in the application.

� The application can be easily localized.

� The Jakarta Tiles framework is used to lay out and organize display pages.

� The Jakarta Struts Validator is used to validate input, both client- and
server-side.

� The Jakarta Lucene search engine is used to provide full-text searches when
appropriate.

The Struts 1.0 version of Artimus defines exactly three classes that extend Struts:
two ActionForms and an adapter Action for the RSS channel. The rest of Artimus
is pure business tier or standard classes imported from the Scaffold package. The
architecture allows you to add any number of new business operations without
requiring any additional Struts or Scaffold classes. You can just add more business
beans. Everything else is designed for reuse.

 The Struts 1.1 version of Artimus (see chapter 16) does not create any new Struts-
based classes at all. Everything is used straight out of the Struts or Scaffold JARs.

 The full source code and binary Web Archive (WAR) file for the versions of
Artimus and Scaffold used by this chapter are available at the book’s website
[Husted]. Since both Artimus and Scaffold are actively maintained, new releases
may also be available through the Jakarta Struts website [ASF, Struts].

About Artimus 479
15.3.1 Building Artimus

All of the configuration and source code files used by Artimus are kept under a cen-
tralized directory. The Ant build file is used to both compile the Java source files
into classes and place other updated source files in their statutory locations.

 In the Artimus WAR, the centralized directory for all the source code files,
including JSPs and configuration files, is /WEB-INF/src. The build file at /WEB-
INF/src/build.xml includes Ant targets that copy (or deploy) the appropriate
files from under /WEB-INF/src to locations under the application root or WEB-
INF folder.

 Table 15.1 shows the location of the Artimus source files and where they end
up when deployed.

There are several advantages to this approach:

� It is compatible with code repositories, like CVS. The files under WEB-INF/
src can be checked in and maintained under CVS. Other files in the system,
such as the JARs under WEB-INF/lib, do not need to be checked in.

� It keeps all the source files used by your application together where they are
easy to find and edit. In the web application folder, some of these files may
be several directory layers removed from each other.

� Some files, like the message resources, have no default location and just
need to be placed somewhere on the CLASSPATH. These can be kept in their
own folder in your source tree and then copied under the /WEB-INF/classes
folder when deployed.

� WEB-INF is the default location for a growing number of configuration files.
If you are deploying these from your own source folders, you have the
opportunity to organize them any way you like without creating nonstand-
ard folders under WEB-INF.

Table 15.1 How Artimus source files are deployed

Source code location Deployed to

/WEB-INF/src/conf /WEB-INF

/WEB-INF/src/java/**/*.java /WEB-INF/classes/**/*.class

/WEB-INF/src/pages/**/*.jsp /**/*.jsp

/WEB-INF/src/resources /WEB-INF/classes/resources

480 CHAPTER 15

Artimus: pulling out the stops
� An omnibus source tree gives you a place to store alternate configurations
and other information about the various files that make up a web application.
Such files can be maintained with the source files, where they won’t get lost,
but not deployed, where they might confuse matters.

On the other hand, while many developers use this approach, it is by no means
commonplace, and so needs to be explained (as we have done here). There is
also the potential for error in that you might edit the wrong copy of the file. Ant
itself mitigates this danger, though, since it will not overwrite a newer file with an
older one on its own. You also need to rebuild after changing any source file, just
as you would when changing a Java source file.

 When we present the source files in this chapter, we will refer to the file’s
deployment location. If you base any of your own development on Artimus, just be
aware that the original source for these files is maintained elsewhere within the
directory tree. When the application is compiled, any modified source files are
deployed to their proper place in the web application tree.

15.4 The deployment descriptor (web.xml)

The deployment descriptors for most Struts applications tend to be cut and dried.
Usually, it’s just a matter of specifying the one Struts ActionServlet, and maybe the
standard Validator or Tiles servlets if you are using Struts 1.0. We cover the gen-
eral format of the deployment descriptor in chapter 4.

 The web.xml for Artimus 1.0 is a tad more interesting. Aside from the Struts
standards, it includes configurations for its own ArtimusServlet and a Declarative
Security setting. The ArtimusServlet is not a runtime servlet for processing
requests, but a resource loader to initialize our business-tier classes. The Declara-
tive Security setting protects the editing commands from unauthorized users.

1.0 vs 1.1 In the Struts 1.1 version of Artimus, we use a PlugIn Action instead of a
separate servlet.

In this section, we present the configuration blocks for these two special items:
the ArtimusServlet and Declarative Security. See chapter 4 for more about config-
uring the standard Struts components.

 Listing 15.1 shows the initialization blocks for the ArtimusServlet and our Declar-
ative Security. Each block of code is discussed in its own section following the listing.
The numbers in the code comments refer to the appropriate section numbers.

The deployment descriptor (web.xml) 481
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <!-- [15.4.1] Configuring Artimus -->
 <servlet>
 <servlet-name>artimus</servlet-name>
 <servlet-class>org.apache.artimus.http.ArtimusServlet</servlet-class>
<!-- [15.4.2] Our application properties -->
 <init-param>
<param-name>default</param-name>
 <param-value>resources/artimus.properties</param-value>
 </init-param>
<!-- [15.4.3] Our connection adaptor -->
 <init-param>
 <param-name>adaptor</param-name>
 <param-value>org.apache.commons.scaffold.sql.ServletAdaptor</param-

value>
 </init-param>
 <init-param>
 <param-name>adaptor.key</param-name>
 <param-value>org.apache.struts.action.DATA_SOURCE</param-value>
 </init-param>
<!-- [15.4.4] Our startup priority -->
 <load-on-startup>1</load-on-startup>
 </servlet>

<!-- [15.4.5] other configuration blocks ... -->

<!-- [15.4.6] Our security settings-->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Administrative</web-resource-name>
 <!-- [15.4.7] The URLs we protect -->
 <url-pattern>/do/admin/*</url-pattern>
 </web-resource-collection>
 <!-- [15.4.8] The authorized users -->
 <auth-constraint>
 <role-name>manager</role-name>
 <role-name>editor</role-name>
 <role-name>contributor</role-name>
 </auth-constraint>
 </security-constraint>
<!-- [15.4.9] Our authentication strategy -->

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>EBasic Authentication Area</realm-name>
 </login-config>
</web-app>

Listing 15.1 /WEB-INF/web.xml (ArtimusServlet and Declarative Security)

482 CHAPTER 15

Artimus: pulling out the stops
15.4.1 Configuring Artimus

Following the statutory XML red tape at the top of listing 15.1, we start by giving
our Artimus servlet a reference name and specifying the class for the container to
load. Note that this is not the Struts ActionServlet, which is configured elsewhere
in the descriptor.

15.4.2 Our application properties

The Artimus servlet is designed to load a default Properties file, much the same
way Struts loads a default message resource bundle. In listing 15.1, the <default>
parameter indicates the path to our file. A Properties file is a standard Java com-
ponent [Sun, Properties]. Ours is a text-based Properties file that uses the same
format as a resource bundle (see chapter 13). We use it to store system paths and
other settings that don’t vary by locale.

 Most system settings in a Java web application can be adjusted automatically
using services provided by the container. Hyperlinks, for example, can be made
relative or rewritten to include the correct path. Other system settings cannot be
determined this way. Many intranet applications will hardcode settings like these,
requiring that the application be recompiled if they change.

 Artimus avoids hardcoding system settings by obtaining them from an external
Properties file. For example, some packages, like Lucene, need to store files some-
where on your server. A setting in the Properties file lets us specify the path to use
and then change it without recompiling the source code.

 The Properties file can be modified with any text editor. Your application
could even provide a simple Swing application to read and edit the custom prop-
erties for your application.

15.4.3 Our connection adaptor

To reach the widest audience, the Artimus example application presented here
uses JDBC as the default storage system. For more about using Struts with various
data services, see chapter 14.

 In listing 15.1, we use the <adaptor> and <adaptor.key> elements to con-
figure our connection adaptor to use the Struts generic connection pool. Struts
stores a reference to its connection pool in the application context. Since this is
a common approach, Scaffold provides a standard ServletAdaptor. This adaptor
lets business-tier components use the pool without being bound directly to a
web application.

 The attribute key used to store the reference in the application context may
vary. Here we specify use the default key used by Struts. We could also specify this

The deployment descriptor (web.xml) 483
key in the Properties file described in section 15.4.2. A database administrator
could change the attribute key in the Properties file without touching the more
complicated deployment descriptor.

 Scaffold provides other standard connection adaptors for Poolman and JNDI-
based pools, like Resin. You can also create your own custom adaptors by subclass-
ing the base adaptor and overriding a method or two. See the Scaffold JavaDoc
and source code for details.

15.4.4 Our startup priority

Since the Artimus servlet loads resources that might be used by other servlets, we
use the <load-on-startup> element in listing 15.1 to give it a lower load-on-
startup value. This means that the container will load it before servlets with a
higher startup value.

15.4.5 Other configuration settings

See chapter 4 for more about configuring the standard Struts and taglibs compo-
nents. Artimus does nothing unusual in this regard.

15.4.6 Our security settings

Artimus uses the standard Declarative Security scheme. The container manages
this type of security, so in listing 15.1, we provide the necessary details to the
<security-constraint> element.

15.4.7 The URLs we protect

The first step in defining Declarative Security is to identify the URL pattern(s) to
secure. In listing 15.1, our <url-pattern> says to limit access to any location
under /do/admin in our application. If a URI like /do/admin/article/Edit is
requested, the container checks to see if the user has logged in to this application.
If not, the container will bring up a challenge dialog box to require that the user
log in to the application. If the user’s credentials pass, the container will grant
access to the resource.

 An application can define any number of resources, each with its own URL pat-
tern and set of constraints.

1.0 vs 1.1 In the Struts 1.1 version of Artimus (see chapter 16), we use the new secu-
rity features built into the Struts ActionMappings. The same security roles
are used in either case. The foundation we are laying here is forward-
compatible with Struts 1.1.

484 CHAPTER 15

Artimus: pulling out the stops
15.4.8 The authorized users

Once a user logs in, the <auth-constraint> in listing 15.1 says to grant access to
users in the roles of manager, editor, and contributor. A user can belong to more
than one role, so a manager can also be a contributor. Separate resources could
have been set up for each role. As we will see later, Artimus fine-tunes the security
on its own by providing different menus to users based on their role.

15.4.9 Our authentication strategy

The <auth-method> element in listing 15.1 tells the container to use the Basic
authentication strategy. There are other schemes that are more secure, but they
are not supported by all browsers. Since Artimus does not need to be a highly
secure application, the simplest, most compatible scheme is chosen.

 This completes the roundup of our deployment descriptor. Next, let’s take a
closer look at the ArtimusServlet loaded through the descriptor and the resources
it provides to our application.

15.5 ArtimusServlet

The ArtimusServlet is used to initialize several custom resources used by our
application. This could be done by subclassing ActionServlet directly, but it is
often better to use another servlet to load your resources. The advantages of using
your own resource loader are that it:

� Can draw on standard subclasses to do most of the work

� Limits the amount of custom coding you bind to Struts

� Protects you from any changes that may later occur in the ActionServlet or
PlugIn interface

All told, Artimus needs to load three properties files and initialize two internal
services:

� The Artimus system Properties file

� Two SQL Properties files

� The Connection Adaptor

� The Lucene search engine

Our resource loaders extend standard base classes in the Scaffold package and do
all this using very little custom code. The Scaffold package also has similar base

ArtimusServlet 485
classes for PlugIns, which we will use later in this chapter to migrate ArtimusServ-
let to a PlugIn.

 Listing 15.2 shows the full source code for the ArtimusServlet.

package org.apache.artimus.http;

import java.io.IOException;
import java.util.Properties;
import javax.servlet.ServletException;
import org.apache.commons.scaffold.lucene.Engine;
import org.apache.commons.scaffold.sql.ConnectionAdaptor;
import org.apache.commons.scaffold.http.ConnectionServlet;

<!-- [15.5.1] Our subclass -->
public class ArtimusServlet extends ConnectionServlet {

<!-- [15.5.2] Our String tokens -->
private static String KEYS_PARAMETER = "sql_keys";
private static String KEYS_PATH =
 "resources/sql_keys.properties";
private static String ARTICLE_PARAMETER = "sql_article";
private static String ARTICLE_PATH =
 "resources/sql_article.properties";
private static String INDEX_PARAMETER = "index.path";
private static String INDEX_PATH = "/var/lucene/artimus";

<!-- [15.5.3] Our extension point -->
protected void initCustom()

throws IOException, ServletException {
 <!-- Fetch the SQL commands -->
Properties keysCommands =
 loadProperties(KEYS_PARAMETER,KEYS_PATH,null);
 org.apache.artimus.keys.Access.init(keysCommands);
 Properties articleCommands =
 loadProperties(ARTICLE_PARAMETER,ARTICLE_PATH,null);
 org.apache.artimus.article.Access.init(articleCommands);
 <!-- Initialize the Lucene index path -->
String indexPath =
getProperties().getProperty(INDEX_PARAMETER);
 if (null==indexPath) {
 indexPath = getInitString(INDEX_PARAMETER,INDEX_PATH);
 }
 Engine.init(indexPath);
} // end initCustom
} // end ArtimusServlet

Listing 15.2 ArtimusServlet

486 CHAPTER 15

Artimus: pulling out the stops
15.5.1 Our subclass

The ArtimusServlet in listing 15.2 extends ConnectionServlet, a standard Scaffold
class. The ConnectionServlet automatically initializes the connection adaptor
(section 15.4.3), so we do not need to provide any code to handle that.

 The ConnectionServlet in turn extends the Scaffold ResourceServlet. Like-
wise, this class automatically loads the default Properties file (section 15.4.2), so
that’s one less thing to worry about.

 The ResourceServlet also provides a utility method for loading other Proper-
ties files. We will use this utility to load our application’s SQL commands.

15.5.2 Our String tokens

The block of static Strings in listing 15.2 could have been provided inline. But as a
matter of coding style, both Artimus and the Scaffold package provide static con-
stants for all String literals. This provides the opportunity to document the literals
and can avoid some hard-to-trace bugs. We do not show the JavaDocs here, but in
the source, each static includes a description that documents the default value.

15.5.3 Our extension point

The ResourceServlet super class (section 15.5.1) provides an initCustom method
as an extension point where subclasses (like ours) can add their own initialization
code. In listing 15.2, the ArtimusServlet overrides initCustom to load our SQL
commands and sets the path for the Lucene index file.

Fetching the SQL commands
Each of the SQL properties files are loaded using the loadProperties method
provided by the ResourceServlet super class. This method checks the deployment
descriptor (web.xml) for a custom setting or uses the provided default if a setting
is not found in the descriptor.

 To use loadProperties, we pass it:

� The name of the initialization parameter (the <param-name> element for
the web.xml)

� The default setting to use, if one is not given in the web.xml

� Optionally, an attribute name for the application context

If an attribute name is passed, loadProperties will save a reference to the Prop-
erties file in the application context. The Artimus Properties files don’t need to
do this, so they pass null instead.

The application and SQL Properties files 487
 The ResourceServlet super class does use this feature to store a reference to
the default application properties. Other classes in the Scaffold package look for
this reference to obtain system properties. The core Struts framework uses this
same strategy to expose the ApplicationResources to other components in the
application.

 After the SQL Properties objects are loaded from the external files, each object
is passed to the data-access component that uses it (Access.init(Properties com-
mands)). The components save the reference and provide it to the data-access rou-
tines at runtime.

Initializing the Lucene index path
The Lucene search engine creates a set of index files that must be stored within
your server’s file system. Scaffold provides a number of convenient utility methods
for Lucene that need to know where to store the index file. Artimus lets you spec-
ify the index location in the default Properties file or the deployment descriptor.
If neither is found, a default location is used instead.

 In listing 15.2, this is done with two lines of code that call utility methods in the
ResourceServlet super class. The getProperties method checks the default
Properties file (automatically created by the super class). The getInitString
method checks the deployment descriptor for a parameter, returning a default
value if it is not found. The result is then passed to the Lucene utility class for use
at runtime.

15.6 The application and SQL Properties files

As mentioned, the Artimus Properties file uses the same standard name-value for-
mat as used by the ResourceBundles. (Actually, it’s the other way around.
Resource files are an extension of the Properties file, but who’s counting?)
Although these files are very simple, let’s have a peek anyway.

 The working copies of these files are found under /artimus/WEB-INF/classes/
resource. The Artimus Properties file is shown in listing 15.3.

index.path = /var/lucene/artimus
rss.link.base=http://localhost/artimus/
rss.link.view=http://localhost/artimus/article/View.do?article=

Listing 15.3 /WEB-INF/classes/resources/artimus.properties

488 CHAPTER 15

Artimus: pulling out the stops
The first entry in listing 15.3 is the index path for the Lucene search utilities (sec-
tion 15.5.3). The others are used to configure the default RSS channel. We put
these out in the Properties files so that a system administrator could change them.
An XML file could have been used, but that would be something that many mere
mortals could easily mess up. One of the Properties files Artimus uses to store SQL
commands is shown in listing 15.4.

keys.next = SELECT next FROM artimus_keys WHERE name=?;
keys.inc = UPDATE artimus_keys SET next=next+1 WHERE name=?;

Likewise, the SQL command file in listing 15.4 is something that any database
administrator could easily review and edit. The two commands shown here are
used to generate serial numbers. The keys.next command selects the current
key, and the keys.inc command increments it for the next caller.

 There are actually a few more commands in this file, including one to create
the table, but they seemed rather long to present here. There is also a second SQL
command file, sql_articles.properties, but that is just more of the same. (Two lines
of SQL are the most many Java developers can stand anyway.)

 At runtime, the data-access object retrieves the command it needs from the
Properties file and uses it to retrieve or update database records. Accessing JDBC
and other data services with Artimus is covered in chapter 14.

 Keep in mind that these files are loaded once at startup. To activate any
changes, you must reload the application.

15.7 index.jsp

Now that our resources are initialized, let’s move past the web.xml and look at
how Artimus unfolds at runtime. One of the standard appurtenances in our
deployment descriptor is a reference to a standard welcome page, index.jsp.
When a visitor does not request a specific page, the container looks for a welcome
page to return instead.

 Unfortunately, this request does not pass through the usual servlet gauntlet,
and we cannot use something like index.do for our welcome page. It needs to be
a physical file on the system, like an HTML page or JSP.

 Meanwhile, many dynamic applications, like Artimus, are designed to avoid
using direct references to a physical page. Control is expected to pass through a
servlet and then out to a page.

Listing 15.4 /WEB/-INF/classes/resources/sql_keys.properties

Global forwards 489
 As a compromise, Artimus uses a stock index.jsp page that forwards to a Struts
Action. This is a page that can be used in any Struts application as is. The entire
JSP is shown in listing 15.5; it’s just two lines.

<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
 <logic:redirect forward="welcome"/>

The index.jsp uses a Struts logic tag to redirect control to welcome, which is
defined as a global forward in the Struts configuration. We’ll be presenting the
struts-config.xml over several sections, starting with the global forwards in the
next section.

15.8 Global forwards

A Struts configuration file has several sections. First, there’s the statutory XML
header followed by sections for the data sources, form beans, global forwards, and
action mappings.

1.0 vs 1.1 In Struts 1.1, the configuration file may also include global exception,
controller, message resource, and plug-in elements. See chapter 4 and
chapter 16 for more about configuring Struts 1.1.

At 400+ lines, the struts-config.xml is actually the longest source file in the Arti-
mus application. Accordingly, we’ll present it piece by piece. Each piece will be a
logical segment of the file, but to get the struts-config.xml big picture, see
chapter 4, where it is covered in depth.

 Listing 15.6 shows the <global-forwards> portion of our Struts configura-
tion file.

<global-forwards>
 <!-- default forwards -->
 <forward
 name="welcome"
 path="/do/find/Recent"/>
 <forward
 name="cancel"
 path="/do/Menu"

Listing 15.5 /index.jsp

Listing 15.6 /WEB-INF/struts-config.xml (global forwards)

490 CHAPTER 15

Artimus: pulling out the stops
 redirect="true"/>
 <forward
 name="done"
 path="/do/Menu"/>
 <forward
 name="exit"
 redirect="true"
 path="http://jakarta.apache.org/"/>
 <forward
 name="failure"
 path="/do/Menu"/>
 <forward
 name="baseStyle"
 path="/assets/styles/base.css"/>
 <!-- MENU forwards -->
 <forward
 name="logon"
 path="/do/admin/Menu"/>
 <!-- ARTICLE forwards -->
 <forward
 name="article"
 path="/do/article/View"/>
 </global-forwards>

We’ve already seen the first global forward, welcome, in action. The index.jsp in
section 15.7 uses it to redirect control from the welcome page to the Struts por-
tion of our application. The welcome forward in listing 15.6 sends control to the
context-relative URI /do/find/Recent. If we wanted to change the welcome page
later, we’d only need to change the path reference in the ActionForward.

 In the web.xml setup for the Struts ActionServlet, we asked the container to for-
ward all URLs beginning with /do/* to the servlet, instead of trying to find a file
with that name. These are the Struts actions that we will route through the Action-
Mappings object defined in the Struts configuration. We’ll look at the /find/Recent
action in the next section.

 The global cancel, done, and failure ActionForwards are standard stock for
many applications. If a particular ActionMapping doesn’t provide its own forward
for these common events, the global versions come into play. The cancel forward
has redirect set to true. This forces a clean request to be sent back by the
browser, helping to ensure that the request is indeed canceled. If an individual
action wants to handle cancel differently, it can define its own local forward. The
Artimus menu page is designed to display any pending errors or messages, mak-
ing it a convenient place to route the unhandled done, failure, and success
events. But if that changes, the paths can be changed here and these default

Global forwards 491
events would be routed elsewhere. The exit forward just gives the menu some-
place to go if users are done with the application. Here, we exit to one of our
favorite sites, the Jakarta Project.

NOTE You might note that there is no global success forward in listing 15.6.
In most cases, each action will have its own place to go for success—usual-
ly a display page. Since unhandled success seems like an exception rather
than a rule, Artimus does not define one.

The logon and article forwards are more specialized than the others. If this
were a modular Struts 1.1 application, they might be put into their own Struts
configuration files with other menu and article elements.

 The logon forward points to a URI under admin. This will trigger our security
constraints (section 15.4.6). Once the user is logged in, the menu page will dis-
play a set of menus appropriate for each role assigned to the user.

 The article forward is used for creating links. At runtime, the Struts
<html:link> tag is used to merge this path with a reference to an article. The JSP
source looks like this:

<html:link forward="article" paramProperty="article" paramId="article">

But after the JSP tag renders, a proper hypertext reference is sent down to the
browser, like this one:

Article 101

The baseStyle forward is used differently than the others here. It is not meant to
generate a hyperlink for the user to follow. Instead, it refers to a style sheet file
stored inside our web application. On the pages, we can load the style sheet using
a tag like this:

<LINK rel="stylesheet" type="text/css"
 href="<html:rewrite forward='baseStyle'/>">

Another way to do this would be

<LINK rel="stylesheet" type="text/css"
 href="<html:rewrite page='/assets/styles/base.css/'>">

but that binds the link to a system path. You couldn’t reorganize your file system
without changing all your JSPs, which is something Struts tries to avoid.

 The Artimus style sheet is rather simple and just defines some base fonts and
table sizes. We won’t present the style sheet source here, but if you’re interested in

492 CHAPTER 15

Artimus: pulling out the stops
what it looks like, you now know how to find it—check the global forward in the
struts-config.xml!

15.9 /find/Recent

By default, the Artimus welcome Action is mapped to /do/find/Recent. This
action displays a list of the last 20 articles posted. This is one of several search
operations. Artimus can also find articles by author, title, content, or time span.
Listing 15.7 shows the Artimus Find actions described in the Struts configuration
(struts-config.xml).

<action
 path="/find/Recent"
 forward="/do/find/Last?articles=20"/>

 <action
 path="/find/Last"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByLast"
 name="articleForm"
 validate="false">
 <forward
 name="success"
 path=".article.Result"/>
 </action>

<action
 path="/find/Author"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByCreator"
 name="articleForm"
 validate="false">
 <forward
 name="success"
 path=".article.Result"/>
 </action>

<action
 path="/find/Title"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByTitle"
 name="articleForm"
 validate="false">
 <forward
 name="success"
 path=".article.Result"/>
 </action>

Listing 15.7 /WEB-INF/struts-config.xml (Find actions)

/find/Recent 493
<action
 path="/find/Content"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByContent"
 name="articleForm"
 validate="false">
 <forward
 name="success"
 path=".article.Result"/>
 </action>

<action
 path="/find/Hours"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByHours"
 name="articleForm"
 validate="false">
 <forward
 name="success"
 path=".article.Result"/>
 </action>

As you can see in listing 15.7, our /find/Recent action is really an alias. It simply
turns around and forwards the request to do/find/Last while making the URI a
query string by concatenating ?articles=20. This parameter restricts the /find/
Last action to returning 20 articles. To display more or fewer articles, you would
just need to change this setting in the Struts configuration.

 You will notice that the Find actions are very similar. The only real difference is
that each has a different parameter property. The parameter is the full classname
for the business logic object that can execute the search operation. As recom-
mended by the Struts User Guide, Artimus implements business logic objects as
plain Java classes that are not tied to Struts or the web tier. This makes the busi-
ness logic objects easy to write and allows them to be used in other environments.

 You might also notice that the paths in our local forwards do not look like sys-
tem paths to JSPs. They are in fact references to Tiles Definitions. We cover Tiles
in chapter 11, and we see how Artimus uses Tiles in section 15.10. As a conven-
tion, we’ve named our definitions using dots where a URI would usually put a
slash. This is to distinguish the definitions from actual system paths. The dots have
no special meaning to Tiles.

 Listing 15.8 shows the source code for our FindByLast class. We’ll cover the
hotspots in the following sections. All the search classes are implemented in a sim-
ilar way. After we present this one, you should be able to follow the source for the
others without any difficulty.

494 CHAPTER 15

Artimus: pulling out the stops
 Take careful note that this is a business class that is being called by a Struts
Action object. This is not a Struts class. It executes the business logic and then
returns the result to a Struts Action.

package org.apache.artimus.article;
import org.apache.commons.scaffold.lang.ParameterException;
import org.apache.commons.scaffold.util.ProcessResultBase;
import org.apache.commons.scaffold.util.ResultList;
import org.apache.commons.scaffold.util.ResultListBase;
import org.apache.artimus.lang.Tokens;

 // [15.9.1] extends bean
public class FindByLast extends Bean {
 public static final String PROPERTY = Tokens.LAST;
 public Object execute(Object parameters) throws Exception {
 // [15.9.2] super.execute
 super.execute(parameters);
 // [15.9.3] getArticles
 Integer articles = getArticles();
 if (null==articles) {
 throw new ParameterException();
 }
 // [15.9.4] findByLast and ResultList
 ResultList list = new ResultListBase(
 Access.findByLast(this,articles)
);
 list.setLegend(PROPERTY,articles.toString());
 // [15.9.5] ProcessResult
 return new ProcessResultBase(list);

 } // execute
} // end FindByLast

15.9.1 extends bean

Artimus uses a “coarse-grained” bean approach (see chapter 5) for both its
ActionForms and the business logic beans. The Bean super class contains all the
properties used by the other business logic beans in the Artimus article pack-
age. In a larger application, each package might have its own base bean, perhaps
managed by different members of the development team.

 The Bean super class in turn extends the Scaffold ProcessBeanBase class
(org.apache.commons.scaffold.util.ProcessBeanBase). This is a very light
class that provides a couple of convenience properties and, more important, a
standard entry method for invoking the bean.

Listing 15.8 org.apache.artimus.article.FindByLast

/find/Recent 495
 A standard entry method lets another process, such as a Struts Action, call each
object in the same way, regardless of its subclass. Struts uses this same Inversion of
Control technique [Johnson] in calling whatever Actions your application defines.
Scaffold defines an Executable interface (org.apache.commons.scaffold.util.
Executable) that provides the entry method for the ProcessBeans, and conse-
quently the Artimus business beans.

 Artimus instantiates a new business bean for each request, like the FindByLast
class shown in listing 15.8, in much the same way that Struts might instantiate a
new ActionForm. Another approach would be to write the business beans as sin-
gletons, like the Struts Actions, so that they are instantiated only once for each
application. This could provide better performance in some cases, with the trade-
off that the business beans would have to be thread-safe.

15.9.2 super.execute

The FindByLast class of our business bean is entered through its execute
method. As shown in listing 15.8, it starts out by calling the super class execute
method. The default behavior inherited from ProcessBeanBase is to cast the
parameters object as a Map and use it to populate itself via reflection. The stan-
dard BeanUtils.populate utility method handles the data transfer. This is the
same utility Struts uses to populate ActionForm beans.

 The interface is designed so that any application that can create a Map can call
the FindByLast.execute method without being bound to Struts or HTTP.

15.9.3 getArticles

The FindByLast class in listing 15.8 needs one parameter: the number of articles
to return. This must be passed as one of the Map entries in the parameters
object. If it was duly passed, the super class execute method should have found it
and used it to populate our bean’s articles property. If getArticles() returns
null, FindByLast throws a ParameterException (org.apache.commons.scaffold.
lang.ParameterException).

 Since missing parameters is a common occurrence in multitier applications,
Scaffold defines a standard exception for this, based on a chained exception class
(org.apache.commons.scaffold.lang.ChainedException). Other tiers can
add their own exceptions to the chain if needed.

15.9.4 Access.findByLast and ResultList

The FindByLast class in listing 15.8 is a denizen of the business tier. Its job is to
gather parameters for the resource-tier class, obtain the result, and pass the result

496 CHAPTER 15

Artimus: pulling out the stops
back to the application layer. Artimus groups the data-access methods needed by a
package into an Access class. The methods in this class take plain Java parameters,
like Integers and Strings, and return an Object or Collection of Objects.

 Scaffold provides a useful set of JDBC utilities to help with this process, but any
data-access approach, or combination of approaches, could be used within the
Access class. Artimus, for example, uses both JDBC and Lucene [ASF, Lucene] to
perform different operations. For more about using Artimus with various data ser-
vices, see chapter 14.

 Artimus implements the Access class using static methods, but it could also be
implemented as a singleton to provide more flexibility. An entirely different class
could also be implemented and invoked from the business beans.

 You could also implement the data-access routines directly in the business bean,
in the same way you could implement everything in a Struts Action. But that would
not provide for the optimal number of component layers recommended by many
application architects. Many modern designs include a discrete set of components
for the application, business, data access, and resource layers. Table 15.2 shows
some common architectural layers and corresponding Artimus components.

ResultList
The Java language provides a very useful Collection interface (java.util.
Collection). A Collection is often used to transport the result of a data-access
operation to the presentation tier. In practice, the presentation needs to know a
little bit more about the result. There is usually a legend describing the Collection
and there are often some column headers, both of which may need to be local-
ized. The presentation page may also need to know how many members are in the
Collection, if any. Very often, the page will need an Iterator to scroll through the
members of the Collection.

Table 15.2 Common layers and Artimus components

Architectural layer Artimus components

Presentation JavaServer Pages, JSP tags

Control ActionServlet, ActionForms, ActionForwards, ActionMappings, Actions

Business ProcessBeans, ResultList, ProcessResult, MessageResources, Properties

Data access Access class, StatementUtils, LuceneUtils, ConnectionAdaptor, JDBC driver

Resource DBMS, Lucene

/find/Recent 497
 The ResultList interface in the Scaffold package (org.apache.commons.
scaffold.util.ResultList) wraps all of these requirements up into a tidy bun-
dle. A ResultList extends Collection, and so can be used anywhere a Collection can
be used. But it also provides additional properties for the convenience of the pre-
sentation tier. See chapter 14 for more about the ResultList object (section 14.4).

 The FindByLast class in listing 15.8 wraps the Collection returned by the
Access class method to create a ResultList object. It also sets the legend property
on the ResultList. On the presentation page, the legend will be rendered at the
top as last=20 and be part of the standard page description, 20 matches for
last=20. This makes it easy to customize the same presentation page for all the
search methods.

15.9.5 ProcessResult

There are a variety of outcomes to a business operation. Some operations may
return a single object. Other operations will return a collection of objects. Some
may just return a message or even suggest a change in the workflow. Often, an
operation returns an object that needs to be stored in a context available to other
components. This could be a servlet context, a JNDI context, some type of custom
context, or just a property on another object.

 The Scaffold ProcessResult interface (org.apache.commons.scaffold.
util.ProcessResult) defines a transfer object that can describe several possible
outcomes. ProcessResultBase is a standard bean class that implements the
ProcessResult interface. Any operation may return a data object or collection, a
list of messages, dispatch advice, or any combination of the three. It may also
request that the object be stored under a certain attribute name for use by
another component.

 Table 15.3 shows the ProcessResult properties (implemented by ProcessResult-
Base) that are used to relate the outcome of the operation. The business bean sets
the properties, and the ProcessAction acts on them.

Table 15.3 ProcessResult properties

Property Description

name Contains the attribute name for the result object, or null if a default name
should be used.

scope Specifies the application scope or other context for storing the result object as
an attribute.

singleForm Specifies whether the result is an Object or Collection of Objects.

498 CHAPTER 15

Artimus: pulling out the stops
Our FindByLast operation is simply returning a collection of objects, which it can
wrap in a standard ProcessResultBase object. So, it can just call a default construc-
tor on the way out. (The simple things can still be simple.) We’ll show a more
advanced use of the ProcessResult object when we create the items for the Arti-
mus main menu in section 15.15.

15.9.6 ProcessAction

All of the Find actions shown in listing 15.7 call the Scaffold ProcessAction
(org.apache.struts.scaffold.ProcessAction). This Action object in turn
invokes the business bean class given as the parameter property, like the FindBy-
Last class we presented in sections 15.9.1 through 15.9.5.

 ProcessAction is a sophisticated object developed and refined over the course
of writing several different Struts applications. It extends the Scaffold BaseHelper-
Action, which is covered in chapter 8. The BaseHelperAction handles the nuts and
bolts of instantiating the business bean (or beans) from the parameter property.
The ProcessAction then simply has to invoke the bean and cope with the result.

 To invoke our business bean, ProcessAction extracts a Map (java.util.Map)
from the incoming ActionForm (if there is one) and calls our bean’s execute
method, passing it the Map. This is the same Inversion of Control technique the
ActionServlet uses when it calls an Action. The differences are that:

� Our business beans are not bound to any web-tier classes.

� Our business beans can make API contract demands that cannot be made at
the web-tier level.

exposed Specifies whether the result should be exposed as an attribute [true].

data Specifies the object containing the result of the operation.

aggregate Specifies whether this ProcessResult is a collection of other ProcessResults
[false].

messages Contains a list of messages for the application tier, keyed to the application’s
message resources.

dispatch Contains special routing advice for the controller. May be a path or a logical
name (for example, the ActionForward name). Rarely used.

dispatchPath Specifies whether dispatch advice is a logical name (preferred) or a URI.

Table 15.3 ProcessResult properties (continued)

Property Description

tiles.xml and Article.jsp 499
The latter difference means that we can do things like expect that data be present
and of the correct type—or throw a serious exception if it isn’t. On the web tier,
invalid input is usually a user error that we should politely correct in the normal
course. At this level, bad data usually represents a programming flaw that requires
the attention of a developer or administrator.

 The API contract for a ProcessBean, like our FindByLast bean (sections 15.9.1
through 15.9.5), is to take whatever parameters it needs from a Map and return
the outcome in a ProcessResult. The action uses the ProcessResult object to deter-
mine the outcome of the operation. This is the same pattern an ActionServlet
uses when it looks at the ActionForward to determine its next step.

 If the ProcessResult includes messages, the ProcessAction wraps them up as
ActionErrors or (since Struts 1.1) ActionMessage objects. If the result includes
data, the action saves the object or collection of objects to the appropriate scope.
If the result includes special dispatch advice, the action finds or creates the appro-
priate ActionForward. The action does all this by analyzing the ProcessResult
properties shown in table 15.3.

 In the case of our FindByLast operation, shown in listing 15.8, the bean simply
returned a ResultList collection wrapped in a default ProcessResult object. The
ProcessAction will then just save the ResultList collection in request scope, using
the default RESULT attribute name, and forward control to success.

 If for some reason the articles parameter was missing (section 15.9.3), the
ProcessAction would automatically catch and log the Exception, wrap the mes-
sage in an ActionError, and forward control to failure instead.

 In either case, we will be routing control out to the presentation layer, where
either our ResultList or our Exception message will be displayed to the user.
Which brings us to Tiles.

15.10 tiles.xml and Article.jsp

We noted that the path for the local forwards shown in listing 15.6 were refer-
ences to Tiles Definitions (we discuss Tiles in chapter 11). These are loaded from
a tiles.xml configuration file, which is much like the struts-config.xml or the
web.xml file. Listing 15.9 shows the Tiles configuration file for Artimus.

<tiles-definitions>
 <definition name=".article.Base" path="/article/common/layouts/

Article.jsp">
 <put name="title" value ="${title}"/>

Listing 15.9 /WEB-INF/tiles.xml (Artimus 1.0)

500 CHAPTER 15

Artimus: pulling out the stops
 <put name="header" value="/article/common/header.jsp"/>
 <put name="message" value="/article/common/message.jsp"/>
 <put name="content" value="${content}"/>
 <put name="navbar" value="/article/common/navbar.jsp"/>
 </definition>
 <definition name=".article.Result" extends=".article.Base">
 <put name="title" value="article.Result.title"/>
 <put name="content" value="/article/content/result.jsp"/>
 </definition>
 <definition name=".article.View" extends=".article.Base">
 <put name="title" value="article.View.title"/>
 <put name="content" value="/article/content/view.jsp"/>
 </definition>
 <definition name=".article.Form" extends=".article.Base">
 <put name="title" value="article.Form.title"/>
 <put name="header" value="/article/common/headerForm.jsp"/>
 <put name="content" value="/article/content/form.jsp"/>
 </definition>
 <definition name=".article.Menu" extends=".article.Base">
 <put name="title" value="article.Menu.title"/>
 <put name="content" value="/article/content/menu.jsp"/>
 <put name="navbar" value="/article/common/navbarMenu.jsp"/>
 </definition>
</tiles-definitions>

Our Tiles configuration file defines a base layout definition and four display
pages: Result, View, Form, and Menu. The display pages inherit most of their
markup from the base definition. We simply need to provide a title String and
content tile. The title Strings are actually given as keys in our application’s mes-
sage resources. This keeps the literal text from being buried in a programmer’s
configuration file and makes Artimus easier to localize later.

 As a convention, we’ve named our definitions using dots where a URI would
usually put a slash. This is to distinguish the definitions from actual system paths.
The dots have no special meaning to Tiles.

 With Tiles enabled, when the ActionServlet processes an ActionForward, the
Tiles Definitions are checked first. If the ActionForward path matches a Tiles Def-
inition name, the ActionServlet creates a Tiles context for the Definition and for-
wards control to the URI specified by the Definition’s path. The path usually leads
to a JSP page that renders the response using the Tiles tags and the details from
the Definition. Listing 15.10 shows the base tile for our Article page.

tiles.xml and Article.jsp 501
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<!-- [15.10.1] useAttribute-->
<tiles:useAttribute name="title" scope="request"/>
<html:html>
<HEAD>
<html:base/>
<!-- [15.10.2] baseStyle-->
<LINK rel="stylesheet" type="text/css" href="<html:rewrite

forward='baseStyle'/>">
<!-- [15.10.3] title-->
<TITLE><bean:message key="app.title"/> - <bean:message name="title"/></TITLE>
</HEAD>
<!-- [15.10.4 tiles -->
<tiles:get name="header"/>
<tiles:get name="message"/>
<tiles:get name="content"/>
<tiles:get name="navbar"/>
</BODY>
</html:html>

15.10.1 useAttribute

Tiles uses its own context, akin to the standard session or request context. When
Tiles Definitions, like those in listing 15.9, use put on a value, they are putting it
into the Tiles context. The <useAttribute> tag, shown in listing 15.10, makes
the value available to one of the standard contexts. The default is the page con-
text. Our <useAttribute> tag specified request scope so that other tiles can have
access to the title attribute too. (Each tile has its own page context.)

 The title attribute is a key in our application’s message resources, which we
use later in the page.

15.10.2 baseStyle

To help maintain consistency, our tiles all use the same set of styles. To make it
easy to swap in another style sheet, in listing 15.10 we maintain the path to the
style sheet as an ActionForward. The rewrite tag returns the path to the style
sheet from the Struts configuration.

Listing 15.10 /pages/article/tiles/layouts/Base.jsp

502 CHAPTER 15

Artimus: pulling out the stops
15.10.3 title

Since the title attribute passed to our page is a key in the application’s message
resources, in listing 15.10 we use the <bean:message> tag to render the actual
text. We also look up another message, the app.title. This ends up generating a
page title like “Artimus—Article Search Result.”

15.10.4 Tiles

Most of the page rendered by listing 15.10 comes from the component tiles. The
layout page refers to the tile using logical names. The paths to the JSPs are given
in the Definition shown in listing 15.9. When the ActionServlet processes an
ActionForward that uses a Tiles Definition, the servlet puts the Definition into the
Tiles context where the layout page will find it. In the case of our results page, the
layout would include the standard header.jsp, message_1_0.jsp, and navbar.jsp,
along with the result.jsp content tile.

 Since the Artimus pages are quite simple, the markup in these tiles does not
amount to much. In pages that use more complex markup, the savings can be sig-
nificant. Listings 15.11, 15.12, and 15.13 show the JSP source for the header, mes-
sage, and navbar tiles, respectively.

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<BODY>
<!-- OUTER TABLE -->
<TABLE class="outer">
<TR>
<TD align="center">
<!-- INNER TABLE -->
<TABLE class="inner">
<TR>
<TD class="heading" colspan="3"><bean:message name="title"/></TD>
</TR>

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-validator" prefix="validator" %>
<validator:errorsExist>
<TR>
<TD class="error" colspan="3">

 <validator:errors id="error">

Listing 15.11 /pages/article/tiles/heading.jsp

Listing 15.12 /pages/article/tiles/message.jsp (1.0)

tiles.xml and Article.jsp 503
 <bean:write name="error"/>
 </validator:errors>

</TD>
</TR>
</validator:errorsExist>
<validator:messagesExist>
<TR>
<TD class="message" colspan="3">

 <validator:messages id="message">
 <bean:write name="message"/>
 </validator:messages>

</TD>
</TR>
</validator:messagesExist>

<%@ taglib uri="/tags/struts-html" prefix="html" %>
</TABLE>
</TD>
</TR>
<TR>
<TD class="navbar">
<html:link forward="done">DONE</html:link>
</TD>
</TR>
</TABLE>

Listing 15.12 uses the Struts Validator 1.0 tags to display both error and confirma-
tion messages. This tag set was integrated into the Struts 1.1 taglibs. When we
migrate Artimus to Struts 1.1 in the next chapter, this tile will be replaced with
one that uses the newer tags.

 The message tile is used to print whatever errors and/or messages are found
in the request. Artimus does not use the <html:error> tag to render the error
messages. The design of this tag makes it easy to render messages but encourages
you to put HTML markup into the message resource files. Instead, we use the
Struts Validator 1.0 tag set. The validator’s errors and messages tags work like iter-
ators. In each iterator, the next message is exposed under whatever ID you specify.
The <bean:write> tag can then render the message like any other String.

 Like Struts 1.1, the validator tags support the idea of two message queues: one
for actual errors, and another for other messages. Our message tile prints the errors

Listing 15.13 /pages/article/tiles/navbar.jsp

504 CHAPTER 15

Artimus: pulling out the stops
first and then the messages. The Scaffold BaseAction (org.apache.commons.
scaffold.BaseAction) supports the message-only queue for both Struts 1.0 and
Struts 1.1.

 Being able to put complicated code, like that shown in listing 15.12, onto a tile
saves us from having to copy and paste this block onto every page that has to dis-
play messages.

 As mentioned, we will need to change the taglibs used in listing 15.12 when we
migrate to Struts 1.1, but the layout and output strategy will remain the same.
Because it is a tile, we will also need to make the changes in only one place. With-
out tiles, we would have to update every page that displays messages (which in
Artimus is all of them).

 Listings 15.11 and 15.13 are straightforward examples of Tiles/JSP markup.
Specifying these segments as tiles means that we can avoid copying and pasting
the same markup into all of our pages. Our result, view, form, and menu tiles con-
tain only the markup unique to each of those pages.

 The content tile for our results page is covered in section 15.11.

15.11 result.jsp

Because the result.jsp is a tile rather than a complete JSP, the markup in
listing 15.14 gets right down to business. All the usual HTML chrome is provided by
other tiles, so all the result tile has to do is render the unique content for this page.

 When the ProcessAction (section 15.9.6) put our ResultList into the request
context, it used the default attribute name RESULT. This means we can access any
property on the result list using the various Struts tags and specifying
name="RESULT".

 The ResultList that we received back from the business tier is not a collection
of ActionForm beans. What we have is a collection of our business beans
(org.apache.artimus.article.Bean). But since we designed our ActionForm
so that its property names match the business bean’s property names, we can use
whichever bean is most convenient.

 The Struts framework needs an ActionForm to automatically capture and vali-
date HTTP parameters. Otherwise, it doesn’t matter what sort of JavaBean you use
to transport your data. The tags bind to the property names, not to the bean type.

 Of course, technically, passing the business bean straight through to the page
is a kluge. During implementation, we arranged that our business-layer and
presentation-layer property names would match. However, since these layers are
not adjacent, the business layer should be able to change its property names with-
out affecting the presentation page [POSA].

result.jsp 505
 Happily, in practice, the business layer could do just that. Our bean does not
come directly from the business layer but is relayed to the presentation layer by the
controller. In the event that the property names ever change, the controller is
there to wrap the business bean into an adaptor object that matches up the prop-
erty names again. Bothering with that now has no intrinsic value, so we cut to the
chase and pass along the business bean, as shown in listing 15.14.

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<!-- [15.11.1] legend -->
<TR class="message">
<TD align="center" colspan="3">
<bean:write name="RESULT" property="size"/>
matches for
<bean:write name="RESULT" property="legend"/>
</TD>
</TR>

<!-- [15.11.2] isResult? -->
<logic:notEqual name="RESULT" property="size" value="0">
<TR class="subhead">
<TH>id</TH>
<TH>article</TH>
<TH>contributed</TH>
</TR>
<TR>
<!-- [15.11.3] RESULT -->
<logic:iterate id="row" name="RESULT" property="iterator">
<TR>
 <TD nowrap>
 <bean:write name="row" property="article"/>
 </TD>
 <TD width="100%">
 <html:link forward="article" paramName="row"
 paramProperty="article" paramId="article">
 <bean:write name="row" property="title"/>
 </html:link>
 </TD>
 <TD nowrap>
 <bean:write name="row" property="contributedDisplay"/>
 </TD>
 </TR>
</logic:iterate>
</TR>
</logic:notEqual>

Listing 15.14 /pages/article/content/result.jsp

506 CHAPTER 15

Artimus: pulling out the stops
15.11.1 The legend

At the top of the result tile in listing 15.14, we print a description for the page.
The description is assembled from some of the properties provided by the
ResultList object (section 15.9.4). The size property returns the number of
entries in the Collection. The legend property is created on the business tier. For
the /find/Recent action (section 15.9), the legend would usually read 20
matches for last=20.

 The same result tile is used by all the search operations. The legend serves to
customize the page and keep users informed as to where they are in a workflow.

15.11.2 isResult?

Many search operations return no matches. The result tile shown in listing 15.14
checks the size property of the ResultList to see if any matches were returned. If
we do have entries, the column headings for the table are printed, and we con-
tinue to iterate over the Collection entries.

 If there were zero matches, we can skip the rest of the markup. In this case, the
only content printed for this tile would be the legend 0 matches for....

15.11.3 RESULT

When there are matches, the Struts <logic:iterate> tag is used to scroll
through the Collection. During the iteration, each entry will be exposed as a
scripting variable named row. The ResultList object provides a standard getIter-
ator() method that works well with the Struts tag. The block of code in this row
(<TR> ... </TR>) is generated for each entry in this collection. The markup that
is sent to the browser looks something like this:

<TR>
 <TD nowrap>101</TD>
 <TD width="100%">

 Welcome to Artimus

 </TD>
 <TD nowrap>2002-12-25 18:30:03</TD>
 </TR>

<html:link>
The <html:link> tag starts by retrieving the path property of the article global
forward (section 15.8), which is /do/view/Article. The paramProperty and
paramId properties specify to use article as the name (or id) of a query string
parameter and the result of row.getArticle() for its value. The <html:link> tag

result.jsp 507
adds the servlet context (/artimus) and pastes it all together to create a hyperlink
like this:

Welcome to Artimus

This link could also have been written as

<html:link page="/do/view/Article" paramName="row" paramProperty="article"
paramId="article">

but that embeds more of our API detail into the page. Using an ActionForward
documents that we need a hyperlink that goes to the article and also makes it
easy to change our article hyperlinks later.

 One example would be an intranet environment where everyone using the
application was a Contributor. During a period of heavy editing, the users might
prefer to skip the view stage and go directly to the editing page. If you changed
the ActionForward for article from /do/View/article to /do/Edit/article, the
link would be changed wherever it appeared in the application. Later, if they
change their minds again (as users are wont to do), a single modification puts it
all back.

contributedDisplay
There are many properties in an application that need to be rendered in a partic-
ular way. The database may store a telephone number as a simple String of
numerals, but your business requirements might say that telephone numbers
must be formatted with spaces or hyphens to make them easier to read.

 A good way to handle these requirements is with a helper method. The helper
method starts with the original database value and then modifies it to meet the
business requirements. One requirement may be that a person’s name be in all
uppercase letters. Elsewhere, there may be a requirement that the person’s name
be displayed last name first. Using the helper pattern, we can store the original
value once in our transfer object and modify it as needed. A personAllCap method
can concatenate the name properties and return the result in all uppercase letters.
A personDirectoryStyle method can return another concatenation of the name
properties, starting with the last name and not changing the case. Both methods
can draw on the same base set of properties and just render them differently.

STRUTS TIP Use Display properties to convert and transform data.

508 CHAPTER 15

Artimus: pulling out the stops
Dates are another place where we can use helpers. Internally, the database stores
the contributed date as a binary Timestamp. But when we send the date between
the business and application tiers, we would prefer to represent it as a String that
the users can view and edit.

 Artimus uses a contributedDisplay helper property to render the Timestamp
as a String and then convert it back to a Timestamp later. The ActionForm just
uses the String property, contributedDisplay. On the business tier, there are
two properties: a Timestamp contributed property, to hold the database value,
and the String contributedDisplay helper property:

private Timestamp contributed = ConvertUtils.getTimestamp();
public Timestamp getContributed() {
 return (this.contributed);
 }

public void setContributed(Timestamp contributed) {
 this.contributed = contributed;
 }

public void setContributedDisplay(String contributedDisplay) {
 if (null==contributedDisplay)
 this.contributed = null;
 else
 this.contributed = Timestamp.valueOf(contributedDisplay);
 }

public String getContributedDisplay() {
 Timestamp contributed = getContributed();
 if (null==contributed)
 return null;
 else
 return contributed.toString();
 }

Note that the contributedDisplay property has no field of its own. It gets what
it needs from the contributed property, munges the value, and returns the
desired result.

 Again, these are methods on the article business bean (org.apache.artimus.
article.Bean). The ActionForm we use for editing, shown in listing 15.15, just
stores contributedDisplay as a simple String property. The business bean han-
dles the conversion issues.

 The date handling in the application is rudimentary and could be improved in
future releases of the application.

result.jsp 509
public class Form extends BaseForm {
 private String primaryKey = null;
 public String getPrimaryKey() {
 return (this.primaryKey);
 }
 public void setPrimaryKey(String primaryKey) {
 this.primaryKey = primaryKey;
 }

 private String marked = ConvertUtils.STRING_ZERO;
 public String getMarked() {
 return (this.marked);
 }
 public void setMarked(String marked) {
 this.marked = marked;
 }

 private String hours = null;
 public String getHours() {
 return (this.hours);
 }
 public void setHours(String hours) {
 this.hours = hours;
 }

 private String articles = null;
 public String getArticles() {
 return (this.articles);
 }
 public void setArticles(String articles) {
 this.articles = articles;
 }

 private String article = null;
 public String getArticle() {
 return (this.article);
 }
 public void setArticle(String article) {
 this.article = article;
 }

 private String contributor = null;
 public String getContributor() {
 return (this.contributor);
 }
 public void setContributor(String contributor) {
 this.contributor = contributor;
 }

 private String contributedDisplay =
 ConvertUtils.getTimestamp().toString();

Listing 15.15 org.apache.artimus.struts.Form

510 CHAPTER 15

Artimus: pulling out the stops
 public String getContributedDisplay() {
 return this.contributedDisplay;
 }
 public void setContributedDisplay(String contributedDisplay) {
 this.contributedDisplay = contributedDisplay;
 }

 private String creator = null;
 public String getCreator() {
 return (this.creator);
 }
 public void setCreator(String creator) {
 this.creator = creator;
 }

 private String title = null;
 public String getTitle() {
 return (this.title);
 }

 public void setTitle(String title) {
 this.title = title;
 }

 private String contentDisplayHtml = null;
 public String getContentDisplayHtml() {
 return (this.contentDisplayHtml);
 }
 public void setContentDisplayHtml(String contentDisplayHtml) {
 this.contentDisplayHtml = contentDisplayHtml;
 }

} // end Form

15.12 Article actions

When a user selects an article link from the results page (section 15.11), the result
is a call to the application’s /article/View action. Listing 15.16 shows how /article
/View and the other Article actions are defined in the Struts configuration.

<action
 path="/article/View"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByArticle"
 name="articleForm"
 scope="request"
 validate="false">

Listing 15.16 /WEB-INF/struts-confg.xml (the Article actions)

Article actions 511
 <forward
 name="success"
 path=".article.View"/>
 </action>

<action
 path="/admin/article/Edit"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByArticle"
 name="articleForm"
 scope="request"
 validate="false">
 <forward
 name="success"
 path=".article.Form"/>
 </action>

<action
 path="/admin/article/Input"
 forward=".article.Form"
 name="articleForm"
 scope="request"
 validate="false"/>

<action
 path="/admin/article/Store"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.Store"
 name="articleForm"
 scope="request"
 validate="true"
 input=".article.Form">
 <forward
 name="success"
 path=".article.View"/>
 </action>

<action
 path="/admin/article/Delete"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.Delete"
 name="articleForm"
 scope="request"
 validate="false">
 <forward
 name="success"
 path=".article.Menu"/>
 </action>

 <action
 path="/admin/article/Restore"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.Restore"

512 CHAPTER 15

Artimus: pulling out the stops
 name="articleForm"
 scope="request"
 validate="false">
 <forward
 name="success"
 path=".article.Menu"/>
 </action>

Like the Find actions presented earlier (listing 15.7), most of the Article actions
shown in listing 15.16 use the standard ProcessAction to launch a business bean.
The business bean is specified as the parameter property. The actions also all
share the articleForm form bean, which defines the properties needed by all of
these actions. Most of these do not require validation, the exception being the
Store action.

 Our View action uses the FindByArticle business class to locate the article by its
ID number. If the operation is successful, the request is forwarded to the article
view page:

<forward
 name="success"
 path=".article.View"/>

The system path to the view page is handled through a Tiles definition (section
15.10):

<definition name=".article.View" extends=".article.Base">
 <put name="title" value="article.View.title"/>
 <put name="content" value="/pages/article/view.jsp"/>
 </definition>

On the other hand, if it does not succeed, our global failure ActionForward (sec-
tion 15.8) comes into play:

<forward
 name="failure"
 path="/do/Menu"/>

which sends the request to the Menu action and ultimately the menu page. (We
cover the Artimus menu in section 15.15.)

 The same pattern repeats for the other actions. The ProcessAction creates a
Map from the ActionForm properties and passes it to the business bean. The busi-
ness bean executes the business operation and returns the result. The ProcessAc-
tion analyzes the outcome and routes control to success or failure.

view.jsp 513
QUERY Success and failure: is that all there is? Of course, the architecture is not
restricted to success and failure. It’s just that in practice, these are
enough to handle the vast majority of tasks. In section 15.15, we make
better use of the flexibility afforded by ActionForwards when we use
them as routers for our menuing tasks.

While the backroom actions are becoming a bit dull, things are starting to heat up
on the presentation layer. Let’s take a look at the view.jsp tile and see how it
adjusts its presentation according to the user’s security role.

15.13 view.jsp

Most often, a user reaches the view page from the results page (section 15.11) by
clicking on an article’s title. It can also be reached directly from the menu page,
using the article ID. (We cover the menu actions in section 15.15.)

 Listing 15.17 shows our view.jsp tile. Remember this is just the content tile.
Other tiles, as specified by the Tiles Definition and layout page (section 15.10),
provide the rest of the markup.

 This listing introduces a tag we haven’t used before: <req:isUserInRole>.
This comes out of the Jakarta Taglibs Request tag library. It tests the user’s security
role, as declared in our deployment descriptor (section 15.4.6). The view page
uses it to determine whether to print the Edit and Delete buttons.

 As with the results page (section 15.11), the bean behind this form is not an
ActionForm but an instance of our business bean.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%@ taglib uri="/tags/tiles" prefix="tiles" %>
<%@ taglib uri="/tags/request" prefix="req" %>
<TR>
<!-- [15.13.1] headline-->
<TD class="headline" colspan="3">
<H2><bean:write name="articleForm" property="title"/></H2></TD>
</TR>
<TR>
<TD class="author" colspan="3">by <bean:write name="articleForm"

property="creator"/>
</TD>
</TR>

Listing 15.17 /pages/article/content/view.jsp

514 CHAPTER 15

Artimus: pulling out the stops
<TR>
<!-- [15.13.2] content -->
<TD class="article" colspan="3">
<bean:write name="articleForm" property="contentDisplayHtml"
 filter="false"/></TD>
</TR>
<!-- [15.13.3] contributor -->
<req:isUserInRole role="contributor">
<TR>
<TD colspan="3"><HR /></TD>
</TR>
<TR>
<%-- DELETE --%>
<logic:equal name="articleForm" property="marked" value="0">
 <html:form action="/admin/article/Delete">
 <TD class="button.left"><html:submit>DELETE</html:submit></TD>
 <html:hidden property="article"/>
 </html:form>
</logic:equal>
<%-- RESTORE --%>
<logic:equal name="articleForm" property="marked" value="1">
 <html:form action="/admin/article/Restore">
 <TD class="button.left">
 <html:submit>RESTORE</html:submit>
 </TD>
 <html:hidden property="article"/>
 </html:form>
</logic:equal>
<html:form action="/admin/article/Edit">
<TD class="button" colspan="2">
<html:hidden property="article"/>
<html:submit>EDIT</html:submit>
<html:cancel>CANCEL</html:cancel>
</TD>
</html:form>
</TR>
</req:isUserInRole>

15.13.1 headline

Making good use of our style sheet, the page shown in listing 15.17 prints the
title and creator (or author) properties at the top of the tile. The style sheet
reference is defined by the layout page (section 15.10).

15.13.2 content

Our article content is inserted into the page as a single String. Note that in
listing 15.17, the <bean:write> tag for the contentDisplayHtml property has

view.jsp 515
the filter property set to false. This lets HTML through to the page. The default
setting for <bean:write> is filter=true. The filter escapes the HTML tags to be
sure they do not spoil surrounding markup or create any security issues.

 The API contract with the contentDisplayHtml property is that the method is
responsible for handling any markup issues. If the raw content property were
called instead, then the filter should be left on.

 The contentDisplayHtml property is another example of the helper pattern.
The helper pattern is also used with the contributedDisplay property
(section 15.11.3).

QUERY Why do we need a contentDisplayHtml helper method? Isn’t coping
with HTML markup something a JSP should do? It’s the job of the pre-
sentation layer to take data returned from the other tiers and display it
to the user. Sometimes that data will be plain text that needs to be sur-
rounded with markup. Other times, it may be an HTML segment that
must be positioned in relation to the other HTML markup on the page.
In the case of contentDisplayHtml, the content may be stored in some
other format and have to be transformed to HTML before display. Since
the JSP cannot be expected to cope with any arbitrary format, it becomes
the job of the business tier to manage the transformation. The content
may also be made available to other components, aside from a JSP, that
understand HTML.

15.13.3 contributor

As mentioned, the <req:isUserInRole> is used to determine whether to print
the contributor controls. There would be other ways to handle this, but, in prac-
tice, this is the most common approach.

 Some MVC mavens might complain that the security role is not a concern of
the presentation layer and should not be embedded in the markup. But, in prac-
tice, many presentation designs revolve around a user’s role in the application. If
they are logged on, the storyboard goes, the page looks like this. If they are not, it
looks like this instead.

 So, we could develop two content tiles, one for contributors and one for non-
contributors. We could also use Tiles to arrange it so the contributor tile is
included only for contributors. But those are just semantic differences.

 The important point is that the security role is being determined through a
custom tag that we control for our application. The page only knows what the tag tells
it. If we want to determine the role in an entirely different way, we can replace the

516 CHAPTER 15

Artimus: pulling out the stops
implementation of the tag without changing the markup on the page. The tag
itself provides the layering expected by a Model 2/MVC design.

 But the critical point is that the tag is not the final arbiter of security. When the
operation is requested, the user’s credentials will be automatically checked before
it is executed. Being able to request an operation is not enough; you must also be
able to access the action’s URI. The access permissions are outside the presenta-
tion layer’s control.

delete / restore
Another bit of logic in listing 15.17 is the testing of our marked property. The
marked property indicates whether the article has been selected for deletion. If
marked is set to 0, it hasn’t been marked. So, we display a Delete button and point
it at the delete action. The /admin/article/Delete action sets marked to 1. All of
the standard FindBy operations are designed to ignore marked articles, so the
record appears to be deleted.

 The exception is the FindByArticle operation. If we know the article’s ID, we can
still bring it up even after it’s been deleted. In this case, the Delete button does not
display, and the Restore button displays instead (marked equals 1). The /admin/
article/Restore action sets marked back to 0, and the article is effectively undeleted.

 So why do we go around Robin Hood’s barn just to delete a record? In prac-
tice, removing records from a table is often a task best left to the database admin-
istrator’s discretion. The space consumed by a record is rarely a concern these
days, and ad-hoc deletions may degrade a system’s performance. Artimus starts by
marking the articles for deletion, but defers actually removing them to another
operation. Better safe than sorry.

edit
Aside from deleting and restoring, a contributor can also elect to edit an article.
The /admin/article/Edit action, shown in listing 15.17, simply forwards to the
edit page. Since the URI is under /admin/*, the container will allow access only to
a user in the contributor or manager role (section 15.4.8).

15.14 edit.jsp

As with the view.jsp (section 15.13), the form.jsp is only one tile of a larger page.
The full source for our edit page is shown in listing 15.18. Since the tags for client-
side validation changed slightly between Struts 1.0 and Struts 1.1, we will present

edit.jsp 517
the updated 1.1 version of this page in the next chapter. Listing 15.18 shows the
(nearly identical) 1.0 version.

 For the record, this is actually the "Add / Edit" page. Our business bean is
smart enough to tell an insert from an update, and so we can use the same page
for both tasks.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<html:form action="/admin/article/Store">
<html:form action="/admin/article/Store"

 onsubmit="return validateArticleForm(this);">
<TR>
<TD class="label" nowrap>Title:</TD>
<TD class="input" colspan="2">
<html:text property="title" size="50" maxlength="255"/></TD>
</TR>
<TR>
<TD class="label" nowrap>Author:</TD>
<TD class="input">
<html:text property="creator" size="30" maxlength="75"/></TD>
<TD class="hint">Full name of person who originated the article.</TD>
</TR>
<!-- [15.14.1] article content -->
<TR>
<TD class="label" nowrap>Article:</TD>
<TD class="input" colspan="2">
<!-- The Struts html:textarea tag does not support wrapping -->
<!-- so we use this trick instead -->
<textarea name="contentDisplayHtml" rows="12" cols="50" tabindex="2"

wrap="soft">
<bean:write name="articleForm" property="contentDisplayHtml"/>
</textarea>
</TD>
</TR>
<!-- [15.14.2] contributed / contributor -->
<html:hidden property="contributedDisplay"/>
<html:hidden property="contributor"/>
<!-- [15.14.3] article id -->
</TR><TD class="label" nowrap>Article ID:</TD>
<logic:notPresent name="articleForm" property="article">
 <TD class="dimmed"><i><html:hidden property="article"/>not assigned</

i></TD>
</logic:notPresent>
<logic:present name="articleForm" property="article">
 <TD class="input"><html:hidden property="article"/>
 <bean:write name="articleForm" property="article"/></TD>

Listing 15.18 /pages/article/content/form.jsp

518 CHAPTER 15

Artimus: pulling out the stops
</logic:present>
<TD> </TD>
</TR>
<TR>
<TD class="button" colspan="3">
<html:submit>SAVE</html:submit>
<html:cancel>CANCEL</html:cancel>
</TD>
</TR>
</html:form>
<!-- [15.14.4] client-side validation (1.0)-->
<validator:javascript formName="articleForm"/>

So, is the bean behind this page an instance of our business bean or have we
finally resorted to an ActionForm?

 The answer? The bean behind this form is an instance of our business bean or
an ActionForm. When we retrieve an article to edit, the page is populated by a
business bean that we received from the business tier. If we are creating a new arti-
cle, or our article fails web-tier validation, then the page would be rendered using
an ActionForm.

 Changing bean types is transparent to the tags. The tags only look at the prop-
erty names; the bean type is immaterial. As long as the property names match, any
number of beans can share the same page.

15.14.1 Article content

Listing 15.18 uses a <textarea> element to allow an article’s content to be
edited. The Struts html taglib does offer an <html:textarea> tag to generate
this element, but we have chosen not to use it. In our <textarea> element, we
would like to use the wrap=soft attribute. This attribute is not an official HTML
4.01 attribute for the <textarea> element, but the popular browsers interpret it
to mean that long lines within the text area should be wrapped to fit. You can do
the same thing by hand, but users may complain if this feature is not used.

 Being standards-conscious, the Struts team will not add a wrap attribute to the
<html:textarea> tag, unless and until it is made part of the official specification.
So, caught between a rock and the user base, we resorted to creating our own
dynamic <textarea> element. This is very simple to do. Just start by coding the
HTML element the old-fashioned way, and then use <bean:write> to populate it.

 In the view page (section 15.13), we added filter=false to the <bean:write>
tag so that it would not escape any HTML tags that might be found in the content
text. This lets the contributors use HTML in their articles. On the edit side, we

edit.jsp 519
leave the filtering on so the tags are escaped. Otherwise, we wouldn’t be able to
edit them. This makes it easy to roundtrip the HTML for editing.

 Like the handling of our contributed date (section 15.11.3), the way content is
rendered is crude but adequate. The feature could be vastly improved in later
releases. Ideally, various content types should be supported; HTML, when used,
should be validated and/or converted to XHTML before acceptance, and so forth.

 But like most applications, Artimus had to meet a ship date, and feature triage
put these niceties further down the list.

15.14.2 Contributed / contributor

A future version of Artimus is slated to support tracking the contributor and
selecting the contribution date. The properties were added, but we are not ready
to fully implement the features yet. So, in listing 15.18, for now we are just passing
the properties as hidden fields. (Sound familiar?)

15.14.3 Article ID

As mentioned, this page is used for both adding and updating articles. The business
bean tells the difference by looking for an article ID. If there’s no article ID, then it’s
an insert. Otherwise, it’s an update. In listing 15.18, we use the <logic:present>
and <logic:notPresent> tags to print either the article ID or the legend not
assigned.

15.14.4 Validation

The Struts Validator is designed so that it can perform both server-side and client-
side validations using the same set of rules. The validators and validation rules are
defined in XML files. The standard ActionForm validate method can be hooked
into the Validator framework. Most applications, like Artimus, can just use the Struts
Validator to handle the prima facie validators. You can also extend the standard val-
idators with your own plug-ins, or call the Struts Validator and then apply your own
set of handcoded validations. For more about the Validator, see chapter 12.

Server-side validations
The server-side validators are Java classes that are configured through XML for
each field that needs to be checked. Listing 15.19 shows our validation.xml file.

520 CHAPTER 15

Artimus: pulling out the stops
<form-validation>
 <global>
 <validator name="required"
 classname="com.wintecinc.struts.validation.StrutsValidator"
 method="validateRequired"
 msg="errors.required">
 <javascript><![CDATA[
 function validateRequired(form) {
 var bValid = true;
 var focusField = null;
 var i = 0;
 var fields = new Array();
 oRequired = new required();

 for (x in oRequired) {
 if ((form[oRequired[x][0]].type == 'text' ||

form[oRequired[x][0]].type == 'textarea' || form[oRequired[x][0]].type ==
'select' || form[oRequired[x][0]].type == 'radio' ||
form[oRequired[x][0]].type == 'password') && form[oRequired[x][0]].value
== '') {

 if (i == 0)
 focusField = form[oRequired[x][0]];

 fields[i++] = oRequired[x][1];

 bValid = false;
 }
 }

 if (fields.length > 0) {
 focusField.focus();
 alert(fields.join('\n'));
 }

 return bValid;
 }]]>
 </javascript>
 </validator>
 </global>
 <formset>
 <form name="articleForm">
 <field
 property="title"
 depends="required">
 <arg0 key="article.title.displayname"/>
 </field>
 <field
 property="creator"
 depends="required">
 <arg0 key="article.creator.displayname"/>
 </field>

Listing 15.19 /WEB-INF/validation.xml

/do/Menu 521
 <field
 property="contentDisplayHtml"
 depends="required">
 <arg0 key="article.content.displayname"/>
 </field>
 </form>
 </formset>
</form-validation>

The validations for the article form simply check to see if all the fields have been
completed. The Validator is integrated with the message resources, so we can use
the same message keys to identify the fields. Any messages generated by a failed
client-side validation will display on our message tile.

Client-side validators
The Struts Validator also supports JavaScript validations. Each validator has its
own script, which the framework automatically combines into a single, seamless
script. The scripts are identified by the name of the ActionForm bean. To call the
script:

� Add an onsubmit JavaScript event handler to the form tag.

� Insert a <validator:javascript> tag anywhere on the page citing the
form name.

See listing 15.18 to see how these two elements are used by the edit JSP. Note
that the name of the script is the same as the name of the form, but with a vali-
date prefix.

15.15 /do/Menu

The final set of actions in Artimus is the menu actions. Links to the menu actions
are provided on the default navbar tile. The menu is also the default failure page
if another is not specified. In addition to the default action that leads to the
menu page, there are several other menu actions in Artimus. The menu page uses
these actions to provide access to the various search operations we saw in
section 15.9. Listing 15.20 shows the Artimus menu actions.

522 CHAPTER 15

Artimus: pulling out the stops
 <!-- [15.15.1] logon -->
 <action
 path="/admin/Menu"
 forward="/do/Menu"/>

 <!-- [15.15.2] menu -->
 <action
 path="/Menu"
 name="menuForm"
 type="org.apache.struts.scaffold.ExistsAttributeAction"
 parameter="application;HOURS">
 <forward
 name="success"
 path=".article.Menu"/>
 <forward
 name="failure"
 path="/do/MenuCreate"/>
 </action>

 <!-- [15.15.2] menu init -->
 <action
 path="/MenuCreate"
 name="menuForm"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.MenuCreate">
 <forward
 name="success"
 path="/do/Menu"/>
 <forward
 name="failure"
 path=".article.Menu"/>
 </action>

 <!-- [15.16.2] find -->
<action
 path="/menu/Find"
 type="org.apache.struts.scaffold.ParameterAction"
 name="menuForm"
 validate="false"
 parameter="keyValue">
 <forward
 name="title"
 path="/do/find/Property?keyName=title&keyValue="/>
 <forward
 name="author"
 path="/do/find/Property?keyName=creator&keyValue="/>
 <forward
 name="content"
 path="/do/find/Property?keyName=content&keyValue="/>
 <forward

Listing 15.20 /WEB-INF/struts-confg.xml (the menu actions)

/do/Menu 523
 name="article"
 path="/do/article/View?article="/>
 </action>

 <!-- [15.16.4] contributor -->
 <action
 path="/menu/Contributor"
 type="org.apache.struts.scaffold.RelayAction"
 name="menuForm"
 validate="false">
 <forward
 name="input"
 path="/do/admin/article/Input"/>
 </action>

 <!-- [15.16.5] manager -->
 <action
 path="/menu/Manager"
 type="org.apache.struts.scaffold.RelayAction"
 name="menuForm"
 validate="false">
 <forward
 name="reload"
 path="/do/admin/Reload"/>
 <forward
 name="createResources"
 path="/do/admin/CreateResources"/>
 </action>

The first three listed are used to display the menu page. The others are used by
the menu page itself. We’ll cover the latter actions in section 15.16, when we
present the JSP code for the menu page.

15.15.1 logon

The /admin/Menu action in listing 15.20 is just a little trick to get the container
to present a logon challenge. By using a URI below /admin/, the container will
ensure that a user is logged in before displaying the menu page (again). This then
lets the menu page display options based on the user’s role, as we did on the view
page (15.13).

15.15.2 menu

Our menu page provides several option lists. Rather than hardcode these into the
JSP, or generate them on every request, Artimus stores them as application
attributes. This works well as long as the attributes exist but gets messy if they don’t.

524 CHAPTER 15

Artimus: pulling out the stops
 To help ensure that the attributes are created before the page displays, the
default menu command, /Menu, shown in listing 15.20, uses a standard Scaffold
Action to test for the existence of one of the attributes. The ExistsAttribute-
Action expects the scope to check (application, session, request) to be given as
the first token of the parameter property. The attributes to check for are given
as the remaining tokens of the parameter property. In this case, we told Exists-
AttributeAction to check if there is an attribute named HOURS in application
scope. If there is, the Action branches to success. Otherwise, ExistsAttributeAc-
tion branches to failure.

 If the HOURS attribute isn’t in application scope, the actions fails, and control is
forwarded to the /menu/Create action. This action uses (surprise!) ProcessAc-
tion to execute a business bean that creates the option lists we need for the menu
page. Listing 15.21 shows the source for the MenuCreate bean.

package org.apache.artimus.article;
import java.util.List;
import java.util.ArrayList;
import org.apache.artimus.lang.Tokens;
import org.apache.commons.scaffold.util.LabelValueBean;
import org.apache.commons.scaffold.util.ProcessBeanBase;
import org.apache.commons.scaffold.util.ProcessResult;
import org.apache.commons.scaffold.util.ProcessResultBase;

public class MenuCreate extends ProcessBeanBase {
 public Object execute(Object parameters) throws Exception {
 <!-- [15.15.3 Our controls] -->
 ArrayList controls = new ArrayList();
 ArrayList hours = new ArrayList();
 hours.add(new LabelValueBean("Day", "24"));
 hours.add(new LabelValueBean("Week", "168"));
 hours.add(new LabelValueBean("Month", "720"));
 saveResult(Tokens.MENU_HOURS,hours,controls);
 ArrayList find = new ArrayList();
 find.add(new LabelValueBean("-- select --", "done"));
 find.add(new LabelValueBean("Title", "title"));
 find.add(new LabelValueBean("Author", "author"));
 find.add(new LabelValueBean("Content", "content"));
 find.add(new LabelValueBean("ID", "article"));
 saveResult(Tokens.MENU_FIND,find,controls);
 ArrayList contributor = new ArrayList();
 contributor.add(new LabelValueBean("Add Article", "input"));
 saveResult(Tokens.MENU_CONTRIBUTOR,contributor,controls);
 ArrayList manager = new ArrayList();
manager.add(new LabelValueBean("Test channel", "channel""));
manager.add(new LabelValueBean("Delete marked", "remove""));

Listing 15.21 org.apache.artimus.article.MenuCreate

/do/Menu 525
 manager.add(new LabelValueBean("Reload config", "reload"));
 manager.add(new LabelValueBean("Create resources", "create"));
saveResult(Tokens.MENU_MANAGER,manager,controls);

 <!-- [15.15.5 Our results] -->
 ProcessResult results = new ProcessResultBase(controls);
 results.setAggregate(true); // I'm a list of other results
 return (Object) results;
 }

<!-- [15.15.4] saveResult -->
 private void saveResult(String name, List items, List controls) {
 ProcessResult result = new ProcessResultBase(items);
 result.setName(name);
 result.setScope(org.apache.commons.scaffold.lang.Tokens.APPLICATION);
 controls.add(result);
 }
} // end MenuCreate

15.15.3 Our controls

All told, our menu page hosts four controls with option lists. Each of these can be
saved as a separate attribute in the application scope. This makes them easier to
use separately, if needed.

 The MenuCreate bean in listing 15.21 first creates an ArrayList to hold the col-
lections of options as they are instantiated. Each option is represented as a Label-
ValueBean (a JavaBean with a label property and a value property).

15.15.4 saveResult

Since we are on the business tier, the attribute cannot actually be saved to the
application context … at least not yet. The ProcessAction can do this when the
result is returned from the business tier to the web tier, but we have to tell it what
to do. The result object is used to store the settings we want the action to use
when it saves the attribute for us.

 The settings we want to store are encapsulated in a utility saveResult
method. This creates a new ProcessResult for the list, gives it an attribute name,
and sets the scope to application. The ProcessAction can then use these settings
to save the attribute in the right place under the right name.

15.15.5 Our results

Once all the option lists are created and saved to our control list, we can return
the result to the ProcessAction. To do this, we wrap our list in yet another
ProcessResult, but set this ProcessResult to be an aggregation. This tells the

526 CHAPTER 15

Artimus: pulling out the stops
ProcessAction to process each entry as a separate ProcessResult. Each of our
option lists is then stored as a separate attribute in the application context, just as
if each had been a separate business operation.

 In fact, we could refactor MenuCreate into separate business beans at any
time. The MenuCreate bean could just as easily call an HoursCreate bean, a Find-
Create bean, and so forth, and return an aggregation of those results. The rest
of the application would be unaffected. It just calls MenuCreate without caring
how it is created.

 This is the essence of a Model 2/MVC layered architecture. As long as the API
between the layers is retained, we should be able to change one layer’s implemen-
tation without affecting the adjoining layer. The other side of the coin is that we
should be able to change the API between two layers without affecting other layers
above or below them. While these can be difficult design requirements to meet in
practice, the return on investment can be significant over the life of an application.

 After saving our objects to application scope, the ProcessAction returns its
success forward. For the /menu/Create mapping in listing 15.20, this routes us
back to the default /Menu action. But this time, the ExistsAttributeAction suc-
ceeds, and control is forwarded to the menu page.

15.16 menu.jsp

The menu page renders the option lists we generated in the /menu/Create
action (section 15.15.2). The lists are used to populate controls for listing recently
posted articles and for finding articles by title, author, or keyword. There are also
special menus for users in the contributor or manager role.

 Listing 15.22 shows the source for our menu.jsp tile.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%@ taglib uri="/tags/request" prefix="req" %>
<!-- [15.16.1] /find/Hours -->
<html:form action="/find/Hours">
<TR>
<TD class="label">List articles posted in the last:</TD>
<TD class="input">
<logic:iterate id="row" name="HOURS"

type="org.apache.commons.scaffold.util.LabelValueBean">
<html:radio property="hours" value="<%=row.getValue()%>"/>

<bean:write name="row" property="label"/>

Listing 15.22 /pages/article/content/menu.jsp

menu.jsp 527
</logic:iterate>
</TD>
<TD class="input">
<html:submit property="submit" value="GO"/>
</TD>
</TR>
</html:form>
<!-- [15.16.2] /menu/Find -->
<html:form action="/menu/Find">
<TR>
<TD class="label" nowrap>Find articles by: </TD>
<TD class="input">
<html:select property="dispatch">
<html:options collection="FIND" labelProperty="label" property="value" />
</html:select>
<html:text property="keyValue" size="10" maxlength="30"/>
</TD>
<TD><html:submit>GO</html:submit></TD>
</TR>
</html:form>
<!-- [15.16.3] /find/Last -->
<html:form action="/find/Last">
<TR>
<TD> </TD><html:hidden property="articles" value="20"/>
<TD class="input"><html:submit property="submit"> LATEST NEWS </

html:submit></TD>
<TD> </TD>
</TR>
</html:form>
<!-- [15.16.4] /menu/Contributor -->
<req:isUserInRole role="contributor">
<html:form action="/menu/Contributor">
<TR >
<TD class="label" nowrap>Contributor options: </TD>
<TD class="input">
<html:select property="dispatch">
<html:options collection="CONTRIBUTOR" property="value"

labelProperty="label"/>
</html:select>
</TD>
<TD><html:submit>GO</html:submit></TD>
</TR>
</html:form>
</req:isUserInRole>
<!-- [15.16.5] /menu/Manager-->
<req:isUserInRole role="manager">
<html:form action="/menu/Manager">
<TR>
<TD class="label" nowrap>Manager options: </TD>
<TD class="input">
<html:select property="dispatch">

528 CHAPTER 15

Artimus: pulling out the stops
<html:options collection="MANAGER" property="value" labelProperty="label"/>
</html:select>
</TD>
<TD><html:submit>GO</html:submit></TD>
</TR>
</html:form>
</req:isUserInRole>

15.16.1 /find/Hours

The <html:radio> tag in Struts 1.0 lacks some of the niceties found in some of
the other Struts tags. The /find/Hours form in listing 15.22 has to do a little
jury-rigging to get the tag to work with the list of labels and values set up by the
/menu/Create action (section 15.15.2).

 Since we need to generate several radio buttons, we start by nesting the
<html:radio> tag inside <logic:iterate>. On each iteration, we expose the
next LabelValue bean from the list we stored under the attribute HOURS. Within the
loop, we start writing a <html:radio> but as usual, but switch over to a scriptlet to
provide the value. The runtime expression (<%=row.getValue()%>) gets the
value property from the current bean, and then <bean:write> prints the label.

 When rendered, our radio tags resolve to

<input type="radio" name="hours" value="24"> Day
<input type="radio" name="hours" value="168"> Week
<input type="radio" name="hours" value="720"> Month

When one of these is selected and submitted, we end up with the query string
equivalent of

/artimus/find/Hours?hours=24

15.16.2 /menu/Find

The /menu/Find form in listing 15.22 prints a list of options followed by a text
input field. The list is taken from the Find list generated by the /menu/Create
action (section 15.15.2) and includes the label/value entries shown in table 15.4.

 The form lets the user select a search flavor (Title, Author, Content, ID) and
then enter a qualifier in the text input field. Listing 15.22 shows the mapping for
our /menu/Find action. It submits our form to the Scaffold ParameterAction,
populating a Scaffold MenuForm bean on the way. The MenuForm is a conve-
nience class for maintaining menu pages, like this one. It captures the dispatch
and keyValue properties we used in the /menu/Find form. This saves defining
utility properties like this on our application’s ActionForms.

menu.jsp 529
 The ParameterAction is used to complete a query string by adding an addi-
tional parameter. What request parameter to append is specified as the parame-
ter property to the ActionMapping. The query string is selected from one of the
local forwards.

 In listing 15.20, the mapping for the /menu/Find action includes local for-
wards like this one:

<forward
name="article"
 path="/do/article/View?article="/>

When the ID label is selected from the menu, the browser will submit the query
string equivalent of

/artimus/menu/Find?dispatch=article&keyValue=101

The ParameterAction looks for the dispatch parameter and uses that as the
name of the forward with our base query string. The base query string is retrieved
from the forward’s path, and the runtime parameter value is appended. In our
example, this results in the query string equivalent of

/artimus/do/article/View?article=101

We could have done the same thing by using a standalone form for /article/View
with a text input control named article. But then we would need to do the same
for the Title, Author, and Content searches. The MenuForm and ParameterAc-
tion let us add any number of search types to our list and let them share an input
box, even if they expect parameters with different names.

15.16.3 /find/Last

The /find/Last form in listing 15.22 replicates the functionality for the default
/find/Recent action. It uses a hidden field to set the number of articles to list at 20.

Table 15.4 The Find menu entries

Label Value

Title title

Author author

Content content

ID article

-- select -- done

530 CHAPTER 15

Artimus: pulling out the stops
 We could have also used a hyperlink to the welcome forward here, or even
directly to the /do/find/Recent action. The one thing we couldn’t do, without
making some changes, is use /find/Recent as the target of an <html:form>.

 Why not? If you check the /find/Recent mapping in listing 15.6, you’ll see we
neglected to specified a form bean. If you try to use a form bean–less mapping
with the <html:form> tag, it will complain that it can’t find the bean. Since the
primary purpose of the <html:form> tag is to populate elements from an Action-
Form, not specifying an Action generates an error.

 Of course, we could have just specified a form bean for /find/Recent. There’s
even a NullForm class in Scaffold (org.apache.struts.scaffold.NullForm)
for this very purpose. Another workaround would have been to jury-rig an HTML
form like this:

<FORM action="<html:rewrite forward='welcome'/>" method="POST">
<TR>
<TD> </TD>
<TD class="input"><INPUT type="submit" value=" LATEST NEWS " name="SUBMIT">

</TD>
<TD> </TD>
</TR>
</FORM>

But it seemed simplest to just use the hidden field.

15.16.4 /menu/Contributor

Some features may be available only to contributors. In listing 15.22, the
<req:isUserInRole> tag is used to omit or include a list of contributor com-
mands. We also used this tag on the view page (section 15.13) to omit or include
the Edit and Delete buttons.

 Right now, the only item on the contributor-only command list is adding arti-
cles. While a button could have been used instead, we went ahead and set up an
options list, just to make it easier to add other commands later. This also makes it
consistent with the /menu/Manager menu in the next section.

 Since this command doesn’t need any qualifiers, we don’t need to use the
ParameterAction again. We can use a RelayAction instead. Like the ParameterAc-
tion, the RelayAction (org.apache.struts.scaffold.RelayAction) looks for
a dispatch parameter and uses it to select an ActionForward.

 Our list of contributor commands stored by the /menu/Create action renders
as a short, one-item list:

<select name="dispatch">
<option value="input">Add Article</option></select>

menu.jsp 531
When the Add Article option is selected and the form submitted, the browser gen-
erates a request for

/artimus/do/menu/Contributor?dispatch=input

The controller passes this to the RelayAction. The dispatch parameter tells the
RelayAction to search for a forward named input (starting with the mapping’s
local forwards), like this one:

<forward
 name="input"
 path="/do/admin/article/Input"/>

The /admin/ portion assures that the user will be logged in before the request
is honored. If the request is accepted, it is forwarded on to the article Input
action. As shown back in listing 15.16, the Input action simply forwards outs to
the edit page.

 Since we haven’t retrieved an article, our ActionForm is blank, and an empty
form is presented to the contributor. If this form is submitted, the article Store
action will see that the article ID is blank and insert the new article into the
database.

15.16.5 /menu/Manager

The /menu/Manager form in listing 15.22 uses the same approach as the contrib-
utor menu (section 15.16.4) but with a different list of commands. Like the con-
tributor menu, this list is restricted to users in the manager role. Our default
Artimus user is both a contributor and a manager. So, both menus will display if
you log in using the Artimus user credentials.

532 CHAPTER 15

Artimus: pulling out the stops
15.17 Summary

Whew! We’ve come a long way on our journey through Artimus. At this point,
we’ve been through all the essential components. There are several business bean
classes that we did not present, but these are all straightforward variations on the
two that we did present. Of course, the full source code for all the classes is avail-
able through the book’s website [Husted].

 In the next chapter, we retrofit Artimus for Struts 1.1 so that it can take advan-
tage of the many whiz-bang features offered in the new release.

16 Redux: migrating
to Struts 1.1
This chapter covers
� Updating an application for 1.0
� Using dynamic ActionForms
� Implementing Action-based security
� Configuring Tiles and Validator 1.1
533

534 CHAPTER 16

Redux: migrating to Struts 1.1
You only ever write one software application, then you spend
the rest of your life going back and rewriting it.

—Craig McClanahan’s computer science professor

16.1 Next station, Struts 1.1

Since its release in June 2000, Struts 1.0 has quickly become a very successful
product. Thousands of applications now in production are based on Struts. With
the advent of Struts 1.1, many teams will be updating their applications to take
advantage of the new features. In this chapter, we help blaze the upgrade path by
retrofitting our Artimus 1.0 application for Struts 1.1.

 First, it’s important to note that most Struts 1.0 applications will be able to run
under Struts 1.1 out of the box. All that really needs to be done is to:

� Swap in the Struts 1.1 and Commons JARs.

� Rebuild everything, including the JSPs.

If you were using some of the Struts classes that were moved to the Commons, you
may have to change a few import statements before your application will build.
But that should be all you need to do to get up and running.

 Several Struts classes were found to have uses outside the framework. Between
Struts 1.0 and Struts 1.1, these were repackaged and moved to the Jakarta Com-
mons [ASF, Commons]. The new classes you may need to import are as follows:

� Commons BeanUtils package (org.apache.commons.beanutils) replaces
org.apache.struts.utils.BeanUtils, org.apache.struts.utils.
ConvertUtils, and org.apache.struts.utils.PropertyUtils.

� Commons Collections package (org.apache.commons.collections) replaces
org.apache.struts.util.ArrayStack, org.apache.struts.util.Fast-
ArrayList, org.apache.struts.util.FastHashMap, and org.apache.
struts.util.FastTreeMap.

� Commons Digester package (org.apache.commons.digester) replaces org.
apache.struts.digester.*.

If you are using the 1.0 versions of Tiles and the Struts Validator, you will also
have to:

� Change any import statements that refer to the com.wintec.* packaging of
the Validator.

Next station, Struts 1.1 535
� Change any import statements that refer to the components version of Tiles
(although this would be rare).

� Remove references to Tiles or the Validator from your web.xml.

� Add new references to the struts-config.xml to load the integrated versions
of Tiles and the Validator.

We will go through this process step by step with our Artimus application so you
can see how it’s done. But before getting on with that, let’s take a quick look at the
goodies Struts 1.1 has to offer.

NOTE The Commons BeanUtils offers significantly better conversion capabili-
ties than the original Struts 1.0 utility. It also changes a fundamental as-
sumption. When converting from Strings to numeric types, the
Struts 1.0 BeanUtil converts null to null for numeric object types (like
Integer) but null to 0 (zero) for the native types (like int). The Com-
mons version converts null numerics to 0 in either case. If your code ex-
pects null Strings to convert to null numeric objects, you may have to
tweak your code. There is a switch in the ActionServlet (convertNull)
that can tell Struts to observe the 1.0 behavior. But if you are using Bea-
nUtils in your own code, you may have to adjust your own classes as well.

16.1.1 Struts 1.1 feature roundup

The new features offered by Struts 1.1 cover the entire range of the framework,
from high-level support for modular applications to low-level tweaks to many of
the tags. Table 16.1 summarizes the exciting new features in the Struts 1.1 release
and indicates where you can find more information.

Table 16.1 New features in Struts 1.1 (beta 1)

Feature Classes or package and description

Multiple
Message-
Resources

(org.apache.struts.config.MessageResourcesConfig)
You can now load multiple message resource bundles from the Struts configuration,
making it easier to organize your application’s resources.

Modular
applications

(org.apache.struts.config.*)
There is new support for organizing an application into modules, or subapplications.
Each module has its own set of configuration files and can be developed as if it were
a single application. Most Struts 1.0 applications can be used as application mod-
ules with only minor changes to the configuration file. For more about application
modules, see chapter 4.

536 CHAPTER 16

Redux: migrating to Struts 1.1
Dynamic
ActionForms

(org.apache.struts.action.DynaActionForm)
A specialized subclass of ActionForm allows you to define whatever JavaBean proper-
ties you need from the Struts configuration file. For fully dynamic, configuration-free
ActionForms, you can also use mapped-backed ActionForms. See chapter 5 for more
about ActionForms and dynamic ActionForms.

Roles attribute
for Actions

(org.apache.struts.action.ActionConfig.roles)
You can now register a list of JAAS security roles with an ActionMapping. If the user is
not in a role on the list, then access is denied. This works just like standard
container-based security but allows you to apply authorization to a specific Action-
Mapping rather than to just a URL pattern. This can be used along with or instead of
container-based security. By providing your own RequestProcessor, you enable other
security schemes to use this property.

Separate
queues for
messages and
errors

(org.apache.struts.action.ActionMessage)
(org.apache.struts.action.ActionMessages)
(org.apache.struts.taglib.logic.MessagesPresentTag)
(org.apache.struts.taglib.logic.MessagesNotPresentTag)
(org.apache.struts.taglib.html.MessagesTag)
A new generic message class can be used to separate other messages from error-
type messages. The message queue is exposed through the saveMessages method
of the Action class (chapter 8) and the message tags in the html taglib (chapter 10).

Lookup-
DispatchAction

(org.apache.struts.actions.LookupDispatchAction)
A new version of the standard Struts LookupAction makes it easier to combine sev-
eral operations into an Action and select the operations from localized controls on
the presentation page.

SwitchAction (org.apache.struts.actions.SwitchAction)
A new standard Action makes it easy to forward a request from one application mod-
ule to another.

Declarative
exception
handling

(org.apache.struts.action.ExceptionHandler)
Rather than catch Exceptions within your Actions, you can let them pass back up to
the controller and be caught by a Struts ExceptionHandler. You can register handlers
for as many or as few Exception classes as needed. The default handler wraps the
Exception message in an instance of ActionErrors and forwards control to a specified
URI. You can also create your own ExceptionHandler subclasses to provide other
behaviors.

Request-
Processor
component

(org.apache.struts.action.RequestProcessor)
You can easily customize how a module handles each request by providing a Request-
Processor subclass. The RequestProcessor object provides several extension points
that make it easy to change only what needs to be changed.

PlugIn Actions
to manage
resources

(org.apache.struts.PlugIn)
To load your own resources, you can register a PlugIn Action with the controller. This
gives you the opportunity to create a resource at startup and destroy it at shutdown,
without creating your own specialized servlet or ActionServet subclass.

Table 16.1 New features in Struts 1.1 (beta 1) (continued)

Feature Classes or package and description

Next station, Struts 1.1 537
Commons
Logging
interface

(org.apache.commons.logging)
The Struts ActionServlet and related components now implement the Commons Log-
ging interface, making it easier to integrate Struts with advanced logging packages
like Log4j and the Java 1.4 logging package.

LabelValueBean (org.apache.struts.utils.LabelValueBean)
Many JSP tags need to display controls with both a label and a value. This conve-
nience object works well with tags that expect a bean with a label and a value
method. For more about the Struts taglibs, see chapter 10.

Nested taglibs (org.apache.struts.taglib.nested.*)
The nested tags extend the base Struts tags to allow them to relate to each other in
a nested nature. For more about the Struts taglibs, see chapter 10.

New empty/
notEmpty tags

(org.apache.struts.taglib.logic.EmptyTag)
New logic tags make it easier to test fields that may be null or may contain empty
strings.

New frame tag (org.apache.struts.taglib.html.Frame)
A new HTML frame tag makes it easier to create hyperlinks between frames, with all
the capabilities of the Struts HTML link tag.

New options-
Collection
tag

(org.apche.struts.taglib.html.OptionsCollection)
The new HTML optionsCollection tag makes it easy to store a collection that you
use to populate a control on the ActionForm with the other properties.

New idName
property on
radio tag

(org.apache.struts.taglib.html.RadioTag)
To make it easier to write a series of dynamic radio buttons, you can indicate a bean
with the radio tag’s value with the new idName attribute.

New indexed
tag property

(button, checkbox, file, hidden, image, link, password, radio,
select, submit, text, textarea)
Many pages create a series of controls using an iterator. Several of the HTML tags
now support the indexed property, which gives the control a unique name on each
iterator.

New Java-
ScriptValidator
tags

(org.apache.struts.taglib.html.JavaScriptValidatorTag)
The Struts Validator lets you create individual JavaScript validators for the fields on
your forms and insert them all using a single tag.

Tiles framework (org.apache.struts.Tiles)
(org.apache.struts.taglib.Tiles)
The Tiles framework is now integrated with the core Struts distribution. This
advanced document assembly package for JavaServer Pages makes it easy to create
pages by combining reusable fragments.

Struts Validator (org.apache.struts.Validator)
The Struts Validator makes it easy to generate client-side and server-side validations
from the same configuration.

Table 16.1 New features in Struts 1.1 (beta 1) (continued)

Feature Classes or package and description

538 CHAPTER 16

Redux: migrating to Struts 1.1
1.0 vs 1.1 When this book was written, Struts 1.1 beta release 2 was in circulation.
Some details may have changed between beta 2 and the final release. Be
sure to check the book’s website [Husted] for any errata.

Of course, most applications do not use every feature in Struts 1.0, and most will
also not use every new feature in Struts 1.1. But there should be something on this
list that can benefit most applications.

16.1.2 Features we can use

For our initial Artimus migration, we decided to move to the integrated versions
of Tiles and the Validator and to implement two new features: DynaActionForms
and action-based security.

 In Artimus 1.0, we had to create an ActionForm subclass to handle our simple
set of input properties. In Struts 1.1, we can use a DynaActionForm (org.apache.
struts.action.DynaActionForm) instead and avoid creating a new Java sub-
class. You still need to declare the properties for a DynaActionForm, but since
these declarations can be in XML, they are much easier to maintain.

 The new action-based security feature means that we can apply Declarative
Security to individual mappings rather than rely on URL patterns registered with
the container.

 Struts 1.1 also bundles Tiles and the Validator as part of the standard distribu-
tion. These work the same way as they did in Artimus 1.0 but are initialized differ-
ently. We will also need to change the tag names on the Artimus 1.0 message tile
to use the built-in versions of the Validator 1.0 tags.

 We explored the Artimus feature set and implementation in chapter 15. In this
chapter we focus only on the parts of the Artimus 1.0 codebase that are being ret-
rofitted for Struts 1.1. We will not discuss the Artimus application design or func-
tionality in any great detail. To get the most out of this chapter, you may need to
read chapter 15 first.

 DynaActionForms and action-based security are only a taste of the new features
in Struts 1.1. But our list for Artimus is probably representative of what the first
round of your own enhancement pass would look like.

16.2 Baseline changes

A good portion of our upgrade activity is going to take place just within the Struts
configuration file (struts-config.xml). Two baseline changes involve Tiles and the

Baseline changes 539
Validator. In Struts 1.1, these components are integrated into the main distribu-
tion and need to be loaded differently. We also need to remove an action map-
ping to an obsolete standard Action. We’ll make these three changes first, and
then make a second pass for the features on our discretionary list.

 But the very first thing we need to do is pop in the new Struts 1.1 JARs for the
other packages. We will need to fuss a bit with Tiles and the Struts Validator
(because they were moved into the core codebase), but everything else is plug
and play.

 The Struts 1.1 distribution comes with a handy library distribution with most of
the new files we need. To get started on an upgrade, you just need to download
the library distribution and place those files in the WEB-INF/lib folder of your
application.

 If you want to follow along as we update Artimus, start with the Artimus 1.0 dis-
tribution from the book website [Husted]. Also download the Scaffold 1.1 library
distribution from the site. Then, copy all the files from the Struts 1.1 library distri-
bution under the Artimus WEB-INF/lib folder, along with the two Scaffold JARs.
You can overwrite any files of the same name with the 1.1 versions. If your applica-
tion, like Artimus, is using a build of Tiles that uses the org.apache.struts
packaging, you should also remove the tiles.jar and the tiles.tld now. Otherwise,
there will be class loader conflicts with the 1.1 versions in the Struts JAR.

NOTE The Java JAR files use the popular ZIP archive format. You can open a JAR
with any ZIP file browser to see what’s inside. The paths to the files indi-
cate how they are packaged.

If your application imported any of the Struts util packages that were moved to
the Commons (see section 16.1), you will have to change the import statements to
refer to the new versions:

// import org.apache.struts.util.BeanUtils; // Struts 1.0.x
import org.apache.commons.beanutils.BeanUtils; // Struts 1.1

Artimus doesn’t import any of the Struts 1.0 utility classes directly, so we don’t
have to make any Java source changes to it.

 At this point, you should be able to run a clean build of Artimus without any
compile-time errors. If the Ant build tool [ASF, Ant] is on your system path, you
can run a clean build by changing to WEB-INF/src and entering

> ant clean.build

540 CHAPTER 16

Redux: migrating to Struts 1.1
However, Artimus itself is not quite ready to go. The configuration files are still set
to load the 1.0 versions of Tiles and the Validator. Let’s look at what changes we
need to make to get the new versions up and running.

16.2.1 Tiles in Struts 1.1

Tiles lets you construct a page from component parts using a descriptor called a
Tiles Definition. Like other framework objects, the Definition object can be created
via an XML configuration file. The XML element declares a layout page and passes
it the names of the components (or tiles) to insert at runtime. Chapter 11 covers
Tiles in detail.

 Tiles works this magic by watching for ActionForwards that refer to one of its
Definitions. When it sees a path that matches one of its Definitions, Tiles assem-
bles the page and passes it along for the JSP service to render.

 Although it is one of the fancier Struts components, moving from the optional
Tiles 1.0 to the integrated Tiles 1.1 package is a simple operation. In Struts 1.0,
Tiles had to subclass the ActionServlet and several methods. In Struts 1.1, Tiles
uses the new RequestProcessor object (org.apache.struts.action.Request-
Processor). The ActionServlet will then delegate the request processing to the
new RequestProcessor.

 By using a RequestProcessor, we can use the rest of the ActionServlet without
creating a formal subclass. When application modules are being used (see
chapter 4), each module can have its own RequestProcessor.

 Besides the RequestProcessor, Tiles also needs to load its Definitions from an
XML document. In Struts 1.0, the ActionServlet subclass handled this task for us.
In Struts 1.1, we can use a PlugIn Action to do the same thing. A PlugIn Action
has an init() method, just like a servlet. We register PlugIns via the Struts config-
uration file. The ActionServlet will call the init() method for each PlugIn at star-
tup and its destroy() method at shutdown. This is a great way to create and
release application-scope resources, like the Tiles Definitions.

 Besides loading the Definitions, the Tiles PlugIn Action (org.apache.
struts.tiles.TilesPlugInAction) also sets up the Tiles RequestProcessor
(org.apache.struts.tiles.TilesRequestProcessor). This way, you don’t
have to bother with configuring both the TilesRequestProcessor and the Tiles Plu-
gIn. However, if you need to load your own RequestProcessor later, be sure to
make it a subclass of the TilesRequestProcessor. (For more about RequestProces-
sors and PlugIns, see chapter 9.)

 Listing 16.1 shows the <plug-in> element that you can add to the struts-
config.xml. The PlugIn section of the struts-config.xml appears at the very end,

Baseline changes 541
just before the closing </struts-config> element, after the <action-map-
pings> element and any of the other new sections.

<!--- other elements -->

</action-mappings>

<plug-in className="org.apache.struts.tiles.TilesPlugin"> <set-property
 property="definitions-config"
 value="/WEB-INF/tiles-defs.xml"/>
</plug-in>

</struts-config>

NOTE In the Struts 1.0 configuration, all the elements were enclosed. There
was an <action-mappings> element for the <action> elements and a
<form-beans> element for the <form-bean> element. In Struts 1.1,
several elements, such as <plug-in>, are not enclosed; there is no
<plug-ins> element.

For more about configuring Struts applications generally, including using the
<set-property> element, see chapter 4.

 The Tiles package is part of the standard Struts 1.1 JAR. We will need to adjust
the deployment descriptor to load the new tag library descriptor (TLD), but we
will not need to change any of the pages or the Tiles configuration file.

 Here’s our new Tiles TLD reference in the deployment descriptor (web.xml):

 <taglib>
 <taglib-uri>/tags/tiles</taglib-uri>
 <!-- <taglib-location>/WEB-INF/lib/tiles.tld</taglib-location> -->
 <taglib-location>/WEB-INF/lib/struts-tiles.tld</taglib-location>
 </taglib>

For backward-compatibility, we took advantage of the logical nature of the
<taglib-uri> and did not change the reference from tiles to struts-tiles. Since this
is still a small application, it would not have been hard to change the tiles, but
since we didn’t have to make those changes now, we left them for later and just
changed the taglib-location to match the new TLD name.

 We can also remove the reference to the TilesComponent servlet from our
web.xml and go back to using the default ActionServlet:

Listing 16.1 struts-config.xml (the Tiles plug-in element)

542 CHAPTER 16

Redux: migrating to Struts 1.1
<servlet>
 <servlet-name>action</servlet-name>
 <!-- org.apache.struts.tiles.ActionComponentServlet -->
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <! -- … -->

We can now safely delete the tiles.jar and tiles.tld from our WEB-INF/lib folder (if
you haven’t already). The Tiles classes are now in the main struts.jar, and a struts-
tiles.tld was included in the Struts 1.1 library distribution.

1.0 vs 1.1 To make it easy to compare the Struts 1.0 and Struts 1.1 versions of the
configuration files, we left the originals in a conf_1_0 folder in the Arti-
mus 1.1 source distribution. When we deploy the source files (see section
15.3.1), the archival versions are not copied to the public application. The
source for the Struts 1.1 versions are in the /WEB-INF/src/conf folder.

Before closing struts-config.xml, we need to do one more thing: at the top of the
file, change the DTD reference from

<!DOCTYPE struts-config PUBLIC "-//Apache Software Foundation//DTD Struts
Configuration 1.0//EN" "http://jakarta.apache.org/struts/dtds/struts-
config_1_0.dtd">

to

<!DOCTYPE struts-config PUBLIC "-//Apache Software Foundation//DTD Struts
Configuration 1.1 //EN" "http://jakarta.apache.org/struts/dtds/struts-
config_1_1.dtd">

This tells the Digester to use the correct DTD for Struts 1.1
 In the deployment descriptor (WEB-INF/src/conf/web.xml), we can now

replace the <servlet-class> reference to the ActionComponentServlet with a refer-
ence to the standard ActionServlet org.apache.struts.action.ActionServlet.

 This is all we need to do to get Tiles back into action. But we still need to make
similar changes for the Validator before we can try running the application.

NOTE As discussed in section 15.3.1, all the source files for Artimus are kept be-
low WEB-INF/src. This includes all Java, XML, JSP, and Properties files. The
Ant build file deploys the source files when the application is compiled.

Baseline changes 543
16.2.2 Validator in Struts 1.1

Moving the Validator from 1.0 to 1.1 is another straightforward operation, though
packaging changes will force us to adjust some pages at the end.

 The Struts Validator vets the properties on an ActionForm to be sure the values
at least look valid. This is to help keep incorrect input away from the business tier, the
way a receptionist might keep unwanted callers from bothering a busy executive.

 The Validator comes in two distinct parts. First, there is a registry of the differ-
ent validators the application can use. One validator might check if a field has any
input at all. Another might check if the input is of an expected length. The Valida-
tor comes bundled with several basic validators, and you can also plug in your
own. The second part of the Validator is the actual validations. The validation sec-
tion describes your forms and fields so that you can link specific validators with
specific fields. Chapter 12 covers the Struts Validator in detail.

 Like most components these days, the Validator is configured through XML.
The 1.0 version of the Validator used a servlet to initialize its resources. In
Struts 1.1, a new PlugIn Action is used instead. The ValidatorPlugInAction
replaces the ValidatorServlet we used with Artimus 1.0.

 Listing 16.2 shows the <plug-in> element we can add to our struts-config.xml
to initialize the Struts Validator.

<plug-in
className="org.apache.struts.validator.ValidatorPlugIn">
<set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>

The Struts 1.0 validator used a single file to store both the validator configurations
and the form validations. In Struts 1.1, we can use separate configuration files: a
validation-rules.xml for the validators and the trusty validation.xml for our form
validations. The thinking is that the validators (validator-rules.xml) can be copied
between applications. But the form validations (validation.xml) tend to be differ-
ent for each application. By using separate files, we make it easier to change the
standard validators without upsetting our validations.

 For Artimus, we can move the new validator-rules.xml from the WEB-INF/lib
directory (it was in the library distribution) into our WEB-INF/src/conf folder.
Since this file has all the validators we need, we can edit the old validation.xml file

Listing 16.2 /WEB-INF/src/conf/struts-config.xml (the Validator PlugIn element)

544 CHAPTER 16

Redux: migrating to Struts 1.1
(also in the conf folder) and delete the segment for the <global><validator> ...
</validator></global> elements at the top. The <formset> element at the bot-
tom remains, with the one <form> element for our articleForm.

1.0 vs 1.1 As this book was being finalized, a DTD was being added for the Struts
Validator. For Struts 1.1 final, you may need to add a DTD to the validator
configuration files. Check the book’s website [Husted] for any errata.

In the deployment descriptor (WEB-INF/src/conf/web.xml), we can now remove
the validator <servlet> element completely, since the new PlugIn loads the Vali-
dator’s resources. We can also remove the struts-validator <taglib> element,
since the tags we need are now in the main Struts JAR. To avoid any confusion, you
should also remove the struts-validator.jar and struts-validator.tld files from the
WEB-INF/lib folder. In Struts 1.1, the Validator package is in the main JAR, and the
Validator tags are now in the html and logic taglibs.

16.2.3 ReloadAction in Struts 1.1

The complexities of modular applications and other considerations led to the
removal of the several administrative Actions supplied in the Struts 1.0 distribu-
tion. This purge included the very handy ReloadAction (org.apache.struts.
actions.ReloadAction).

 Sadly, we must remove the mapping for the Reload command from the Arti-
mus 1.1 struts-config.xml, since it no longer exists. At the end of the chapter, we
will be also making the corresponding change to our menu action.

16.2.4 Other baseline changes to web.xml and struts-config.xml

There are none.
 That’s right. To retrofit Artimus for Struts 1.1, we had to:

� Remove an obsolete <action> element.

� Insert two new configuration elements to the struts-config.xml.

� Remove two obsolete elements from the web.xml.

� Amend a taglib reference.

But that’s it as far as the struts-config.xml and web.xml go. Most applications
would not even need to do this much.

Baseline changes 545
 The only bad news is that the packaging for the Validator tags changed when it
was integrated into Struts 1.1. Since we were using the optional Validator compo-
nent in Artimus 1.0, we will need to make some minor changes to our pages to
reflect the new tag names.

16.2.5 message.jsp (1.1)

When the Struts Validator was integrated with Struts 1.1, its tags were integrated
with the existing taglibs. So instead of referring to <validator:messages-
Exist>, we can now refer to <logic:messagesExist>. The implementation of
the underlying tags is the same; only the packaging has changed.

 Listing 16.3 shows our updated message.jsp. Since this is a tile shared by the
other pages, we had to make this change only in a single file, even though every
page on the site can display messages.

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%-- [1.0] Tag is part of html in 1.1
<%@ taglib uri="/tags/struts-validator" prefix="validator" %>
--%>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<logic:messagesPresent>
<TR>
<TD class="error" colspan="3">

 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>

</TD>
</TR>
</logic:messagesPresent>
<logic:messagesPresent message="true">
<TR>
<TD class="message" colspan="3">

 <html:messages id="message" message="true">
 <bean:write name="message"/>
 </html:messages>

</TD>
</TR>
</logic:messagesPresent>

Listing 16.3 /WEB-INF/src/pages/article/common/message.jsp

546 CHAPTER 16

Redux: migrating to Struts 1.1
1.0 vs 1.1 To make it easy to compare the Struts 1.0 and Struts 1.1 versions of the
JavaServer Pages, we left copies of any source files that were changed by
giving them the file extension .1_0—not because we needed to, but be-
cause we just wanted to have the old versions on hand for reference.
When we deploy the source files (see section 15.3.1), these archival ver-
sions are not copied to the public application.

16.2.6 form.jsp (1.1)

We also need to tweak the tags in our form tile, as shown in listing 16.4. Again this
is just a matter of changing the tag names. The actual JSP code is unchanged.

<%@ taglib uri="/tags/struts-html" prefix="html" %>
<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-logic" prefix="logic" %>
<%-- [1.0] Tag is part of html in 1.1
<%@ taglib uri="/tags/struts-validator" prefix="validator" %>
--%>
<html:form action="/admin/article/Store" onsubmit="return

validateArticleForm(this);">
<TR>
<TD class="label" nowrap>Title:</TD>
<TD class="input" colspan="2">
<html:text property="title" size="50" maxlength="255"/></TD>
</TR>
<TR>
<TD class="label" nowrap>Author:</TD>
<TD class="input">
<html:text property="creator" size="30" maxlength="75"/></TD>
<TD class="hint">Full name of person who originated the article.</TD>
</TR>
<TR>
<TD class="label" nowrap>Article:</TD>
<TD class="input" colspan="2">
<!-- The Struts html:textarea tag does not support wrapping -->
<!-- so we use this trick instead -->
<textarea name="contentDisplayHtml" rows="12" cols="50" tabindex="2"

wrap="soft">
<bean:write name="articleForm" property="contentDisplayHtml"/>
</textarea>
</TD>
</TR>
<html:hidden property="contributedDisplay"/>
<html:hidden property="contributor"/>
</TR><TD class="label" nowrap>Article ID:</TD>

Listing 16.4 /WEB –INF/src/pages/article/content/form.jsp

Baseline changes 547
<logic:notPresent name="articleForm" property="article">
 <TD class="dimmed"><i><html:hidden property="article"/>not assigned

 </i></TD>
</logic:notPresent>
<logic:present name="articleForm" property="article">
 <TD class="input"><html:hidden property="article"/>
 <bean:write name="articleForm" property="article"/></TD>
</logic:present>
<TD> </TD>
</TR>
<TR>
<TD class="button" colspan="3">
<html:submit accesskey="S">SAVE</html:submit>
<html:cancel accesskey="C">CANCEL</html:cancel>
</TD>
</TR>
</html:form>
<%--
<validator:javascript formName="articleForm"/>
--%
<html:javascript formName="articleForm"/>

In section 16.3.3, we will need to make one other change to this page, after we
implement a new feature. But for now, all we need to do is adjust the validator
tag names.

 At this point, our first pass at Artimus 1.1 should be up and running. If you run
a clean build and start your container, you should be able to click through the
application and use it normally. The only thing to avoid is the Reload action we
removed from the Struts configuration. We haven’t changed the menu yet, so it will
still be listed, even though its mapping is not available. Let’s take care of that next.

NOTE Be sure to compile the application before trying it. Also be sure to com-
pile it with the Ant build file after making changes to any of the files. The
originals are all kept below the WEB-INF/src folder. You must rebuild the
application after any changes, including changes to files like web.xml
and struts-config.xml.

16.2.7 MenuCreate (1.1)

Struts 1.1 removed the Reload administrative action that we had offered on our
manager’s menu. In section 16.2.3, we removed the mapping to the Reload-
Action. Now we can remove it from the menu by deleting a line from the class that
creates our menu object.

548 CHAPTER 16

Redux: migrating to Struts 1.1
 In our MenuCreate business object bean (org.apache.artimus.article.
MenuCreate), originally presented back in listing 15.21, we revised the block for
the manager’s menu from

ArrayList manager = new ArrayList();
manager.add(new LabelValueBean("Reload Config", "reload"));
manager.add(new LabelValueBean("Create Resources", "createResources"));
saveResult(Tokens.MENU_MANAGER,manager,controls);

to

ArrayList manager = new ArrayList();
manager.add(new LabelValueBean("Create Resources", "createResources"));
saveResult(Tokens.MENU_MANAGER,manager,controls);

The menu page does not need to be changed, since it just wrote out the menu list
without knowing what options were available.

 Of course, an alternative here would have been to create a reload page that
explained the command was not available in this version. But in this case, it was
simplest to revise the business bean.

LabelValueBean
In Struts 1.1, a LabelValueBean object was added to the Struts util package, just
like the one in the Scaffold util package. We could move our dependency on the
LabelValueBean from the Scaffold class to the Struts class, but we decided to stick
with the Scaffold version. The MenuCreate class is a business bean and, ideally,
should not import classes from Struts. So rather than introduce a dependency in
MenuCreate on the Struts JAR, we left the dependency with the framework-
independent Scaffold Commons package instead.

16.2.8 Onward

After confirming our reconfigured application is up and running under Struts 1.1,
we can move on to the discretionary changes.

16.3 Discretionary changes

To get the most out of Struts 1.1, we decided to make four discretionary changes.
As part of this iteration, we will also:

� Configure a DynaActionForm bean.

� Add roles to our protected mappings to implement action-based security.

� Add a new configuration element to load the default message resources.

Discretionary changes 549
16.3.1 Form to DynaActionForm

Artimus 1.0 declared one custom ActionForm that it defined in the Struts config-
uration as the articleForm:

<!-- Article Form Bean -->
 <form-bean
 name="articleForm"
 type="org.apache.artimus.struts.Form"/>

Like most ActionForms, our articleForm was nothing but a set of simple proper-
ties. It just buffered the form input until the properties could be validated and
transferred to our business bean. JavaBean properties aren’t hard to set up, but it
can get to be a pain after a while.

 Struts 1.1 offers a new way to define an ActionForm that is nothing but a set of
simple properties. The DynaActionForm class lets you define the properties in
XML as part of the <form-bean> element. To another component, a DynaAction-
Form looks and feels just like a conventional JavaBean. It can be used anywhere a
“regular” ActionForm class can be used. A DynaActionForm can also be used with
any development tool designed to use JavaBeans, just as if you had coded all the
properties by hand.

 If you are using the Struts Validator, a DynaValidatorForm class is available so
you can use DynaForms with the Validator. This can eliminate the need for a dis-
crete ActionForm class altogether. Listing 16.5 shows what our articleForm from
listing 15.15 looks like coded as a DynaActionForm.

 <form-bean
 name="articleForm"
 type="org.apache.struts.action.DynaValidatorForm">
 <form-property
 name="keyName"
 type="java.lang.String"/>
 <form-property
 name="keyValue"
 type="java.lang.String"/>
 <form-property
 name="marked"
 type="java.lang.String"
 initialValue="0"/>
 <form-property
 name="hours"
 type="java.lang.String"/>
 <form-property
 name="articles"

Listing 16.5 /WEB-INF/struts-config.xml (<form-bean> element)

550 CHAPTER 16

Redux: migrating to Struts 1.1
 type="java.lang.String"/>
 <form-property
 name="article"
 type="java.lang.String"/>
 <form-property
 name="contributor"
 type="java.lang.String"/>
 <form-property
 name="contributedDisplay"
 type="java.lang.String"/>
 <form-property
 name=" "
 type="java.lang.String"/>
 <form-property
 name="creator"
 type="java.lang.String"/>
 <form-property
 name="title"
 type="java.lang.String"/>
 <form-property
 name="contentDisplayHtml"
 type="java.lang.String"/>
</form-bean>

All we need to do is remove the old articleForm <form-bean> element from
our struts-config.xml and add this element in its place. Since we don’t have a
reload action in Struts 1.1, we need to reload the application before testing our
DynaBean.

 With our dynamic articleForm in place, we can now remove the org.apache.
artimus.struts.Form class from the Artimus 1.1 codebase, along with the descen-
dant class, org.apache.artimus.article.struts.ArticleForm. Our Form class is
officially obsolete.

NOTE If you use DynaForms in your own application, be aware that the default
reset method sets all the dynamic properties to their initial value (that is,
null). With conventional ActionForms, the default reset does nothing.

16.3.2 Action-based security

Our Artimus 1.0 application relies on container-based security to ensure that only
authorized users have access to the Actions that insert, edit, or delete articles. We
told the container to reserve access to any URI that started with /admin/* to

Discretionary changes 551
those users in the manager, editor, or contributor role. In Artimus 1.0, this was
handled by the <auth-constraint> element in the web.xml.

 Struts 1.1 lets you take container-based security a step further. An ActionMap-
ping can specify its own list of security roles that may access it. So to protect our
article edit Action, we can just add a roles attribute to the mapping, like this:

<action
 roles="manager"
 path="/admin/CreateResources"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.CreateResources">
 <forward
 name="success"
 path="/do/find/Recent"/>
</action>

Before invoking the Action associated with this mapping, the controller will now
check to see if the user making the request has been assigned any of the listed
security roles. The controller uses the same API the container uses when it checks
for requests for URI matching the /admin/* pattern. So, action-based security is
not a new system but a progressive use of the existing system.

 This progressive use does not conflict with the authorization constraints we set
up in Artimus 1.0. In fact, the ActionMapping complements the standards. We
could continue to use our original authentication scheme unchanged. After a
request passes the container’s constraints, Struts will apply the ActionMapping’s
constraints. This can let you fine-tune the constraints without requiring changes
to the application-wide deployment descriptor.

 Meanwhile, you can also use it as an alternative to the container constraints.
Using the stock url-pattern approach, we have to adjust our URI command
structure to match the security constraints. This can be made to work, but often
interferes with the way Struts developers tend to use action mappings. Right now,
we have all of our article commands under /article, except for those that are
secured (these are under /admin/article). That’s not a big deal now, but it can
start to get complicated when modular applications, with their own url-pattern
requirements, are added to the equation.

 With action-based security in place, we can specify which mappings must be pro-
tected and can use whatever URIs we like. So before where we had a mapping like

<action
 path="/admin/article/Edit"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByArticle"
 name="articleForm"

552 CHAPTER 16

Redux: migrating to Struts 1.1
 scope="request"
 validate="false">
 <forward
 name="success"
 path=".article.Form"/>
 </action>

we could now use a mapping like

 <action
 roles="contributor,manager"
 path="/article/Edit"
 type="org.apache.struts.scaffold.ProcessAction"
 parameter="org.apache.artimus.article.FindByArticle"
 name="articleForm"
 scope="request"
 validate="false">
 <forward
 name="success"
 path=".article.Form"/>
 </action>

How or when users log on, how we registered them with the system, or what hap-
pens when they are authorized or unauthorized does not change one bit. We are
just moving from declaring security based on a URL pattern to declaring exactly
which operations we want to secure.

 For more about action-based security, see chapter 7.

Consequences
Removing /admin from the path means that we will need to update any pages
that refer to that URI. If making this change were problematic, we could leave
the ActionMapping path as it was. We could also put in a Struts forward from
/admin/article/store to /article/store until the pages could be updated. This
would allow both paths to work during a transition period. Of course, a redirect
can also be made at the container level, but doing this sort of refactoring in the
strut-config.xml itself can be simpler.

 One reason for making this change now is to simplify using Artimus as an
application module later. The conventional url-pattern approach to Declara-
tive Security can become complicated when we are also using url-patterns to
identify application modules.

 Nearly all of the changes can be made within the struts-config.xml. Just look
for /admin throughout the file. If /admin is found in an <action> path, remove
/admin and add a roles attribute. If it is any other path, just remove the /admin
component from the path.

Discretionary changes 553
The exceptions are

<forward name="logon" path="/do/admin/Menu"/>

and

<action path="/admin/Menu" forward="/do/Menu"/>

This is a little trick to get the container to ask for the user’s credentials. The /admin
path forces the challenge. If they pass, we just go back to the menu (but logged in
this time). Otherwise, the browser puts up the standard Unauthorized screen.

16.3.3 Action path changes

Since the <html:form> tag uses an embedded reference to the ActionMapping
path, changing any of those paths means updating the tags. While the ActionMap-
pings are virtual references, they are not true logical references. Other components
use the URI paths and have their own expectations about how they should work.

 Our change to action-based security is a double-edged sword. It simplified our
internal API but forced us to make changes to the external API. We could have
mitigated these changes with workarounds, but because Artimus is such a small
application, we can just bite the bullet and do the right thing.

 The two pages that need to use the new action paths are the form.jsp and
view.jsp.

/WEB-INF/src/pages/articles/content/form.jsp
The action path for the <html:form> tag in our form tile can be changed from
/admin/article/store to /article/store.

/WEB-INF/src/pages/articles/content/view.jsp
Likewise, the action path for the <html:form> tag in our view tile can be changed
from /admin/article/Store to /article/Store.

16.3.4 Application resources in Struts 1.1

The support for application modules in Struts 1.1 brought about a change to the
way the name of the default resource bundle is specified. In Struts 1.0, the name
of the application resource bundle was an initialization parameter to ActionServ-
let. And, though deprecated, it still is. But since each application module must be
able to specify its own application resources, you can now specify the name of the
bundle in the Struts configuration file instead.

 A new configuration element, <message-resources>, can be used to specify
the name of the bundle instead of using the ActionServlet <init-param>. This

554 CHAPTER 16

Redux: migrating to Struts 1.1
element, shown in listing 16.6, must be placed after the <controller> element
(if any) and before the <plug-in> elements (if any).

 <message-resources
 parameter="resources.application"/>

Since each application module has its own Struts configuration, each module can
have its own default message resources bundle. If an application (or module)
would like to use more than one message bundle, you can specify more than one
<message-resources> element. Any additional message resources elements
must also specify the key attribute for the bundle.

 Just like our <init-param> in Artimus 1.0, here we tell Struts to look for a file
named application.properties in the resource package (or folder). Our build file
places the resource package under the /WEB-INF/classes folder to ensure that our
bundles are on the CLASSPATH, where the container can find them.

 With the <message-resources> element in place, we can now remove the
application <init-param> from the ActionServlet element in the web.xml.

For the future
Of course, Artimus does not need to use the new <message-resources> ele-
ment. As the application stands, we can pass the resource bundle name to Artimus
via the <init-param> element, and everything will work just the same. However,
since Artimus might make a good module in a larger application, we converted
the <init-param> element to a <message-resources> element, just in case.

16.4 Summary

For now, this is all we need to do to christen Artimus a Struts 1.1 application. We
are now using the integrated versions of the Struts Validator and Tiles, the DynaAc-
tionForm for our form beans, and role-based security to protect our Actions.

 Of course, there are a few more items we could handle in a second iteration:

� Convert the ArtimusServlet to a PlugIn.

� Reconfigure Artimus into a default application and an articles module, to
make Artimus easier to plug into a larger, multimodule application.

� Implement a frames interface using the new frame tag.

But sufficient unto the day are the features thereof.

Listing 16.6 /WEB-INF/struts-config.xml (<message-resources> element)

17Velocity: replacing JSPs
This chapter covers
� Introducing Velocity templates
� Using Velocity in web applications
� Using Velocity with Struts applications
� Converting JavaServer Pages to Velocity templates
555

556 CHAPTER 17

Velocity: replacing JSPs
Change is the constant, the signal for rebirth, the egg of the phoenix.
—Christina Baldwin

17.1 Moving to Velocity templates

Change is at the core of computer science. Without variables, virtually all com-
puter programs would be useless curiosities—intellectual exercises producing the
same, predetermined result over and over again. Being able to say z=x+y and pro-
vide our own x and y is what makes programs useful. People expect applications to
be easy to modify, both inside and out. Developers expect application frameworks
to make these changes easy to implement.

 In this chapter, we look at making a seemingly drastic change to our applica-
tion—ditching JavaServer Pages and using Velocity templates instead. You may be
surprised at how easy an overhaul like this can be—at least when using a frame-
work like Struts.

17.2 Change makes the framework

Being able to quickly construct an application is only half the battle. It is well
known that more than half of the cost of an application is spent on maintenance
[Linday]. The Struts framework streamlines maintenance by encapsulating the
details most likely to change. Chief among these details are the pages referenced
by an Action.

 In this chapter, we change the entire presentation layer for the logon applica-
tion we built in chapter 3 from JavaServer Pages to another popular presentation
technology, Velocity templates.

 Like Struts, Velocity [ASF, Velocity] is an open source product hosted at the
Apache Jakarta site. It is well suited for use in a Model 2/MVC architecture. Veloc-
ity can be especially useful when the page designers are not Java engineers or Java-
Server Page enthusiasts.

 Changing from JSP to Velocity may sound like a bigger deal than it is. The key
to many application-wide changes in Struts is the configuration file. The configu-
ration file is designed so that most implementation details—such as the name of
a presentation page or template—can be stored in this central location. If all the
hyperlinks used by a web application go through ActionForwards, then just
changing the Struts configuration can alter what page each link references. Of
course, when we built our logon application in chapter 3, we were careful to use

Why we need Velocity 557
ActionForwards rather than any type of direct hyperlink. For more about Action-
Forwards and the Struts configuration file, see chapter 4.

 Let’s introduce Velocity templates, find out how they work, and then plug
them into our logon application.

17.3 Why we need Velocity

So, if we already have JavaServer Pages, why do we need Velocity templates?

17.3.1 Velocity is light, fast, and versatile

Velocity templates tend to require less code than a corresponding JavaServer Page
and render just as quickly. While Velocity templates can be used with several web
application frameworks, including Struts, Velocity itself is not tied to web applica-
tions. Velocity templates can be used with any Java application that needs to create
customized output at runtime. This can be an important consideration when
deploying an application in multiple environments. Velocity is a versatile tool and
can also be used to generate SQL, PostScript, e-mail, or XML from templates.

17.3.2 Velocity works well with others

The Velocity codes display well in visual HTML editors, so page designers usually
find Velocity templates easier to work with than JavaServer Pages. At this writing,
support for JSP custom tags in most HTML editors is minimal or nonexistent. In
practice, JSP tags actually look too much like HTML tags. Most visual HTML editors
hide tags they don’t know, making them harder to use with JavaServer Pages rather
than easier. Sad, but true.

 Meanwhile, dynamic web pages based on Velocity templates can be easily
edited using off-the-shelf tools like Allaire HomeBase, Macromedia Dreamweaver,
or Microsoft FrontPage, to name a few. Ironically, since Velocity markup does not
look like HTML, standard editing software treats the Velocity codes like text. Page
designers can view and edit the codes without difficulty.

17.3.3 Velocity is simple but powerful

It’s been noted that the Velocity Template Language (VTL) is an API that “you can fit
on a matchbook cover.” From an HTML page designer’s viewpoint, that’s a very
good thing. Most people can be up and running with Velocity the same day. At the
same time, the VTL has proven to be a complete solution; you can do with it what-
ever you need to do. A summary of the VTL is shown in table 17.1.

558 CHAPTER 17

Velocity: replacing JSPs
In this chapter, we present the practical example of using Velocity templates as the
presentation layer of our logon application. For more about Velocity, visit the
Velocity website at Jakarta [ASF, Velocity]. You may be surprised by how much it
can really do.

17.4 Using Velocity with web applications

Pages in a conventional website are static and unchanging. They can be read from
the disk as HTML files and returned to the browser. The web browser then reads
the HTML and displays the formatted page. Pages in a dynamic web application
have to be customized for each user. In practice, most of the page is static and
unchanging; only a few details ever actually change.

 In chapter 10, we describe the strategy of using a server page to combine the
static markup with the dynamic data. A template provides the static portion of a
server page. This template includes a mixture of HTML markup and the special
codes that customize the page.

 A JSP uses scriptlets and JSP tags to create the customizations. The JSP template
is compiled into a special servlet. The JSP servlet renders the HTML markup and

Table 17.1 The Velocity Template Language

Element Description

#set Establishes the value of a reference

#if / #elseif / #else Provides output that is conditional on the truth of statements

#foreach Loops through a list of objects

#include Renders local file(s) that are not parsed by Velocity

#parse Renders a local template that is parsed by Velocity

#stop Stops the template engine

#macro Defines a Velocimacro (VM), a repeated segment of a VTL tem-
plate, as required

Specifies a single-line comment

#* … *# Specifies a multiline comment

${variable} Provides a variable reference (to an attribute in the context)

${purchase.Total} References a property—for example, returns the value of
purchase.Total or purchase.getTotal()

${purchase.setTitle("value")} References a method —for example, calls purchase.
setTitle("value")

Using Velocity with web applications 559
processes the JSP code. When a JSP page is requested, the container actually calls
the compiled JSP servlet. It doesn’t load and process the template again.

 In Velocity (as in most server page systems), the templates are actually used at
runtime to create the response. A central engine reads the template, processes
the codes, and returns the customized result. In a web environment, the Velocity
servlet returns the result as a response to the HTTP request.

 When the template is processed, the Velocity Template Engine is also given a
runtime context that contains variable information. This is similar to the servlet
contexts used by web applications but is not bound to the web tier. Since Velocity
provides its own context object, the same Velocity Template Engine can be used
with web applications and with conventional Java applications.

 In a web application, Velocity can adopt the standard servlet context and use it
as the Velocity context. When the Velocity servlet adopts a context, it employs the
same scoping strategy as is used with JSP tags. The request scope is checked first,
then the session scope, and finally the application scope. But to the Engine, it
looks like a single context.

 When the Engine renders a template, it looks for Velocity statements and refer-
ences. Velocity statements are identified by a pound sign (#) and a keyword appear-
ing at the beginning of a line. The references are to variables in the context.
References are identified by a dollar sign ($) followed by a reference name. Any
Java object can be placed in the context and used as a reference. The reference
can access any public method on a Java class. (Table 17.1 contains the Velocity
statements and references.)

17.4.1 Using Velocity with servlet resources

Much of the communication between components in a web application involves
four standard resources provided by the Servlet API: the application context, the
session, the request, and the response. The application context lets components
share data and services. The session object provides data and services regarding
each user. The request and response objects work together to fulfill the infamous
HTTP request-response cycle (see chapter 1).

 Since a dynamic page is just another component in a web application, it
should have access to the same resources as other components. Velocity provides
a standard VelocityViewServlet, which makes it easy to integrate Velocity with
any servlet in your application.

560 CHAPTER 17

Velocity: replacing JSPs
 Among other things, this servlet automatically creates and populates the
Velocity context with the usual suspects from the Servlet API. Table 17.2 lists the
Velocity attributes (or tools) and the API objects they represent.

Since this “gang of four” are now just objects in the Velocity context, they can be
accessed with the Velocity Template Language (see table 17.1).

 Let’s compare accessing these tools with doing the same thing with a custom
tag. The Jakarta Taglibs project [ASF, Taglibs] offers a Request tag library that
exposes the properties of the pending HttpServletRequest, just like the $request
Velocity tool does. To check a user’s security role using the <request> tag, we
could say this:

<request:isUserInRole role="contributor">
 <%-- … -%>
</request:isUserInRole>

The same check is done in Velocity:

#if $request.isUserInRole("contributor")
 # …
#endif

Any other method or property of the request, session, application, or response
objects can be accessed in the same way—but without the red tape of creating and
importing a tag library. Once the HttpServletRequest object is placed in the Veloc-
ity context, you can access it using the object’s native API, not one being passed
through a custom tag implementation.

17.4.2 Using Velocity with context attributes

Most web applications, especially Struts applications, make good use of the standard
servlet contexts. Objects we can all share are posted in the application context.
Objects that pertain to an individual user go into the session context. If the object is
just being used to create a HTTP response, we tuck it away in the request context.

Table 17.2 Velocity servlet tools

Context key Class Remarks

$application javax.servlet.ServletContext The servlet context

$session javax.servlet.http.HttpSession The current session, if one exists

$request javax.servlet.http.HttpServletRequest The current servlet request

$response javax.servlet.http.HttpServletResponse The current servlet response

Using Velocity with web applications 561
 These contexts are contained within the standard servlet resources we intro-
duced in section 17.4.1. So, we could always get at them this way:

<P>Username: ${session.getAttribute("username")}</P>

But that’s a bit too verbose for Velocity-land. To avoid so much typing, Velocity
supports the same type of automatic scoping found in most JSP tag implementa-
tions. When we refer to an attribute, the request context is checked first, then the
session, and finally the application. Each of the contexts provided by the request,
session, and application resources are chained together, but to the Velocity Tem-
plate Engine, they all look like the same context.

 This means we can get at our username this way instead:

<P>Username: $!user.username</P>

Internally, Velocity will check the standard request context for the user object.
Not finding it, it will try the session context. When it finds the user attribute in the
session context, Velocity returns the result of the user.getUserName() method. If
the user attribute was not found anywhere, the exclamation point (!) tells Veloc-
ity to return a blank string instead.

 Out of the box, the Velocity Template Language and VelocityViewServlet pro-
vide all the generic functionality provided by the Struts bean and logic taglibs,
along with several others, such as the Jakarta request taglib.

 But what about the special resources provided by the Struts framework? The
attribute keys used by Struts are verbose and not easy for page designers to
remember or type. The HTML tags usually handle all that.

 Point taken. Happily, Velocity provides a special toolkit for Struts that does for
the Struts API what it did for the Servlet API. The Struts framework objects are
exposed as Velocity “tools” that can be used with a minimum of fuss.

17.4.3 How Velocity works with Struts

The objects defined in the Struts configuration (see chapter 4) create a database
of the JavaBeans, hyperlinks, actions, and messages to be used with an application.
Many of the JSP tag extensions bundled with Struts—<html:link>, for example—
are designed to look up information from this database.

 Struts exposes this database of configuration objects through the standard
servlet contexts. Any other servlet, in the application can access the Struts config-
uration objects—if they know where to look. The JSP tags bundled with Struts use
a class called RequestUtils (org.apache.struts.util.RequestUtils) to access the

562 CHAPTER 17

Velocity: replacing JSPs
configuration objects. But any other component in the application can do the
same thing.

 In fact, the VelocityStruts toolkit and its view tools do for a Struts Velocity Tem-
plate application exactly what the RequestUtils and bundled taglibs do for a Struts
JSP application.

17.4.4 The VelocityStruts toolkit

The VelocityStruts toolkit makes it easy to use Velocity templates with Struts. The
kit includes the VelocityViewServlet (see section 17.4.1) and the Velocity View
tools for Struts.

 The VelocityViewServlet is loaded into the application along with the Struts
ActionServlet. The Velocity servlet is configured to match some URL pattern, most
often *.vm, in the usual way. Once the Velocity servlet is loaded, we can start for-
warding to VM files in exactly the same way we forward to JSP files. If we create a
logon.vm page out of our login.jsp page, we can change the forwards from

<forward
 name="continue"
 path="/pages/Logon.jsp"/>

to
<forward
 name="continue"
 path="/pages/Logon.vm"/>

In practice, Struts doesn’t render the JSP. That’s handled by a service bundled with
your container. So, Struts can forward to the VelocityViewServlet just as easily as it
forwards to the JSP service. From the controller’s perspective, they are all just URIs.

 In a Struts JSP, the real magic is handled by the custom tags. They know how to
access the Struts configuration and use those objects to customize the page.

 In a Struts Velocity template, the View tools know all the same magic words and
can access the Struts configuration just like the Struts taglibs do. Where we for-
warded to JSPs, we can now forward to VMs. Where we used custom tags, we can
now use View tools. It’s really that simple.

But no coincidence …
Sun originally designed JSP tags to be a means for a JavaServer Page to access Java-
Beans. Most carefully designed taglibs, like the ones bundled with Struts, are
based on this fundamental design principle. The application creates JavaBeans to
encapsulate data. The JSP tags access the JavaBean, wrap the data in HTML
markup, and output the result.

Our logon templates 563
 The Velocity Template Language uses the same design pattern. Objects are
placed in a shared context by another component. The template language pro-
cesses the data provided by those objects and outputs the result.

 From a distance, pages coded for Velocity tools or JSP tags will look very much
alike. They are both trying to do the same things in much the same way for all the
same reasons. The implementations differ, but the strategy remains the same.

17.4.5 The Struts View tools

As we’ve mentioned, much of the functionality provided by the Struts taglibs is
already built into the Velocity Template Language and VelocityViewServlet. The
Struts-specific features are provided through a set of four JavaBeans, or tools, that
the servlet makes available to your templates (like the Servlet API resources covered
in section 17.4.1). Table 17.3 itemizes the four Struts-specific Velocity View tools.

Let’s take a look at a Struts JSP and a Struts Velocity template.

17.5 Our logon templates

Since they are both designed to do the same thing, the Velocity templates and JSP
versions of our pages look very much alike, especially when you compare them
closely. (Form follows function.) You may be surprised to discover that you already
know enough about Velocity to read through the template source. If you get
stuck, look back to table 17.1 as a quick reference (or scribble it down on any
handy matchbook). Welcome.vm appears in figure 17.1a, and Welcome.jsp
appears in figure 17.1b.

 As you can see, the markup is more alike than it is different, and the same
commentary we presented back in chapter 3 (section 3.3.2) would apply here,

Table 17.3 Velocity Struts View tools (org.apache.velocity.tools.struts)

Context key Class Remarks

$msg MessageTool Provides access to the Struts message resources for interna-
tionalized output

$errors ErrorsTool Provides methods to check for and output Struts error mes-
sages

$link LinkTool Provides methods to work with URIs

$form FormTool Provides miscellaneous methods to work with forms and form
beans in the context of Struts applications

564 CHAPTER 17

Velocity: replacing JSPs
block by block. The versions of the logon page are just as similar, as shown in
figures 17.2a and 17.2b.

 While it may appear that the Velocity versions require that more HTML
markup be used on a page, it can be much easier to write a Velocity template
using today’s visual HTML editors. To HTML editing software, the Velocity
markup looks like the control’s initial value. (And, in a sense, it is.) The Velocity
markup can then be input via any editing software’s normal dialog boxes and dis-
played on a test page outside the running application. So, in practice, less HTML is
actually written by human beings.

<%@ taglib uri="/tags/struts-bean"
prefix="bean" %>

<%@ taglib uri="/tags/struts-html"
prefix="html" %>

<%@ taglib uri="/tags/struts-logic"
prefix="logic" %>

<HTML>
<HEAD>
<TITLE>Welcome!</TITLE>
<html:base/>
</HEAD>
<BODY>
<logic:present name="user">
<H3>Welcome <bean:write name="user"

property="username"/>!</H3>
</logic:present>
<logic:notPresent scope="session"

name="user">
<H3>Welcome World!</H3>
</logic:notPresent>
<html:errors/>

<html:link forward="logon">Sign

in</html:link>
<logic:present name="user">
<html:link forward="logoff">Sign

out</html:link>
</logic:present>

<IMG src='struts-power.gif'

alt='Powered by Struts'>
</BODY>
</HTML>

<HTML>
<HEAD>
<TITLE>Welcome!</TITLE>
<BASE href="$link.baseRef">
</HEAD>
<BODY>
#if($user)
<H3>Welcome $user.username!</H3>
#else
<H3>Welcome World!</H3>
#end
$!errors.msgs()

Sign in

#if($user)
<A href=

"$link.setForward('logoff')">
 Sign out

#end

<IMG src='struts-power.gif'

alt='Powered by Struts'>
<IMG src='velocity-power.gif'

alt='Powered by Velocity'>
</BODY>
</HTML>

a. b.

Figure 17.1 (a.) Welcome.vm and (b.) Welcome.jsp

Our logon templates 565
Similar functionality is becoming available for JavaServer Pages. There are some
add-ins for Dreamweaver 4 [ASF, CTLX], but the marketplace, regrettably, has
been slow to provide direct support for JSP custom tags. Meanwhile, Velocity tem-
plates can be easily coded using any off-the-shelf HTML editor. In practice, the
HTML page designers working with a Velocity template tend to enter less
application-specific code than they would with a JSP.

<%@ taglib uri="/tags/struts-html"
prefix="html" %>

<HTML>
<HEAD>
<TITLE>Sign in, Please!</TITLE>
</HEAD>
<BODY>
<html:errors/>
<html:form action="/LogonSubmit"

focus="username">
<TABLE border="0" width="100%">
<TR>
<TH align="right">Username:</TH>
<TD align="left"><html:text

property="username"/></TD>
</TR>
<TR>
<TH align="right">Password:</TH>
<TD align="left"><html:password

property="password"/></TD>
</TR>
<TR>
<TD

align="right"><html:submit/></TD>
<TD align="left"><html:reset/></TD>
</TR>
</TABLE>
</html:form>
</BODY>
</HTML

<HTML>
<HEAD>
<TITLE>Sign in, Please!</TITLE>
</HEAD>
<BODY>
$!errors.msgs()
<FORM method="POST"

action="$link.setAction('/Logon
Submit')">

<TABLE border="0" width="100%">
<TR>
<TH align="right">Username:</TH>
<TD align="left"><INPUT type="text"

name="username"
value="$!logonForm.username"></TD
>

</TR>
<TR>
<TH align="right">Password:</TH>
<TD align="left"><INPUT

type="password" name="password"
value="$!logonForm.password"></TD
>

</TR>
<TR>
<TD align="right"><INPUT

type="submit" value="Submit"
name="submit"></TD>

<TD align="left"><INPUT type="reset"
value="Reset"name="reset"></TD>

</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

a. b.

Figure 17.2 (a.) Logon.vm and (b.) Logon.jsp

566 CHAPTER 17

Velocity: replacing JSPs
 With a framework like Struts, you have your choice of presentation systems and
can use whichever one is the best fit for your application and team members.

 An updated version of the logon application from chapter 3 is available on the
book website [Husted] as logon-velocity.war. You can download this application
and install it in your container to see Velocity in action. You can log on using the
names of any of the book’s authors, as shown in table 17.4. Use the first name as
the userId and the last name as the password.

The passwords are case sensitive, so be sure to use an initial capital letter.
 Let’s take a look at the changes we had to make to the configuration to get the

logon Velocity application up and running.

17.6 Setting up VelocityViewServlet

Before we can actually test our Velocity templates, we need access to the Velocity
Template Engine. Usually, you need to create your own instance of the engine
designed to work with a particular application. But since web applications based
on a framework (like Struts) have very similar needs, the Velocity team provides
a standard VelocityViewServlet (org.apache.velocity.tools.view.servlet.
VelocityViewServlet) that takes care of everything for us.

17.6.1 Installing the VelocityViewServlet

The VelocityViewServlet itself is in the velocity-tools-view.jar in the logon applica-
tion’s WEB-INF/lib folder. The web.xml in the logon distribution also includes the
Velocity servlet configuration, and is a working example of configuring both the
ActionServlet and Velocity servlet in the same file.

 Aside from the velocity-tools-view.jar, we also added the velocity-tools-library.jar,
the velocity-tools-struts.jar, and the dom4j.jar to our lib folder. For Struts 1.0.2, you

Table 17.4 Default logons

userId Password

Ted Husted

Cedric Dumoulin

George Franciscus

David Winterfeldt

Craig McClanahan

Setting up VelocityViewServlet 567
will also need to add the jakarta-commons-collection.jar. But, given the usual
Struts JARs, that’s it!

 Of course, the latest version of the Velocity Struts toolkit is available from the
Velocity website at Jakarta [ASF, Velocity].

 Given the requisite JARs, we just need to configure our deployment descriptor
(web.xml) to load the Velocity servlet and add a toolbox.xml configuration file to
WEB-INF for our new toys.

17.6.2 Deploying the Velocity servlet

Like any servlet, the VelocityViewServlet is deployed through the web application
deployment descriptor. Listing 17.1 shows the servlet configuration element we
added to the logon application’s web.xml.

<!-- Define Velocity template compiler -->
 <servlet>
 <servlet-name>velocity</servlet-name>
 <servlet-class>
 org.apache.velocity.tools.view.servlet.VelocityViewServlet

 </servlet-class>
 <init-param>
 <param-name>toolbox</param-name>
 <param-value>/WEB-INF/toolbox.xml</param-value>
 </init-param>
<load-on-startup>10</load-on-startup>
 </servlet>
 <!-- Map *.vm files to Velocity -->
 <servlet-mapping>
 <servlet-name>velocity</servlet-name>
 <url-pattern>*.vm</url-pattern>
 </servlet-mapping>

The toolbox parameter
As we’ve mentioned, the Struts configuration is exposed to the Velocity template
using a handy set of predefined objects that Velocity calls tools. The tools are
helper objects that give you quick and easy access to framework objects. Other
tools can help out with date transformations, math calculations, and whatever else
you might need to do within your presentation page. Tools can help extend a
Velocity template in much the same way a custom tag can extend a JSP.

 The Struts View tools are only one of a number of toolkits planned by the
Velocity team. The toolbox parameter is used to specify the tool configuration

Listing 17.1 /WEB-INF/web.xml (Velocity servlet element)

568 CHAPTER 17

Velocity: replacing JSPs
file. This is where we can load the Struts tools and any others we might ever need.
Conceptually, this is very much like deploying a custom tag library that a JSP might
use. We take a closer look at the Velocity toolbox in section 17.6.3.

The properties parameter
Velocity is a full-featured component and offers a number of configuration
options. These can be placed in a Properties file and adjusted for your applica-
tion. Our application doesn’t need to change any of the Velocity defaults, so we’ve
omitted the velocity.properties file. For more about the different ways Velocity can
be configured, consult the documentation at the Velocity website [ASF, Velocity].

17.6.3 The toolbox configuration file

Our toolbox configuration file, shown in listing 17.2, simply loads the Struts View
tools. Other tools that you or others develop can also be loaded here.

<?xml version="1.0"?>

<toolbox>
 <tool>
 <key>toolLoader</key>
 <class>org.apache.velocity.tools.tools.ToolLoader</class>
 </tool>
 <tool>
 <key>link</key>
 <class>org.apache.velocity.tools.struts.LinkTool</class>
 </tool>
 <tool>
 <key>msg</key>
 <class>org.apache.velocity.tools.struts.MessageTool</class>
 </tool>
 <tool>
 <key>errors</key>
 <class>org.apache.velocity.tools.struts.ErrorsTool</class>
 </tool>
 <tool>
 <key>form</key>
 <class>org.apache.velocity.tools.struts.FormTool</class>
 </tool>
</toolbox>

If for any reason you need to change the name of a tool, you can change the name
parameter here, and it will be exposed under the new attribute name.

Listing 17.2 /WEB-INF/toolbox.xml

Setting up struts-config 569
17.7 Setting up struts-config

At this point, changing over to Velocity templates is simply a matter of replacing
.jsp with .vm in the struts-config. You could even do this with a search and replace.
The converted struts-config is shown in listing 17.3.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC "-//Apache Software Foundation//DTD Struts

Configuration 1.0//EN" "http://jakarta.apache.org/struts/dtds/struts-
config_1_0.dtd">

<struts-config>
<form-beans>
 <form-bean
 name="logonForm"
 type="app.LogonForm"/>
 </form-beans>
<global-forwards>
 <forward
 name="logoff"
 path="/Logoff.do"/>
 <forward
 name="logon"
 path="/Logon.do"/>
 <forward
 name="welcome"
 path="/Welcome.do"/>
</global-forwards>
<action-mappings>
 <action
 path="/Welcome"
 type="org.apache.struts.actions.ForwardAction"
 parameter="/pages/Welcome.vm"/>
 <action
 path="/Logon"
 type="org.apache.struts.actions.ForwardAction"
 parameter="/pages/Logon.vm"/>

 <action
 path="/LogonSubmit"
 type="app.LogonAction"
 name="logonForm"
 scope="request"
 validate="true"
 input="/pages/Logon.vm">
 <forward
 name="success"
 path="/pages/Welcome.vm"/>
 </action>

Listing 17.3 /WEB-INF/conf/struts-config.xml

570 CHAPTER 17

Velocity: replacing JSPs
 <action
 path="/Logoff"
 type="app.LogoffAction">
 <forward
 name="success"
 path="/pages/Welcome.vm"/>
 </action>
</action-mappings>
</struts-config>

If you make this change in the logon application’s configuration, or the one you
are building yourself, then you should be ready to take the application for a test
drive. It should look just like the other, except for the additional “Powered by
Velocity” image on the welcome page, as shown in figure 17.3.

Of course, you can also mix and match JavaServer Pages and Velocity templates in
the same application. A very good way to start out with Velocity is to replace a sin-
gle JavaServer Page at a time. It’s not an either/or proposition. The choice is yours.

17.8 Summary

Velocity is an excellent way to handle the presentation layer of any MVC applica-
tion, including web applications based on the Struts framework. The Velocity
View tools for Struts make it easy to access the framework’s resources. The
VelocityViewServlet make it just as easy to access the Servlet API resources, along
with any other helpers you might be tucking away in one of the contexts.

 Since Velocity and JSP custom tags share a common design philosophy, moving
from one to the other is a straightforward process. A custom tag and a Velocity
declaration or tool can be exchanged on a one-to-one basis.

 In an MVC web environment like Struts, Velocity templates and custom tags
are playing on a level field. Which technology is best for your application is more
about who will be creating the presentation layer than what they should be creat-
ing it with. If Java engineers already comfortable with JavaServer Pages are

Welcome World!

• Sign in

Powered by
Struts

Powered by

Velocity

Figure 17.3
The welcome screen of the logon
application using Velocity templates

Summary 571
creating the presentation pages, then JSPs remain a solid choice. On the other
hand, if your engineers will be working with page designers using tools designed
for static HTML pages, then Velocity templates may be the better choice.

 If for any reason you need to mix and match JSPs and Velocity templates, you
can do that too. The technologies are not mutually exclusive. In fact, they play
well together.

 The important thing is that by using a layered architecture and a versatile
framework like Struts, you reserve the option of making your own choices. You
can make the decision.

ADesign patterns
A pattern is an idea that has been useful in one practical context
and will probably be useful in others.

—Martin Fowler

Design patterns are often mentioned in development discussions today. Struts
itself implements a number of classic designs, starting with Model-View-Con-
troller (MVC). Understanding which patterns Struts uses, and why, makes it
much easier to “program with the grain,” so you can create applications that
make the best use of the Struts components.

 As we show in this appendix, although no one person or group of peo-
ple wrote the patterns, using them together has a synergistic effect. Relying
on patterns, and being able to discuss how they are used, leads to better
and better designs over the life of an application.
573

574 APPENDIX A

Design patterns
 But where did the design patterns come from? How did they become such an
important element in application architecture?

A.1 A brief history of design patterns

It can be said that Struts “stands on the shoulders of giants.” Let’s introduce the
little giants we call design patterns, and provide pointers for further research.

 The software community has known the value of design patterns for some
time. In the 1970s, a number of books were published documenting patterns in
civil engineering and architecture. The software community took note and began
to refer to patterns found in their own work. Interest in software design patterns
has peaked in recent years, especially in the Java community. The patterns them-
selves are often deceptively simple. Here’s an excerpt from a well-known pattern
catalog defining a very simple, yet very useful pattern:

Adapter Pattern. Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces. [Go4]

Developers approach these patterns like Zen sayings. This sentence is the com-
plete definition of the Adapter pattern. But entire chapters can be written to dis-
cuss what a pattern like this means.

 The use of these seemingly simple patterns, such as Adapter, has a synergistic
effect on an application’s architecture, making programs easier to write, and
more important, easier to maintain. A prime mover in the current wave of inter-
est in design patterns has been the Design Patterns book [Go4], published in
1994. This was joined by other pattern classics, including Working with Objects: The
Ooram Software Engineering Method [Ooram] in 1995 and Pattern-Oriented Software
Architecture [POSA] in 1996. Sun then drove the point home with its J2EE Blue-
prints website [Sun, Blueprints] and its subsequent publication of Core J2EE Pat-
terns [Go3] in 2001.

 The many ideas in each of these works have built on each other and have cre-
ated a coherent patterns literature. Struts builds soundly on the classic patterns
described in these references. Next, we discuss the history and importance of
design patterns and how they are used in the Struts framework.

A brief history of design patterns 575
A.1.1 The Gang of Four

... consider the excellent but difficult book Design Patterns.
—Alistair Cockburn

Once upon a time, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides put their collective heads together and developed a catalog of design pat-
terns, the venerable Design Patterns: Elements of Reusable Object-Oriented Software
[Go4]. This so-called Gang of Four did not invent the patterns; they carefully
selected and documented a core set of patterns known to be useful. This has been
an immensely popular work, and has led to software patterns being a common
topic of discussion in development teams around the world.

 The underlying theme of the patterns is that most problems are not unique;
often, we need to solve the same class of problems over and over again. By describ-
ing these solutions on their own terms, we find it easier to see the pattern behind
the solution, and reapply the idea the next time a similar situation comes along.

 Design Patterns catalogs 23 truly useful patterns—including Adapter, Decorator,
Facade, Factory Method, Singleton, and many others—that developers now con-
sider their stock in trade.

 Design patterns and frameworks make for a very good match. Both are really
trying to do the same thing: save developers the work of reinventing the wheel. In
chapter 2, we show how these and other patterns are implemented in Struts.

One thing expert designers know not to do is solve every problem from first
principles. Rather, they reuse solutions that have worked for them in the past.

When they find a good solution they use it again and again [Go4].

A.1.2 J2EE Blueprints

To position Java as the platform of choice for robust, scalable applications, Sun
offers up the Java 2 Enterprise Edition (J2EE). This is a feature-rich platform that
draws on a number of technologies, including Enterprise JavaBeans (EJBs).
These advanced technologies are very easy to misuse. More than one team has
found that poor design choices can quickly rob a J2EE application of its perfor-
mance and scalability advantages.

 To help developers design better applications, Sun developed the J2EE Blue-
prints [Sun, Blueprints]. The Blueprints are a set of guidelines, design patterns,
and sample code, all meant to embody the J2EE best practices. The Blueprints are
primarily available online, but a companion book, Designing Enterprise Applications
with the J2EE Platform [Sun, J2EE], is available.

576 APPENDIX A

Design patterns
 The Blueprints clearly define the terms most often used in web architecture
circles, including tiers, business logic, clients, CGI, and component-based
design. Regardless of whether you are writing a J2EE application or a Java 2 Stan-
dard Edition (J2SE) application, the Blueprints give you an excellent back-
ground on designing Java web applications.

A.1.3 Core J2EE Patterns

Sun’s Core J2EE Patterns, by Deepak Alur, John Crupi, and Dan Malks [Go3], has
much in common with Design Patterns (including a foreword by Grady Booch).
There is no overlap between the books; Core J2EE Patterns intentionally builds on
the foundation laid down by the Gang of Four. But this “Gang of Three” extends
the focus to patterns for building robust, scalable applications, like those
designed for the J2EE platform.

 While the book is ostensibly about J2EE patterns, since they are patterns the
book’s advice can be applied to any compatible technology. The Core patterns
work well with any Java web application, regardless of whether EJBs are used on
the backend.

 The key point about the J2EE patterns is that they stress building applications
in tiers, with strong abstractions, layering, and clean separation between the pre-
sentation, business, and integration tiers. Struts is designed to provide that same
separation, and is a good fit with the overall focus of the book. In fact, Core J2EE
Patterns uses Struts as the example implementation for the Synchronizer Token
pattern in the book’s refactoring section.

A.2 Why patterns are important

The most important thing about patterns is that they are proven solutions. Each
catalog mentioned here includes only patterns that have been found useful by
multiple developers in multiple projects. The cataloged patterns are also well
defined; the authors describe each pattern with great care and in its own context,
so that it will be easy for you to apply the pattern to your own circumstances. The
cataloged patterns also form a common vocabulary among developers. We can use
terms like adapter and facade during design discussions and communicate exactly
what we have in mind. Each pattern carries documented consequences, both
good and bad, and developers can choose a pattern, forewarned and forearmed.
Since great care is put into cataloging the patterns, they also represent a set of
best practices for teams to follow.

Struts—a Who’s Who of design patterns 577
A.3 What patterns won’t do

Patterns are a roadmap, not a strategy. The catalogs will often present some
source code as an example strategy, but that would just be one possible implemen-
tation. Selecting a pattern is not the same as importing a class; you still have to
implement the pattern in the context of your application. Patterns will not help
you determine what application you should be writing—only how to best imple-
ment the application once the feature set and other requirements are deter-
mined. Patterns help with the what and the how, but not with the why or when.

A.4 Struts—a Who’s Who of design patterns

Patterns and frameworks are a good combination. But patterns can be used again
and again throughout an application. Struts provides a concrete example of how
many of the cataloged patterns can be implemented. In looking through the cata-
logs, selecting patterns for use in your own applications, you may find it helpful to
see how Struts has made good use of the same patterns.

 After all, if Struts is your application framework, it is now part and parcel of
your own application. Using the same pattern in the same way will help you get
the most out of both Struts and your own hard work.

 Working from the descriptions in the Core J2EE Patterns catalog, the Struts archi-
tecture implements several key patterns, including Service to Worker, Front Con-
troller, Singleton, Dispatcher, View Helper, Value Object, Composite View, and
Synchronizer Token, among others. Table A.1 shows the many patterns imple-
mented by Struts components.

Table A.1 Patterns implemented by Struts classes

Pattern(s) Struts component(s)

Service to Worker ActionServlet, Action

Command [Go4], Command and Controller,
Front Controller, Singleton, Service Locator

ActionServlet, Action

Dispatcher, Navigator ActionMapping, ActionServlet, Action, ActionForward

View Helper, Session Facade, Singleton Action

Transfer Objects (fka Value Objects), Value
Object Assembler

ActionForm, ActionErrors, ActionMessages

View Helper ActionForm, ContextHelper, tag extensions

Composite View, Value Object Assembler Template taglib, Tiles taglib

Since
Struts 1.1

Since
Struts 1.1

578 APPENDIX A

Design patterns
Let’s take a closer look at the key patterns.

A.4.1 The Service to Worker pattern

At the highest level, Struts implements a Service to Worker pattern. This is a “macro”
pattern that incorporates two others, Front Controller and View Helper.

The Front Controller pattern
In chapter 2, we see that the ActionServlet receives user gestures and state
changes. Another way to say it is that the ActionServlet provides a centralized
access point for request handling. This called the Front Controller pattern, and it is
a key feature of the Model 2 approach. This pattern allows the centralization of
code relating to system services, security services, content retrieval, view manage-
ment, and navigation, so that application code is not endlessly duplicated or com-
mingled with view content.

The Command / Command and Controller patterns
Like many Front Controllers, Struts implements a dispatcher component (or
Action class) to handle such details as content retrieval and view management.
The ActionServlet invokes a known method on the Action and passes it details of
the request to delegate responsibility for the response. This is known as the Com-
mand and Controller strategy [Go3] and is based on the Command pattern [Go4].
The Struts Action classes play a strong role in view management.

The Service Locator pattern
Many data persistence components rely on standard DataSource objects (javax.sql.
DataSource) to provide access to the underlying storage system. Most often the store
is a JDBC database, but a DataSource can be used to connect to any type of system.
The ActionServlet can maintain a list of DataSource objects keyed to a logical name
that you specify in the Struts configuration. Other objects can retrieve the Data-
Source object (“locate the service”) by name without knowing any other implemen-
tation detail. Struts developers can switch JDBC drivers, connection pools, and so
forth, just by changing which DataSource is registered under a logical name.

Synchronizer Token Action

Decorator [Go4] ActionMapping

Table A.1 Patterns implemented by Struts classes (continued)

Pattern(s) Struts component(s)

Struts—a Who’s Who of design patterns 579
The View Helper pattern
Also in chapter 2, we see that the ActionForm contains the data for a state change.
The framework expects the data being entered into the system to be encapsulated
in a JavaBean. One of the things that Struts does for you is to take an HTTP
request and transfer its parameters into an ActionForm bean. Using JavaBeans to
transfer business data to a view component is known as the View Helper pattern
[Go3]. The Struts framework exposes several shared resources in the servlet con-
texts so that they can be used by other components, especially those on the pre-
sentation layer. While not always simple JavaBeans, the Struts resources are
another type of view helper.

A.4.2 The Singleton pattern

In a multithreaded environment such as Java, there is often no advantage to hav-
ing several copies of the same object floating around. Servlets, for example, are
multithreaded and can handle any number of requests without spawning a new
object. Struts applies this same principle to its Actions, and instantiates only one
Action per application. This enhances performance but puts the responsibility of
writing thread-safe Actions on the developer.

A.4.3 The Session Facade pattern

The interaction between the model and the rest of your application can be quite
complex. Encapsulating these details into a single object with a simple interface
can make an application much easier to write and maintain. Struts encourages
encapsulating such details with its Action classes. An Action has a well-defined
interface and some general responsibilities, but is mainly a white box where an
application can do whatever needs to be done.

 This is known as the Session Facade pattern: the Action class “abstracts the
underlying business object interaction and provides a service layer that exposes
only the required interfaces” [Go3].

 Struts also uses a Session Facade pattern in the design of the message
resources component. The complexity of selecting the user’s locale is hidden.
The components simply ask for a message by key, and the message resources pro-
vide the correct message for the user’s locale.

A.4.4 Value Object / Value Object Assembler patterns

One thing leads to another. Often, a process will require several pieces of infor-
mation in order to complete. In the olden days of Teletype programs, we had to
ask for everything one piece at a time. Now, with form-based dialog boxes, we can
ask for everything we need at once.

580 APPENDIX A

Design patterns
 This functionality can be especially important when our application is using a
remote server and there is some lag between requests. We need to get as much
information as we can up front, because sending the information to the server
and back takes longer than we would like.

 In J2EE circles, the information we want to collect into a single packet is called
a value object. A value object encapsulates business data, so that a single call can be
made to send and receive our data [Go3]. The Struts ActionForm is one example
of a value object. It collects the fields we need from an HTML form all at once, so
that the information can be validated all at once and either returned together for
correction or sent along for processing by the Action.

 The Struts ActionErrors is another example of a value object. Here we can col-
lect several related error messages together so they can be displayed at once, cor-
rected together, and resubmitted.

 The Struts ActionForms can also use nested JavaBeans. This lets you divide the
properties you need to collect into different JavaBeans, which may be obtained
from different parts of your model. Various beans can be made members of your
ActionForm class and referred to using a dotted syntax. (See chapter 5 for details.)

 This is known as the Value Object Assembler pattern: you build a composite value
object using other value objects so that the data set can be treated as a single entity.

A.4.5 The Composite View pattern

Often, a screen presentation is made up of several individual displays, or a Compos-
ite View [Go4]. The Struts 1.0 Template tags use this pattern to build a JavaServer
Page from several standard pages. Typically, this is used to provide a common set of
navigational elements to a page, which can be changed throughout the site by edit-
ing a single page.

A.4.6 The Synchronizer Token pattern

An ongoing problem in a web application is the lag between a request and its
response. In some applications, this can be a serious problem when a request
should be submitted only once—for example, when a user is checking out a shop-
ping cart and placing an order. Since placing the order can take some time, there
may be a few minutes before the response is generated. It is easy for the user to
become impatient and click the Submit button again. This can generate another
request—and a duplicate order.

 One strategy to prevent this is to set a synchronizer token in the user’s session and
include the token’s value in the form we need to protect. When the form is sub-
mitted, the Action clears the token. If a later submission finds that its token is
missing, the Action can forgo the duplicate submission.

Struts—a Who’s Who of design patterns 581
 The Struts Action class implements a synchronizer token strategy, which is also
exposed in the tag extensions.

A.4.7 The Decorator pattern

The Action object is a multithreaded singleton. This is generally a good thing,
but it can make the Action harder to reuse for similar operations. The Action-
Mapping class is used to extend the Action object rather than the Action class. An
ActionMapping gives a specific Action object additional responsibilities and new
functionality, which embodies the Decorator pattern [Go4].

BThe struts-config AP
I

The format used by the Struts configuration file (struts-config.xml) is
described by the struts-config Document Type Definition (DTD), as given by
the DOCTYPE element at the head of the file:

<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd"

The DTD should be considered the official reference document for the
struts-config format, in the same way that the JavaDocs are the official refer-
ence document for the frameworks Java objects. For your convenience, we
have formatted the comments from the struts-config DTD as a standard API
reference. Several supporting elements used by the DTD are not docu-
mented here, because they are not an essential part of the public API. For
complete detai ls , see the reference copy of the DTD at http://
jakarta.apache.org/struts/dtds/struts-config_1_1.dtd.
583

584 APPENDIX B

The struts-config API
1.0 vs 1.1 When this book went to press, Struts 1.1 beta release 2 was in circulation.
Some details may have changed between beta 2 and the final release. Be
sure to check the book’s website [Husted] for any errata.

B.1 <struts-config>

The <struts-config> element is the root of the configuration file hierarchy. It
contains nested elements for all of the other configuration settings. Table B.1
shows the Struts configuration elements.

Table B.1 <struts-config> elements

Element Description

set-property Specifies the method name and initial value of an additional JavaBean con-
figuration property

data-sources Specifies a set of DataSource objects (JDBC 2.0 Standard Extension)

data-source Specifies a DataSource object to be instantiated, configured, and made
available as a servlet context attribute (or application-scope bean)

global-exceptions Describes a set of exceptions that might be thrown by an Action object

exception Registers an ExceptionHandler for an exception type

form-beans Describes the set of form bean descriptors for this application module

form-bean Describes an ActionForm subclass that can be referenced by an <action>
element

form-property Describes a JavaBean property that can be used to configure an instance of
a DynaActionForm or a subclass thereof

global-forwards Describes a set of ActionForward objects that are available to all Action
objects as a return value

forward Describes an ActionForward that is to be made available to an Action as a
return value

action-mappings Describes a set of ActionMappings that are available to process requests
matching the URL pattern our ActionServlet registered with the container

action Describes an ActionMapping object that is to be used to process a request
for a specific module-relative URI

controller Describes the ControllerConfig bean that encapsulates an application mod-
ule’s runtime configuration

Since
Struts 1.1 [

Since
Struts 1.1

Since
Struts 1.1

<struts-config> 585
B.1.1 <set-property>

The <set-property> element specifies the method name and initial value of an
additional JavaBean configuration property. When the object representing the
surrounding element is instantiated, the accessor for the indicated property is
called and passed the indicated value. The <set-property> element is especially
useful when a custom subclass is used with <forward>, <action>, or <plug-in> ele-
ments. The subclass can be passed whatever other properties may be required to
configure the object without changing how the struts-config is parsed. The
attributes shown in table B.2 are defined.

B.1.2 <data-sources>

The <data-sources> element describes a set of DataSource objects (JDBC 2.0
Standard Extension).

 The individual DataSource objects are configured through nested <data-
source> elements.

B.1.3 <data-source>

The <data-source> element describes a DataSource object (JDBC 2.0 Standard
Extension) that will be instantiated, configured, and made available as a servlet
context attribute (or application-scope bean). Any object can be specified as long
as it implements javax.sql.DataSource and can be configured entirely from Java-
Bean properties. Table B.3 shows the attributes for the <data-source> element.

message-resources Describes a MessageResources object with message templates for this
module

plug-in Specifies the fully qualified classname of a general-purpose application plug-
in module that receives notification of application startup and shutdown
events

Table B.1 <struts-config> elements (continued)

Element Description

Since
Struts 1.1

Since
Struts 1.1

Table B.2 <set-property> attributes

Attribute Description

property The name of the JavaBeans property whose setter method will be called

value The string representation of the value to which this property will be set, after suit-
able type conversion

586 APPENDIX B

The struts-config API
B.1.4 <global-exceptions>

The <global-exceptions> element describes a set of exceptions that might be
thrown by an Action object. The handling of individual exception types is config-
ured through nested exception elements. An <action> element may override a
global exception handler by registering a local exception handler for the same
exception type.

B.1.5 <exception>

The <exception> element registers an ExceptionHandler for an exception type.
Table B.4 shows the attributes for the <exception> element.

Table B.3 <data-source> attributes

Attribute Default/Description

className (org.apache.struts.config.DataSourceConfig)
The configuration bean for this DataSource object. If specified, the object must
be a subclass of the default configuration bean.

key (org.apache.struts.action.DATA_SOURCE)
The servlet context attribute key under which this data source will be stored. The
default is the value specified by the string constant defined by Action.
DATA_SOURCE_KEY. The application module prefix (if any) is appended to the
key (${key}$prefix}). Note that the application module prefix includes the
leading slash, so the default data source for a module named foo is stored
under org.apache.struts.action.DATA_SOURCE/foo.

type (org.apache.struts.util.GenericDataSource)
The fully qualified Java classname for this data source object. The class must
implement javax.sql.DataSource, and the object must be configurable
entirely from JavaBean properties.

Nested element

set-property See table B.2.

Since
Struts 1.1

Table B.4 <exception> attributes

Attribute Default/Description

bundle (org.apache.struts.action.MESSAGE)
The servlet context attribute for the message resources bundle associated with
this handler. The default attribute is the value specified by the string constant
declared at org.apache.struts.Action.MESSAGES_KEY.

className (org.apache.struts.config.ExceptionConfig)
The configuration bean for this ExceptionHandler object. If specified, className
must be a subclass of the default configuration bean.

Since
Struts 1.1

<struts-config> 587
B.1.6 <form-beans>

The <form-beans> element describes the set of form bean descriptors for this
application module. An optional type attribute may be specified, as shown in
table B.5.

handler (org.apache.struts.action.ExceptionHandler)
The fully qualified Java classname for this exception handler.

key No default
The key to use with this handler’s message resource bundle that will retrieve the
error message template for this exception.

path No default
The module-relative URI to the resource that will complete the request/response if
this exception occurs.

scope (request)
The context (request or session) that is used to access the ActionError object for
this exception.

type No default
The fully qualified Java classname of the exception type to register with this han-
dler.

description Descriptive (paragraph-length) text about the surrounding element, suitable for use
in GUI tools.

display-name A short (one-line) description of the surrounding element, suitable for use in GUI
tools.

icon A small-icon and large-icon element that specifies the location, relative to the
Struts configuration file, for small and large images used to represent the sur-
rounding element in GUI tools.

Nested element

set-property See table B.2.

Table B.4 <exception> attributes (continued)

Attribute Default/Description

588 APPENDIX B

The struts-config API
In Struts 1.0, you must set the default implementation class name with the form-
Bean initialization parameter to the Struts controller servlet.

B.1.7 <form-bean>

The <form-bean> element describes an ActionForm subclass (org.apache.
struts.action.ActionForm) that can be referenced by an <action> element.
Table B.7 shows the attributes for the <form-bean> element.

Table B.5 <form-beans> attribute

Attribute Default/Description

type (org.apache.struts.config.FormBeanConfig)
The fully qualified Java classname to use when instantiating ActionFormBean
objects. If specified, the object must be a subclass of the default class type.
(Deprecated)

Nested element

form-bean See table B.6.

Table B.6 <form-bean> attributes

Attribute Default/Description

className (org.apacheapache.struts.config.FormBeanConfig)
The configuration bean for this form bean object. If specified, the object must be a
subclass of the default configuration bean.

dynamic (true) if type equals org.apache.struts.action.DynaActionForm
(false) otherwise
If the form bean type is a DynaActionForm subclass (that you created), then (and
only then) set this attribute to true. If the type is set to the default DynaActionForm
or any conventional ActionForm subclass, then this attribute can be omitted.

name No default
The unique identifier for this form bean. Referenced by the <action> element to
specify which form bean to use with its request.

type No default
The fully qualified Java classname of the ActionForm subclass to use with this form
bean.

description Descriptive (paragraph-length) text about the surrounding element, suitable for use
in GUI tools.

display-name A short (one-line) description of the surrounding element, suitable for use in GUI
tools.

<struts-config> 589
B.1.8 <form-property>

The <form-property> element describes a JavaBean property that can be used to
configure an instance of a DynaActionForm or a subclass thereof. This element is
used only when the type attribute of the enclosing <form-bean> element is
org.apache.struts.action.DynaActionForm or a subclass of DynaActionForm. If
a custom DynaActionForm subclass is used, then the dynamic attribute of the
enclosing <form-bean> element must be set to true. The attributes shown in
table B.6 are defined.

icon A small-icon and large-icon element that specifies the location, relative to the
Struts configuration file, for small and large images used to represent the sur-
rounding element in GUI tools.

Nested elements

set-property See table B.2.

form-property See table B.6.

Table B.6 <form-bean> attributes (continued)

Attribute Default/Description

Table B.7 <form-property> attributes

Attribute Default/Description

className (org.apache.struts.config.FormPropertyConfig)
The configuration bean for this form property object. If specified, the object must be
a subclass of the default configuration bean.

initial (null) or (0)
The string representation of the initial value for this property. If not specified, primi-
tives will be initialized to zero and objects initialized to null.

name No default
The name of the JavaBean property described by this element.

type No default
The fully qualified Java classname of the field underlying this property, optionally fol-
lowed by [] to indicate that the field is indexed.

Nested element

set-property See table B.2.

Since
Struts 1.1

590 APPENDIX B

The struts-config API
B.1.9 <global-forwards>

The <global–forwards> element describes a set of ActionForward objects (org.
apache.struts.action.ActionForward) that are available to all Action objects as
a return value. The individual ActionForwards are configured through nested
<forward> elements. An <action> element may override a global forward by
defining a local <forward> element of the same name.

 An optional type attribute may be specified to the <global–forwards> ele-
ment, as shown in table B.8.

In Struts 1.0, you must set the default implementation classname with the
actionForward initialization parameter to the Struts controller servlet.

B.1.10 <forward>

The <forward> element describes an ActionForward that is to be made available
to an Action as a return value. An ActionForward is referenced by a logical name
and encapsulates a URI. A <forward> element may be used to describe both glo-
bal and local ActionForwards. Global forwards are available to all the Action
objects in the application module. Local forwards can be nested within an
<action> element and are only available to an Action object when it is invoked
through that ActionMapping.

 The attributes shown in table B.9 can be used with the <forward> element.

Table B.8 <global–forwards> attribute

Attribute Default/Description

type (org.apache.struts.action.ActionForward)
The fully qualified Java classname to use when instantiating ActionForward
objects. If specified, the object must be a subclass of the default class type.
(Deprecated)

Nested element

forward See table B.9.

<struts-config> 591

B.1.11 <action-mappings>

The <action-mappings> element describes a set of ActionMapping objects
(org.apache.struts.action.ActionMapping) that are available to process

Table B.9 <forward> attributes

Attribute Default/Description

className (org.apache.struts.action.ActionForward)
The fully qualified Java classname of the ActionForward subclass to use
for this object. If specified, className must be a subclass of the default
object.

contextRelative (false)
Set this to true if, in a modular application, the path attribute starts with a
slash (/) and should be considered relative to the entire web application rather
than the module.

name No default
The unique identifier for this forward. Referenced by the Action object at run-
time to select (by its logical name) the resource that should complete the
request/response.

path No default
The module-relative or context-relative path to the resource that is encapsu-
lated by the logical name of this ActionForward. If the path is to be considered
context-relative when used in a modular application, then the contextRela-
tive attribute should be set to true. This value should begin with a slash (/)
character.

redirect (false)
Set to true if a redirect instruction should be issued to the user agent so that a
new request is issued for this forward’s resource. If true, RequestDis-
patcher.Redirect is called. If false, RequestDispatcher.forward is
called instead.

description Descriptive (paragraph-length) text about the surrounding element, suitable for
use in GUI tools.

display-name A short (one-line) description of the surrounding element, suitable for use in
GUI tools.

icon A small-icon and large-icon element that specifies the location, relative to the
Struts configuration file, for small and large images used to represent the sur-
rounding element in GUI tools.

Nested element

set-property See table B.2.

Since
Struts 1.1

592 APPENDIX B

The struts-config API
requests matching the URL pattern our ActionServlet registered with the con-
tainer. The individual ActionMappings are configured through nested <action>
elements. Table B.10 shows the attribute for the <action-mappings> element.

In Struts 1.0, you must set the default implementation classname with the
actionMapping initialization parameter to the Struts controller servlet.

B.1.12 <action>

The <action> element describes an ActionMapping object that is to be used to
process a request for a specific module-relative URI. Table B.11 shows the
attributes for the <action> element.

Table B.10 <action-mappings> attribute

Attribute Default/Description

type (org.apache.struts.action.ActionMapping)
The fully qualified Java classname to use when instantiating ActionMapping
objects. If specified, the object must be a subclass of the default class type.

Nested element

action See table B.11.

Table B.11 <action> attributes

Attribute Default/Description

attribute (Set to name property)
The name of the request-scope or session-scope attribute that is used to access
our ActionForm bean, if it is other than the bean’s specified name. Optional if name
is specified, otherwise not valid.

className (org.apache.struts.action.ActionMapping)
The fully qualified Java classname of the ActionMapping subclass to use for this
action mapping object. Defaults to the type specified by the enclosing <action-
mappings> element or org.apache.struts.action.ActionMapping if not
specified.

forward No default
The module-relative path of the servlet or other resource that will process this
request, instead of the Action class specified by type. Exactly one of forward,
include, or type must be specified.

include No default
The module-relative path of the servlet or other resource that will process this
request, instead of the Action class specified by type. Exactly one of forward,
include, or type must be specified.

<struts-config> 593
input No default
The module-relative path of the action or other resource to which control should be
returned if a validation error is encountered. Valid only when name is specified.
Required if name is specified and the input bean returns validation errors. Optional
if name is specified and the input bean does not return validation errors.

name No default
The name of the form bean, if any, that is associated with this action mapping.

path No default
The module-relative path of the submitted request, starting with a / character, and
without the filename extension if extension mapping is used. Note: Do not include a
period in your pathname, because it will look like a filename extension and cause
your Action to not be located.

parameter No default
A general-purpose configuration parameter that can be used to pass extra informa-
tion to the Action object selected by this action mapping.

prefix No default
A prefix used to match request parameter names to ActionForm property names, if
any. Optional if name is specified, otherwise not allowed.

roles No default
A comma-delimited list of security role names that are allowed access to this
ActionMapping object.

scope No default
The context (request or session) that is used to access our ActionForm bean, if any.
Optional if name is specified, otherwise not valid.

suffix No default
A suffix used to match request parameter names to ActionForm bean property
names, if any. Optional if name is specified, otherwise not valid.

type No default
The fully qualified Java classname of the Action subclass (org.apache.struts.
action.Action) that will process requests for this action mapping. Not valid if
either the forward or include attribute is specified. Exactly one of forward,
include, or type must be specified.

unknown (false)
Set to true if this object should be configured as the default action mapping for this
module. If a request does not match another object, it will be passed to the Action-
Mapping object with unknown set to true. Only one ActionMapping can be marked
as unknown within a module.

Table B.11 <action> attributes (continued)

Attribute Default/Description

Since
Struts 1.1

594 APPENDIX B

The struts-config API
Any <action> may contain icon, display-name, description, set-property,
exception, or forward elements.

B.1.13 <controller>

The <controller> element describes the ControllerConfig bean (org.apache.
struts.config.ControllerConfig) that encapsulates an application module’s
runtime configuration. The attributes shown in table B.12 are defined.

validate (true)
Set to true if the validate method of the ActionForm bean should be called prior
to calling this action mapping, or set to false if you do not want the validate
method called.

description Descriptive (paragraph-length) text about the surrounding element, suitable for use
in GUI tools.

display-name A short (one-line) description of the surrounding element, suitable for use in GUI
tools.

icon A small-icon and large-icon element that specifies the location, relative to the Struts
configuration file, for small and large images used to represent the surrounding ele-
ment in GUI tools.

Nested elements

set-property See table B.2.

exception See table B.4.

forward See table B.9.

Table B.11 <action> attributes (continued)

Attribute Default/Description

Table B.12 <controller> attributes

Attribute Default/Description

bufferSize (4096)
The size of the input buffer to use when processing file uploads.

className (org.apache.struts.config.ControllerConfig)
The fully qualified Java classname of the ControllerConfig subclass for this con-
troller object. If specified, the object must be a subclass of the default class.

Since
Struts 1.1

<struts-config> 595
contentType (text/html)
The default content type (and optional character encoding) to be set on each
response. May be overridden by the Action, JSP, or other resource to which the
request is forwarded.

debug (0)
The debugging detail level for this module.

forwardPattern (AP)
A replacement pattern defining how the path attribute of a <forward> ele-
ment is mapped to a context-relative URL when it starts with a slash (and when
the contextRelative property is false). This value may consist of any combi-
nation of the following:
$A—Replaced by the app prefix of this module
$P—Replaced by the path attribute of the selected <forward> element
$$—Causes a literal dollar sign to be rendered
$x (where x is any character not defined above)—Silently swallowed, reserved
for future use
If not specified, the default forwardPattern is AP, which is consistent with
the previous behavior of forwards.

inputForward (false)
Set to true if you want the input attribute of <action> elements to be the
name of a local or global ActionForward, which will then be used to calculate
the ultimate URL. Set to false (the default) to treat the input parameter of
<action> elements as a module-relative path to the resource to be used as
the input form.

locale (true)
Set to true if you want a Locale object stored in the user agent’s session if not
already present.

maxFileSize (250M)
The maximum size (in bytes) of a file to be accepted as a file upload. Can be
expressed as a number followed by a K, M, or G, which are interpreted to mean
kilobytes, megabytes, or gigabytes, respectively.

multipartClass (org.apache.struts.upload.DiskMultipartRequestHandler)
The fully qualified Java classname of the multipart request handler class to be
used with this module.

nocache (false)
Set to true if you want Struts to add HTTP headers for defeating caching to
every response from this module.

Table B.12 <controller> attributes (continued)

Attribute Default/Description

Since
Struts 1.1

Since
Struts 1.1

596 APPENDIX B

The struts-config API
B.1.14 <message-resources>

The <message-resources> element describes a MessageResources object with mes-
sage templates for this module. The attributes shown in table B.13 are defined.

pagePattern (AP)
A replacement pattern defining how the page attribute of custom tags using it
is mapped to a context-relative URL of the corresponding resource. This value
may consist of any combination of the following:
$A—Replaced by the app prefix of this module
$P—Replaced by the value of the page attribute
$$—Causes a literal dollar sign to be rendered
$x (where x is any character not defined above)—Silently swallowed, reserved
for future use
If not specified, the default forwardPattern is AP, which is consistent with
the previous behavior of URL evaluation for page attributes.

processorClass (org.apache.struts.action.RequestProcessor)
The fully qualified Java classname of the RequestProcessor class to be used
with this module.

TempDir (Directory provided by servlet container)
The temporary working directory to use when processing file uploads.

Nested element

set-property See table B.2.

Table B.12 <controller> attributes (continued)

Attribute Default/Description

Since
Struts 1.1

Table B.13 <message-resources> attributes

Attribute Description

className (org.apache.struts.config.MessageResourcesConfig)
The configuration bean for this message resources object. If specified, the object
must be a subclass of the default configuration bean.

factory (org.apache.struts.util.PropertyMessageResourcesFactory)
The fully qualified Java classname of the MessageResourcesFactory subclass to
use for this message resources object.

key (org.apache.struts.action.MESSAGE)
The servlet context attribute under which this message resources bundle will be
stored.
The default attribute is the value specified by the string constant at (org.apache.
struts.Action.MESSAGES_KEY). The application module prefix (if any) is
appended to the key (${key}${prefix}). Note that the application module prefix
includes the leading slash, so the default message resource bundle for a module
named foo is stored under org.apache.struts.action.MESSAGE/foo.

<struts-config> 597
B.1.15 <plug-in>

The <plug-in> element specifies the fully qualified classname of a general-
purpose application plug-in module that receives notification of application star-
tup and shutdown events. An instance of the specified class is created for each ele-
ment, and can be configured with nested <set-property> elements. The attribute
shown in table B.14 is supported.

null (true)
Set to true if you want your message resources to return a null string for unknown
message keys, or false to return a message with the bad key value.

parameter A configuration parameter to be passed to the createResources method of our
factory object.

Nested element

set-property See table B.2.

Table B.13 <message-resources> attributes (continued)

Attribute Description

Table B.14 <plug-in> attribute

Attribute Default/Description

className (org.apache.struts.PlugIn)
The fully qualified Java classname of the plug-in class; must implement.

Nested element

set-property See table B.2.

CTaglib quick referenc
e

Each of the Struts taglibs is very well documented, and the distribution pro-
vides both a Developer’s Guide and complete technical documentation.
However, it does not provide an overview of the tag names, properties, and
descriptions all in one place. This appendix fills that gap, and can be useful
when you are looking for a particular tag or just want to check for the name
of a known property. For more about the Struts taglibs, see chapter 10.

 Table C.1 shows the bean taglib, table C.2 the html taglib, table C.3 the
logic taglib, table C.4 the template taglib, and table C.5 the tiles taglib quick
reference.
599

600 APPENDIX C

Taglib quick reference

Table C.1 Bean taglib quick reference

Tag name Properties Description

cookie id, name, multiple, value Defines a scripting variable based on the value(s) of
the specified request cookie

define id, name, property, scope, toScope,
type, value

Defines a scripting variable based on the value(s) of
the specified bean property

header id, name, multiple, value Defines a scripting variable based on the value(s) of
the specified request header

include anchor, forward, href, id, name,
page, transaction

Loads the response from a dynamic application
request and makes it available as a bean

message arg0, arg1, arg2, arg3, arg4, bun-
dle, key, locale, name, property,
scope

Renders an internationalized message string to the
response

page id, property Exposes a specified item from the page context as
a bean

parameter id, name, value, multiple Defines a scripting variable based on the value(s) of
the specified request parameter

resource id, input, name Loads a web application resource and makes it
available as a bean

size collection, id, name, property,
scope

Defines a bean containing the number of elements
in a Collection or Map

struts id, form, forward, mapping Exposes a named Struts internal configuration
object as a bean

write bundle, filter, format, formatKey,
ignore, locale, name, property,
scope

Renders the value of the specified bean property to
the current JspWriter

Table C.2 Html taglib quick reference

Tag name Properties Description

Img access, align, alt, altKey, border, bundle, height,
hspace, imageName, ismap, locale, lowsrc, name,
on*, paramId, page, pageKey, paramName,
paramProperty, paramScope, property, scope, src,
srcKey, style, styleClass, styleId, usemap,
vspace, width

Renders an HTML img tag

601
link accesskey, anchor, forward, href, indexed,
indexId, linkName, name, on*, page, paramId,
paramName, paramProperty, paramScope, prop-
erty, scope, style, scope, style, styleClass,
styleId, tabindex, target, title, transaction

Renders an HTML anchor or
hyperlink

Javascript-
Validator

DynamicJavascript, formName, method, page, src,
staticJavascript

Renders JavaScript validation
based on the validation rules
loaded by the ValidatorPlugIn

messages id, bundle, locale, name, property, header, footer,
message

Conditionally displays a set of
accumulated messages

multibox accesskey, disabled, name, on*a, property, style,
styleClass, styleId, tabIndex, value

Renders a checkbox input field

option bundle, disabled, key, locale, style, styleClass,
value

Renders a select option

options collection, labelName, labelProperty, name,
property, style, styleClass

Renders a collection of select
options

password accessKey, disabled, indexed, maxlength, name,
on*, property, readonly, redisplay, style,
styleClass, styleId, size, tabindex, value

Renders a password input field

radio accesskey, disabled, name, on*, property, style,
styleClass, styleId, tabIndex, value

Renders a radio button input
field

reset accesskey, disabled, name, on*, property, style,
styleClass, styleId, tabIndex, value

Renders a reset button input
field

rewrite anchor, forward, href, name, page, paramId,
paramName, paramProperty, paramScope, property,
scope, transaction

Renders a URI

select accesskey, disabled, name, on*, property, style,
styleClass, styleId, tabIndex, value

Renders a select element

submit accesskey, disabled, name, on*, property, style,
styleClass, styleId, tabIndex, value

Renders a Submit button

text accesskey, disabled, name, on*, property,
readonly, style, styleClass, styleId, tabIndex,
value

Renders an input field of type
text

textarea accesskey, disabled, name, on*, property,
readonly, style, styleClass, styleId, tabIndex,
value

Renders a text area

a. on*—Indicates that the tag includes the JavaScript event properties: onblur, onchange, onclick,

ondblclick, onfocus, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout,

onmouseover, onmouseup

Table C.2 Html taglib quick reference (continued)

Tag name Properties Description

602 APPENDIX C

Taglib quick reference
Table C.3 Logic taglib quick reference

Tag name Properties Description

empty name, property, scope Evaluates the nested body content of this tag
if the requested variable is either null or an
empty string

equal cookie, header, name, parameter,
property, scope, value

Evaluates the nested body content of this tag
if the requested variable is equal to the speci-
fied value

forward Name Forwards control to the page specified by the
specified ActionForward entry

greaterEqual cookie, header, name, parameter,
property, scope, value

Evaluates the nested body content of this tag
if the requested variable is greater than or
equal to the specified value

greaterThan cookie, header, name, parameter,
property, scope, value

Evaluates the nested body content of this tag
if the requested variable is greater than the
specified value

iterate collection, id, indexId, length,
name, offset, property, scope,
type

Repeats the nested body content of this tag
over a specified collection

lessEqual cookie, header, name, parameter,
property, scope, value

Evaluates the nested body content of this tag
if the requested variable is greater than or
equal to the specified value

lessThan cookie, header, name, parameter,
property, scope, value

Evaluates the nested body content of this tag
if the requested variable is less than the spec-
ified value

match cookie, header, location, name,
parameter, property, scope, value

Evaluates the nested body content of this tag
if the specified value is an appropriate sub-
string of the requested variable

messagesNotPres
ent

name, property, message Generates the nested body content of this tag
if the specified message is not present in this
request

messagesPresent name, property, message Generates the nested body content of this tag
if the specified message is present in this
request

notEmpty name, property, scope Evaluates the nested body content of this tag
if the requested variable is neither null nor an
empty string

notEqual cookie, header, name, parameter,
property, scope, value

Evaluates the nested body content of this tag
if the requested variable is not equal to the
specified value

603
notMatch cookie, header, location, name,
parameter, property, scope,
value

Evaluates the nested body content of this tag
if the specified value is not an appropriate sub-
string of the requested variable

notPresent cookie, header, name, parameter,
property, role, scope, value

Generates the nested body content of this tag
if the specified value is not present in this
request

present cookie, header, name, parameter,
property, role, scope, value

Generates the nested body content of this tag
if the specified value is present in this request

redirect anchor, forward, href, name,
page, paramId, paramName,
paramProperty, paramScope,
property, scope, transaction

Renders an HTTP Redirect

Table C.4 Template taglib quick reference

Tag name Properties Description

insert name Inserts (includes, actually) a template. Tem-
plates are JSPs that include parameterized
content. That content comes from put tags
that are children of insert tags.

put template, role, name, content,
direct

Puts content into request scope.

get flush, name, role Gets the content from request scope that was
put there by a put tag.

Table C.5 Tiles taglib quick reference

Tag name Properties Description

Add beanName, beanProperty,
beanScope, content, direct,
role, type, value

Adds an element to the surrounding list. Equiv-
alent to put, but for a list element.

Definition extends, id, page, role, scope,
template

Creates a tile/component /template definition
bean.

Get flush, ignore, name, role Gets the content from request scope that was
put there by a put tag.

GetAsString ignore, name, role Renders the value of the specified tile/compo-
nent/template attribute to the current Jsp-
Writer.

Table C.3 Logic taglib quick reference (continued)

Tag name Properties Description

604 APPENDIX C

Taglib quick reference
Import-
Attribute

ignore, name, role Imports the tile’s attribute in the specified
context.

InitComponent-
Definitions

classname, file Initializes the tile/component definitions fac-
tory.

Insert attribute, beanName,
beanProperty, beanScope,
component, controllerclass,
controllerUrl, definition,
flush, ignore, name, page, role,
template

Inserts a tile/component/template.

Put beanName, beanProperty,
beanScope, content, direct,
name, role, type, value

Puts an attribute into tile/component/tem-
plate context.

PutList name Declares a list that will be passed as an
attribute to a tile.

UseAttribute classname, id, ignore, name,
scope

Uses the attribute value inside the page.

Table C.5 Tiles taglib quick reference (continued)

Tag name Properties Description

glossary
abstract. A Java class, or method, that has not been implemented. Con-
crete classes are said to implement abstract classes.

accessor. A JavaBean method used to expose a JavaBean property. See
JavaBean.

adaptor. A Java class used as a proxy between two classes.

Apache Software Foundation. A membership-based, nonprofit corporation
existing to provide organizational, legal, and financial support for the
Apache open source software projects.

API contract. A popular way to view a method’s signature: as a contract
between the method and its caller.

application context. An area of memory used to store objects. The applica-
tion context is visible to all servlets contained within a web application.

application framework. A specialized framework used to provide an appli-
cation infrastructure to build applications. See framework.

application programming interface (API). A set of methods, or functions,
used to interface between software components.

Artimus. A news poster application that serves as an example to demon-
strate the deployment of an enterprise-grade, best practices application
using Struts, Tiles, and the Validator.
605

606 GLOSSARY
blackbox framework. See frameworks, blackbox.

business layer. See business tier.

business logic. Programming logic used to achieve business functionality. See
business object.

business object. An object that encapsulates business logic. See business logic.

business tier. An architecture layer representing business logic.

Cascading Style Sheets (CSS). Programming logic used by the browser to build
presentation features, such as color and fonts.

ChainedException. A Java class extending java.lang.Exception. A chained
exception maintains a list of all thrown exceptions.

chrome. Visually appealing application features.

client tier. An architecture layer representing clients interacting with the
application.

Cocoon. An XML publishing framework from Apache that is based on pipelined
SAX processing.

cohesion. A term used to describe a strong relationship between the responsibil-
ities and functionality of an object.

Common Gateway Interface (CGI). The first widely used standard for producing
dynamic content. CGI uses standard operating system features to create a bridge
between the web server and other applications on the host machine.

connection pool. A set of cached resource connections.

container. See servlet container.

context. See application context, session context, and request context.

Controller. A software component, such as a servlet, that acts as an initial point of
contact for requests. The Controller provides common services such as authoriza-
tion, error management, and invocation of business logic navigational flow.

convert. See data conversion.

cookies. Files written by the web browser on the client machine to maintain per-
sistence information between requests.

coupling. A dependency between objects, components, systems, or devices.

CRUD. An acronym used to describe Create Read Update Delete operations.

GLOSSARY 607
data conversion. The process of moving data from one type to another, such as
from a String to an Integer.

data transformation. The process of changing the internal format of a data, such
as removing unwanted punctuation from a String.

decorator pattern. A pattern that attaches additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to subclassing for extending
functionality [Go4].

decoupling. A lack of dependency between objects, components, systems, or
devices.

deployment descriptor. A file containing configuration information.

descriptor objects. Objects containing configuration information.

design pattern. A description of solutions, strategies, and consequences, intended
to be used repeatedly to solve problems. Design patterns are used as a communica-
tion tool among architects, designers, and developers.

Digester. A set of Java classes designed to trigger actions when specified XML
node patterns are recognized during XML document parsing. The Digester is
commonly used to create Java object representations of configuration informa-
tion based on XML input. See deployment descriptor and descriptor objects.

DynaBean. Specialized subclass of ActionForm that allows the creation of form
beans with dynamic sets of properties, without requiring the developer to create a
Java class for each type of form bean.

EAR. A platform-independent file format used to combine a set of WAR files into
a single file. EAR files are used to deploy combined servlet and EJB applications.

encapsulation. A term used to describe the concealment of details between
objects.

Enterprise JavaBeans (EJB). J2EE components used to provide remote access to
reusable logic.

entries. Key-value pairs contained within Properties files.

Extensible Markup Language (XML). A set of markup tags used to provide
meaning to content. XML is a subset of the Standard Generalized Markup Lan-
guage (SGML).

608 GLOSSARY
Extensible Stylesheet Language (XSL). A language for expressing style sheets. It
consists of XSTL, XPath, and XSL formatting objects. See XSLT, XML Path Lan-
guage, and XSL formatting objects.

extension point. Specific locations in a framework used to customize or override
behavior. See also framework.

factory. A pattern used to create objects. See design pattern.

five-tier model. A depiction of architectural layering. Under the five-tier model,
an architecture is separated according to areas of responsibility: client, presenta-
tion, business, integration, and resource. See client tier, presentation tier, business tier,
integration tier, and resource tier.

framework. A reusable, semi-complete application that can be specialized to pro-
duce custom applications [Johnson]. Frameworks have well-defined interfaces
that trigger event-handling logic.

frameworks, blackbox. Frameworks that tend to define interfaces for pluggable
components and then provide base starter components based on those interfaces.
The interface and base components will often provide hotspot methods that can
be used as is or overridden to provide special behavior. [Johnson] See also exten-
sion point.

frameworks, whitebox. Frameworks that rely heavily on object-oriented language
features such as inheritance and dynamic binding. [Johnson]

handshaking. The agreed-upon interaction between two objects, components,
systems, or devices.

hotspot. See extension point.

i18n. An acronym for internationalization. The acronym is derived from the
observation that there are 18 characters between the first and last characters in
the word internationalization. See internationalization.

immutable. A term used to indication that an object or property cannot be
changed. Contrast mutable.

integration layer. See integration tier.

integration tier. An architecture layer representing logic responsible for interac-
tion with the resource tier. See resource tier.

internationalization. The application design activity that permits an application
to respond to the needs of multiple languages and regions.

GLOSSARY 609
introspection. The process of identifying which JavaBean properties are available
on an object. Introspection is a specialized form of reflection. Java makes this ser-
vice available through a set of classes in the java.bean package.

Inversion of Control. A design pattern where objects register with a framework as
a handler for an event.

J2EE (Java 2 Enterprise Edition). A suite of tools, runtime environments, and
APIs designed to provide a foundation for enterprise computer systems.

J2EE blueprints. A set of guidelines, patterns, and code provided by Sun Micro-
systems Inc. to illustrate best practices on the Java platform.

JAR (Java Archive). A platform-independent file format used to combine multi-
ple files into a single file.

Jasper. The component within the Tomcat application server responsible for
generating servlets from JavaServer Pages.

Java 2 Platform, Standard Edition (J2SE). A suite of tools, runtime environments,
and APIs used to create applications in Java.

Java Database Connectivity (JDBC). A Java API used to access ODBC-compliant
databases.

Java Internationalization Toolkit. A toolkit for rapid Java applications internation-
alization and localization development.

Java Naming Directory Interface (JNDI). A standard extension to the Java plat-
form, providing Java-enabled applications with a unified interface to multiple
naming and directory services in the enterprise.

Java Virtual Machine (JVM). Software used to execute the byte code created by
the Java compiler.

JavaBean. A Java class conforming to well-known conventions permitting other
Java classes to use the Java Reflection API as a facility for discovery and interaction.

JavaServer Pages Standard Tag Library (JSTL). A library of JSP tags that provide
functionality common to many JSP applications.

Jetspeed. An open source Java and XML implementation of an enterprise infor-
mation portal. Jetspeed makes network resources, such as applications and data-
bases, available to end users via a web browser, Wireless Access Protocol (WAP)
phone, pager, or any other device.

610 GLOSSARY
jsessionid. An HTTP parameter containing a unique number used to identify
the user’s session.

Lightweight Directory Access Protocol (LDAP). A protocol used to access directory
services.

Locale. A standard Java object representing a specific geographical, political, or
cultural region.

locale-sensitive. A term used to describe components with the ability to alter their
behavior by locality. See Locale.

localization. An application design activity that permits an application to
respond to the needs of multiple locales. See Locale.

markup. The collection of commands placed in a file to provide formatting
instructions rather than visible text or content. HTML uses a tag-based markup
system.

message protocol. A technique based on reflection that allows objects to share
information by observing a common naming convention in lieu of sharing a com-
mon hierarchy.

modal. A user-interface element that claims all the user input for an application.
Other elements of the application cannot be accessed until the element is dis-
missed.

Model. An architectural concept representing the data container. The Model is
the gateway between the data repository and the Controller and View. JavaBeans
are commonly, but not exclusively, used to represent the Model in Struts.

Model-View-Controller (MVC). A term used to describe an architecture that sepa-
rates the Model, View, and Controller. See Model, View, and Controller.

multithreaded. A term used to describe Java objects designed to be used as
threads. See thread.

mutable. A term used to indicate that an object, or property, can be changed.
Contrast immutable.

nonmodal. The opposite of modal. See modal.

nonmutable. See immutable.

Observer pattern. A design pattern in which one object is notified when another
object’s state changes.

GLOSSARY 611
overload. A term used to describe methods or constructors with the same name
but a different set of parameters.

performant. A French word meaning efficient. Software engineers often use the
word performant to describe a process or device that performs well.

pluggable. An object-oriented design strategy that allows objects to be developed
independently of an application and then incorporated without changing the
base code. Pluggable components are often created by a third party.

Poolman. An open source tool providing a means of pooling and caching Java
objects, SQL queries, and results across multiple databases.

presentation layer. See presentation tier.

presentation tier. An architecture layer representing presentation logic. Struts
resides in the presentation tier.

Properties file. A simple text file used to record key-values pairs. See entries.

Protected Variation. A design principle that encourages the encapsulation of the
predicted points of change.

redirect. A term used to describe a message sent to a browser to initiate a request
to another URL.

refactoring. The process of modifying software so that it does not change its
interface. See encapsulation.

reflection. The process of determining what member fields and methods are
available on an object. Java makes this service available through a set of classes in
the java.lang.reflect package.

regular expression. Syntax used to discover string patterns.

request context. An area of memory used to store objects. The request context is
visible to all objects having access to an execution thread of the servlet request.

Resin. An application server that is an alternative to Tomcat.

resource bundle. A locale-sensitive Properties file. See locale-sensitive and Properties file.

resource layer. See resource tier.

resource tier. An architecture layer representing resource assets, such as data-
bases and legacy systems. See five-tier model.

Rich Site Summary (RSS). An XML format designed for sharing headlines and
other web content.

612 GLOSSARY
servlet. Java programs executing within a servlet container.

servlet container. An environment within an application server responsible for
managing the servlet life cycle. See servlet.

session context. An area of memory used to store objects. The session context is
visible to all objects having visibility to a user’s session.

static content. Content on the web that comes directly from text or data files,
such as HTML or JPEG files. These files might be changed from time to time, but
they are not altered automatically when requested by a web browser. Dynamic
content, on the other hand, is generated on the fly, typically in response to an
individualized request from a browser.

synchronizer token. A pattern used to protect the application against duplicate
requests.

Tag Library Descriptor (TLD). An XML file used to associate JSP tag extensions
with the Java classes that implement them.

thread. A programming feature that allows multiple blocks of code to be exe-
cuted concurrently within the same instance of an object.

thread-safe. A programming technique employing programming language fea-
tures to control access to resources available to threads. See thread.

Tiles. A Java-based template engine designed to work with or without Struts.

Tomcat. An open source Apache application server used as the official Refer-
ence Implementation for Java Servlet and JavaServer Pages technologies.

transaction. An atomic unit of work.

transfer object. An object that efficiently commutes fine-grained data by sending
a coarse-grained view of the data. Often treated as synonymous to value object.
See value object.

Turbine. A servlet-based application framework. An alternative to Struts. See
application framework.

Unicode. A universal character-encoding scheme defining a numerical mapping
for every character irrespective of platform or programming language.

Uniform Resource Identifier (URI). A string identifying a resource on the Internet
or other computer network. A resource could be a document, image, download-
able file, electronic mailbox, and so forth.

GLOSSARY 613
URL rewriting. A strategy for achieving session tracking by appending session
information to the URL.

value object. An object that efficiently commutes fine-grained data by sending a
coarse-grained view of the data. Value objects and transfer objects are sometimes
considered to be synonymous, but purists make a distinction between the two
terms. A purist definition of value object limits the definition to granular objects
such as dates or money. Transfer objects are an aggregation of value objects. See
transfer object.

Velocity. A Java-based template engine.

View. Represents the application from the user perspective. JSPs and HTML
pages are considered components of the View.

virtual resource. A resource that does not map to a file but is processed by a pro-
gramming component.

Web Archive (WAR). A platform-independent file format used to combine a set
of servlet application files into a single file. WAR files are used to deploy servlet
applications. See servlet.

XML. See Extensible Markup Language (XML).

XML Path Language (XPath). An expression language used by XSLT to access, or
refer to, parts of an XML document.

XPath. See XML Path Language (XPath).

XSL. See Extensible Stylesheet Language (XSL).

XSL formatting objects. An XML vocabulary for specifying formatting semantics.

XSLT. A language for transforming XML documents into other XML documents.

references
 [Adalon] Synthis Corporation, Synthis Adalon, http://www.synthis.com/

products/adalon/overview.jsp.

 [Ambler] Ambler, Scott W., “Mapping Objects to Relational Databases,”
http://www.ambysoft.com/mappingObjects.pdf, and “The Design of a
Robust Persistence Layer for Relational Databases,” http://www.
ambysoft.com/persistenceLayer.pdf.

 [ASF, Ant] Apache Software Foundation, Apache Ant, Java-based build tool,
http://jakarta.apache.org/ant/index.html.

 [ASF, AppDev] Apache Software Foundation, “Developing Applications with
Tomcat,” http://jakarta.apache.org/tomcat/tomcat-3.2-doc/appdev.

 [ASF, Artimus] Apache Software Foundation, Artimus example application,
http://sourceforge.net/projects/struts.

 [ASF, Cocoon] Apache Software Foundation, Apache Cocoon XML publish-
ing framework, http://xml.apache.org/cocoon/.

 [ASF, Commons] Apache Software Foundation, Jakarta Commons Reposi-
tory, http://jakarta.apache.org/commons.

 [ASF, CTLX] Apache Software Foundation, Custom Tag Library Extension
for Dreamweaver UltraDev, http://jakarta.apache.org/taglibs/doc/
ultradev4-doc/.
614

REFERENCES 615
 [ASF, ECS] Apache Software Foundation, Jakarta Element Construction Set,
http://jakarta.apache.org/ecs.

 [ASF, Jetspeed] Apache Software Foundation, Jetspeed Enterprise Information
Portal, http://jakarta.apache.org/jetspeed/site/.

 [ASF, License] Apache Software Foundation, Apache Software License, http://
apache.org/LICENSE.

 [ASF, Lucene] Apache Software Foundation, Jakarta Lucene Text Search Engine,
http://jakarta.apache.org/lucene.

 [ASF, OBJ] Apache Software Foundation, ObjectRelationalBridge, http://
jakarta.apache.org/ojb/.

 [ASF, Regexp] Apache Software Foundation, Jakarta Regexp, http://
jakarta.apache.org/regexp/.

 [ASF, Scaffold] Apache Software Foundation, Scaffold package, http://
jakarta.apache.org/commons.

 [ASF, Struts] Apache Software Foundation, Jakarta Struts Framework 1.0, http://
jakarta.apache.org/struts.

 [ASF, Taglibs] Apache Software Foundation, Jakarta Taglibs Repository, http://
jakarta.apache.org/taglibs.

 [ASF, Tiles] The Tiles Document Assembly Framework, http://jakarta.apache.
org/struts/userGuide/dev_tiles.html.

 [ASF, Tomcat] Apache Software Foundation, Tomcat, http://jakarta.apache.org/
tomcat.

 [ASF, Torque] Apache Software Foundation, Torque, http://jakarta.apache.org/
turbine/torque.

 [ASF, Turbine] Apache Software Foundation, Turbine, http://jakarta.apache.org/
turbine.

 [ASF, Validator] Apache Software Foundation, Jakarta Commons Validator, http://
jakarta.apache.org/commons/.

 [ASF, Velocity] Apache Software Foundation, Velocity Template Engine, http://
jakarta.apache.org/velocity/.

 [Bayern] Bayern, Shawn, JSTL in Action (Greenwich, CT: Manning Publications,
2002; ISBN: 193011052), http://www.manning.com/bayern/index.html.

616 REFERENCES
 [Braga, et al] Braga, Christiano de O. , Marcus Felipe M.C. da Fontoura, Edward H.
Hoeusler, and Carlos Jose P. de Lucena, “Formalized OO Frameworks and
Framework Instantiation,” (1998), http://www.almaden.ibm.com/cs/people/
fontoura/papers/wmf98.pdf.

 [Camino] Scioworks Pte Ltd, Scioworks Camino, Visual Modeling Tool for Struts
Applications, http://www.scioworks.com/scioworks_camino.html.

 [Castor] Castor, Castor open source data binding framework for Java, http://
castor.exolab.org/.

 [CKNOW] Computer Knowledge, http://www.cknow.com/ckinfo/acro_a/
api_1.shtml.

 [Cockburn] Cockburn, Alistair, “Characterizing People as Non-Linear, First-
Order Components in Software Development,” http://alistair.cockburn.us/.

 [Console] Holmes, James, “Struts Console,” http://www.jamesholmes.com/
struts/.

 [Date] Date, Chris J., and Hugh Darwen (contributor), A Guide to the SQL Stan-
dard (Boston: Addison-Wesley, 1997; ISBN: 0201964260).

 [dbForms] dbForms, http://dbforms.org/.

 [Dragan] Dragan, Richard V., “Enterprise JavaBeans (EJB) Best Practices,” http://
www.extremetech.com/print_article/0,3428,a=11791,00.asp.

 [Earles] Earles, John, “Frameworks! Make Room for Another Silver Bullet,” http://
www.cbd-hq.com/PDFs/cbdhq_000301je_frameworks.pdf.

 [EJS] Vermeulen, Allan, Scott W. Ambler, Greg Bumgardner, Eldon Metz, Trevor
Misfeldt, Jim Shur, and Patrick Thompson, The Elements of Java Style (Cam-
bridge: Cambridge University Press, 2000; ISBN: 0521777682).

 [Expresso] JCorporate, Expresso Web Application Development Framework,
http://jcorporate.com/.

 [Fayad] Mohamed Fayad and Douglas C. Schmidt, “Object-Oriented Application
Frameworks.” Communications of the ACM, Special Issue on Object-Oriented
Application Frameworks, Vol. 40, No. 10, October 1997, http://www.cs.wustl.
edu/~schmidt/CACM-frameworks.html.

 [Fields] Fields, Duane K., Mark A. Kolb, Shawn Bayern, Web Development with Java-
Server Pages, 2nd Edition (Greenwich, CT: Manning Publications, 2001; ISBN:
193011012X), http://www.manning.com/fields2.

 [Foote] Foote, Brian and Joseph Yoder, “Big Ball of Mud Programming,” http://
devcentre.org/mud/mudmain.htm.

REFERENCES 617
 [Fowler] Fowler, Martin, Refactoring: Improving the Design of Existing Code (Boston:
Addison-Wesley, 1999; ISBN: 0201485672).

 [Gabrick] Gabrick, Kurt A. and David B. Weiss, J2EE and XML Development (Green-
wich, CT: Manning Publications, 2002; ISBN: 1930110308), http://www.man-
ning.com/gabrick.

 [Go3] Alur, Deepak, John Crupi, Dan Malks, Core J2EE Patterns (Upper Saddle
River, NJ: Prentice Hall PTR, 2001; ISBN: 0130648841).

 [Go4] Gamma, Erich , Richard Helm, John Vlissides, Ralph Johnson, Design Pat-
terns: Elements of Reusable Object-Oriented Software (Boston: Addison-Wesley,
1995; ISBN: 0201633612).

 [Goetz] Goetz, Brian “Exceptional Practices,” http://www.javaworld.com/
javaworld/jw-08-2001/jw-0803-exceptions.html.

 [Gosling, JLE] Gosling, James and Henry McGilton, “The Java Language Environ-
ment—A White Paper,” http://java.sun.com/docs/white/langenv/
index.html.

 [Hatcher] Hatcher, Erik, and Steve Loughran, Java Development with Ant (Green-
wich, CT: Manning Publications, 2002; ISBN 1930110588), http://www.man-
ning.com/hatcher/.

 [Husted] Husted, Ted, Cedric Dumoulin, George Franciscus, and David Winter-
feldt, Struts in Action (Greenwich, CT: Manning Publications, 2002; ISBN
1930110502), http://www.manning.com/husted/.

 [Improve] Improve, Struts Layout Taglib, http://struts.application-servers.com/.

 [IS0-3166, ISO-639] ISO 3166 Codes (Countries) http://www.chemie.fu-
berlin.de/diverse/doc/ISO_3166.html and code for the representation of
names of languages, http://www.ics.uci.edu/pub/ietf/http/related/
iso639.txt.

 [ISO 8859-1] ISO, ISO 8859-1 character set overview, http://www.htmlhelp.com/
reference/charset/.

 [Jack] Anonymous, “The House That Jack Built,” http://www.enchantedlearn-
ing.com/Jackshouse.html.

 [jEdit] Pestov, Slava, et al., jEdit open source programmer’s text editor, http://
jedit.sourceforge.net/.

 [Jikes] IBM, Jikes Java bytecode compiler, http://oss.software.ibm.com/develop-
erworks/opensource/jikes/.

618 REFERENCES
 [Johnson] Johnson, Ralph, and Brian Foote, “Designing Reusable Classes,” Jour-
nal of Object-Oriented Programming. SIGS, 1, 5 (June/July 1988), 22–35, http://
www.laputan.org/drc/drc.html.

 [JRF] is.com, JRelationalFramework, http://jrf.sourceforge.net/.

 [JUnit] JUnit, http://junit.org/.

 [Kovitz] Kovitz, Benjamin L., Practical Software Requirements (Greenwich, CT: Man-
ning Publications, 1998; ISBN 1884777597), http://www.manning.com/
Kovitz/.

 [Larman] Larman, Craig, Applying UML and Patterns, An Introduction to Object-
Oriented Analysis and Design and the Unified Process (Upper Saddle River, NJ:
Prentice Hall PTR, 2001; ISBN 0130925691).

 [Linday] Linday, James, “The Software Process,” http://bmrc.berkeley.edu/
courseware/ba293/spring01/lectures/process/.

 [Macromedia] Macromedia, Inc., http://www.macromedia.com/.

 [Martin] Martin, Robert C., Designing Object-Oriented C++ Applications Using the
Booch Method (Englewood Cliffs, NJ: Prentice Hall, 1995; ISBN 0132038374).

 [McConnell] McConnell, Steve, Code Complete (Redmond, WA: Microsoft Press,
1993; ISBN: 1556154844).

 [Netscape] Netscape Communications Corporation, JavaScript Reference, http://
developer.netscape.com/tech/javascript/.

 [ObjectAssembler] ObjectVenture Corporation, ObjectAssembler, http://
www.objectventure.com/products/objectassembler.html.

 [Objectwave] Objectwave Corporation, X2J: Code Generator for Struts, http://
www.objectwave.com/html/tools/tool1_3.htm.

 [Ooram] Reenskaug, Trygve, P. Wold, and O. A. Lehne, Working with Objects: The
Ooram Software Engineering Method (Englewood Cliffs, NJ: Prentice Hall, 1995;
ISBN: 0134529308).

 [Osage] Osage Persistence Plus XML, http://osage.sourceforge.net/.

 [POSA] Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal, A System of Patterns: Pattern-Oriented Software Architecture
(New York: John Wiley & Sons, 1996; ISBN: 0471958697).

 [Ramaiah] Ramaiah, Ravindran, Struts Code Generator, http://husted.com/
struts/resources/codemaker.htm.

 [Ramsay] Ramsay, Stephen, “Using Regular Expressions,” http://etext.lib.
virginia.edu/helpsheets/regex.html.

REFERENCES 619
 [Resin] Caucho Technology, Resin Java Web Server, http://www.caucho.com/.

 [Rodrigues] Rodrigues, Lawrence H., The Awesome Power of JavaBeans (Greenwich,
CT: Manning Publications, 1998; ISBN: 1884777562), http://www.man-
ning.com/Rodrigues/.

 [Roman] Roman, Ed, Scott W. Ambler, Tyler Jewell, and Floyd Marinescu, Master-
ing Enterprise JavaBeans (New York: John Wiley & Sons, 2001; ISBN:
0471417114).

 [Schmidt] Schmidt, Douglas C., “Applying Design Patterns and Frameworks to
Develop Object-Oriented Communication Software,” Handbook of Program-
ming Languages, Volume I, edited by Peter Salus (Indianapolis: Macmillan
Computer Publishing, 1997).

 [Shachor] Shachor, Gal, Adam Chace, and Magnus Rydin, JSP Tag Libraries
(Greenwich, CT: Manning Publications, 2001; ISBN: 193011009X), http://
www.manning.com/shachor/.

 [Simper] Field-Elliot, Bryan, “Simple Persistence in Java,” http://source-
forge.net/projects/simper/.

 [Sun, Blueprints] J2EE Blueprints, http://java.sun.com/j2ee/blueprints/.

 [Sun, Business Logic] Sun Microsystems, J2EE Blueprints, Section 5.2, http://
java.sun.com/blueprints/guidelines/designing_enterprise_applications/
ejb_tier/business_logic/index.html.

 [Sun, Data Access Objects] Sun Microsystems, J2EE Blueprints, http://
java.sun.com/blueprints/patterns/DAO.html.

 [Sun, DAO Factories] Sun Microsystems, J2EE Blueprints, http://java.sun.com/
blueprints/corej2eepatterns/Patterns/DataAccessObject.html.

 [Sun, i18n] Sun Microsystems, Sun Java Tutorial, Internationalization Trail, http://
java.sun.com/docs/books/tutorial/i18n/.

 [Sun, J2EE] Sun Microsystems, “Designing Enterprise Applications with the J2EE
Platform,” http://java.sun.com/blueprints/guidelines/designing_enter-
prise_applications.

 [Sun, JAAS] Java Authentification and Authorization Service, http://java.sun.
com/products/jaas/.

 [Sun, Java] Sun Microsystems, Java Technology, http://java.sun.com/.

 [Sun, JavaBeans] Sun Microsystems, JavaBean Trail, http://java.sun.com/docs/
books/tutorial/javabeans.

620 REFERENCES
 [Sun, JBS] Sun Microsystems, JavaBean Specification, http://java.sun.com/prod-
ucts/javabeans/docs/spec.html.

 [Sun, JDBC] Sun Microsystems, The Java Tutorial—Trail: JDBC, http://
java.sun.com/docs/books/tutorial/jdbc.

 [Sun, JDK] Sun Microsystems, the Java Developers Kit, http://java.sun.com/j2se/.

 [Sun, JILKIT] Sun Microsystems, Java Internationalization and Localization Tool-
kit 2.0, http://java.sun.com/products/jilkit/.

 [Sun, JSF] Sun Microsystems, JavaServer Faces, http://jcp.org/jsr/detail/127.jsp.

 [Sun, JSP] Sun Microsystems, JavaServer Pages Technology, http://java.sun.com/
products/jsp.

 [Sun, JST] Sun Microsystems, Java Servlet Technology, http://java.sun.com/prod-
ucts/servlet/.

 [Sun, JSTL] Sun Microsystems, JSP Standard Tag Library, http://jakarta.apache.
org/taglibs/doc/standard-doc/intro.html.

 [Sun, JTL] Sun Microsystems, JSP Tag Library Technology page, http://
java.sun.com/products/jsp/taglibraries.html.

 [Sun, N2AC] Sun Microsystems, Native-to-ASCII Converter, http://java.sun.com/
j2se/1.4/docs/tooldocs/win32/native2ascii.html.

 [Sun, MVC] Sun Microsystems, J2EE Patterns, http://swjscmail1.java.sun.com/
cgi-bin/wa?A2=ind0106&L=j2eepatterns-interest&D=0&P=2671.

 [Sun, Properties] Sun Microsystems, the Java Tutorial, http://java.sun.com/docs/
books/tutorial/essential/attributes/properties.html.

 [Sun, Servlets] Sun Microsystems, the Java Tutorial—Trail: Servlets, http://
java.sun.com/docs/books/tutorial/servlets.

 [Sun, TagExt] Sun Microsystems, “Classes and Interfaces for the Definition of
JavaServer Pages Tag Libraries,” http://java.sun.com/j2ee/sdk_1.3/
techdocs/api/javax/servlet/jsp/tagext/package-summary.html.

 [Sun, Trails] Sun Microsystems, Java Tutorial, http://java.sun.com/docs/books/
tutorial/.

 [W3C, CSS] W3C, Cascading Style Sheets, http://www.w3.org/Style/CSS/.

 [W3C, HTML] W3C, Hypertext Markup Language, http://www.w3.org/MarkUp/.

 [W3C, HTML4] W3C, Hypertext Markup Language, http://www.w3.org/TR/
html401/.

 [W3C, URI] W3C, Uniform Resource Identifiers (URI): Generic Syntax, http://
www.ietf.org/rfc/rfc2396.txt.

REFERENCES 621
 [W3C, URL] W3C, Uniform Resource Locator (URL): Generic Syntax, http://
www.ietf.org/rfc/rfc2396.txt.

 [W3C, XML] W3C, Extensible Markup Language, http://www.w3.org/XML/.

 [Williamson] Williamson, Alan R., Java Servlets by Example (Greenwich, CT: Man-
ning Publications, 1999; ISBN: 188477766X), http://www.manning.com/
Williamson/.

 [XDoclet] Schaefer, Andreas, Ara Abrahamian, Aslak Hellesoy, Dmitri Cole-
batch, Rickard Oberg, Vincent Harcq, et al, Extended Javadoc Doclet
Engine, http://xdoclet.sourceforge.net/.

Regarding material attributed to the W3C

Public documents on the W3C site are provided by the copyright holders under
the following license. The software or Document Type Definitions (DTDs) associ-
ated with W3C specifications are governed by the Software Notice. By using and/
or copying this document, or the W3C document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply
with the following terms and conditions:

 Permission to use, copy, and distribute the contents of this document, or the
W3C document from which this statement is linked, in any medium for any pur-
pose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the document, or portions thereof, that you use:

1 A link or URL to the original W3C document.

2 The pre-existing copyright notice of the original author, or if it doesn't
exist, a notice of the form: “Copyright © [$date-of-document] World Wide
Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio Univer-
sity). All Rights Reserved. http://www.w3.org/Consortium/Legal/”
(Hypertext is preferred, but a textual representation is permitted.)

3 If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided.
We request that authorship attribution be provided in any software, documents,
or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

 No right to create modifications or derivatives of W3C documents is granted
pursuant to this license. However, if additional requirements (documented in the

622 REFERENCES
Copyright FAQ) are satisfied, the right to create modifications or derivatives is
sometimes granted by the W3C to individuals complying with those requirements.

 THIS DOCUMENT IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTA-
TION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDERS WILL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

 The name and trademarks of copyright holders may NOT be used in advertis-
ing or publicity pertaining to this document or its contents without specific, writ-
ten prior permission. Title to copyright in this document will at all times remain
with copyright holders.

Regarding the original source code provided
with this book and its example applications

The Apache Software License, Version 1.1
 Copyright (c) 2000 The Apache Software Foundation. All rights reserved.
 Redistribution and use in source and binary forms, with or without modifica-

tion, are permitted provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the docu-
mentation and/or other materials provided with the distribution.

3 The end-user documentation included with the redistribution, if any,
must include the following acknowledgment: “This product includes soft-
ware developed by the Apache Software Foundation (http://
www.apache.org/).” Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments nor-
mally appear.

4 The names “Apache” and “Apache Software Foundation” must not be
used to endorse or promote products derived from this software without

REFERENCES 623
prior written permission. For written permission, please contact
apache@apache.org.

5 Products derived from this software may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission of the
Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>. Portions of this soft-
ware are based upon public domain software originally written at the National
Center for Supercomputing Applications, University of Illinois, Urbana-
Champaign.

index
Numerics

1.0 vs 1.1 448, 464, 477, 483,
544, 546

404 error 203

A

absolute path 358
abstract 223, 242
Accessors 13
Action 14–15, 34, 544

base 241
Base View Actions 239
BaseHelper 243
Bridge 219

Action.MAPPING_KEY 221
action-based security 199
ActionErrors 77, 100, 421
ActionErrors.GLOBAL_ERROR

81
ActionForm 15, 19, 72, 150–151,

153, 160, 249, 297, 399, 452,
470

generate 76
reset 76
validate 76
validate method 154

ActionForward 15, 32, 102, 185,
190, 253

ActionMapping 15, 35, 121, 187,
195, 239–240

Roll Your Own 204
ActionMapping properties 196

attribute 202

className 199
forward 198
include 198
input 200
name 199
parameter 201
path 197
roles 199
scope 199
suffix 202
type 199
unknown 203
validate 200

<action-mappings> 121
ActionMessage 421
ActionServlet 36, 72, 107, 110,

194, 256, 258
configure 109
extension points 258
initialization parameters 107
subclass 263

Active Server Pages 11, 42, 270
Adalon 118
adaptor 38, 158, 178, 482
add 403
Ant 4, 27, 91, 106, 130, 133–134,

430
Artimus 539
install 91

Apache 80
Apache Software Foundation 4
API 139, 362
API contract

definition 362
application context 482
application resources

Struts 1.1 553
application.properties 100, 124,

133, 376
architecture 194, 273
Artimus 27, 136–137, 238, 348,

401, 476–477, 538
Ant 539
application properties 482
build 479
business API 444
business requirements 444
configuration settings 483
data services 444
features 477
global-forwards 489
install 539
introduction 477
Lucene 459
runtime 488
Servlet 484

ASF 83, 92, 464, 477
assertion 212
attribute 238, 289, 343, 360
<auth-constraint> 551
authentication 61, 242, 438

strategy 484
autopopulation 156, 158–159,

166, 179, 181, 202, 446

B

BaseAction 229
baseline 90, 94, 538, 544
baseStyle 501
624

INDEX 625
basic validators 543
byte 383
creditCard 384
date 383
double 383
email 384
float 383
integer 383
mask 380
maxLength 382
minLength 383
range 381
required 380
short 383

bCancel 390, 395
bean

message 424
size 303
write 424

bean tag 282
BeanUtils 171–172, 448, 534

enhancements 535
best-practices application 476
binary file 153
blackbox 257
Blank application 90, 137, 336
blank.war 90, 94
body wrap 329
bridge 75, 219
browser 87, 297, 299

location bar 102
browser’s cache 72
buffer 75, 151, 153–154
build.xml 91–92, 101, 106,

130–131, 133
bulk constructor 168
bulk populator 445
bulk setter 168–169, 445, 448
Business Delegate pattern 442,

469
business layer 75, 158, 165,

175–176, 209, 212, 216, 240,
440–441

design consequences 443
business logic 157–158, 189,

194–195, 211–212, 240,
247, 494

characteristics 442
business objects 441

creating 441

C

Cancel button 395
Cascading Style Sheets 287,

321–322, 491
Castor 455
CGI 249, 283
chained exceptions 243
ChainedException 495
checkbox 153, 163, 297
chrome 61

definition 347
classname 204, 262
CLASSPATH 109
client-side validators 521
coarse-grained 155, 406

Artimus 494
Cocoon 220
cohesion 368
ColdFusion 270
Collection 496, 534
Common Gateway Interface 8–9
Commons BeanUtils 175, 534
conf 542
connection pool 124–125, 482

Jakarta Commons DataBase
Connection 125

Constants class 98
container 38, 49, 66
content syndication 464
content tile 329
context

application 46
request 51, 77, 186, 246
session 46, 82, 84–85

ContinueAction 231
Controller 31, 88, 239

Struts 31
<controller> 123
ControllerConfig 123

nocache 123
null 123

ConvertUtils 534
cookies 7, 66, 306
Core J2EE Patterns 39, 442
couple 442
couplets 74
coupling 439

definition 368
CRUD 224
CSS See Cascading Style Sheets

CVS 479

D

data conversion
definition 370

data services 438–440, 482
data transformation

definition 370
database 69, 100, 125, 155,

164–165, 176, 240, 438
<data-sources> 125
dbForms 39
debug 82, 85, 109, 344, 399
decouple 43, 236
default error page 216, 282
default resource bundle 419
defining requirements 86
Denial of Service exploit 156
depends attribute 378
deprecated 35, 110, 125, 184,

196, 201, 210
descriptor 82, 85, 106–107
design principle 116, 160, 562
detect errors 213
development environment 6

install 134
Digester 110, 116, 126, 258, 464,

534, 542
dispatch 180, 185, 221, 224–225,

227, 253, 497
dotted syntax 158, 167, 172
Dreamweaver 270, 565
duplicate parameters 303
DynaActionForm 34, 76,

119–120, 162, 538, 549
DynaBean 34, 54, 162
dynamic binding 40
dynamic construction 217
dynamic forwards 189
dynamic selection 217

E

e-mail 384, 557
encapsulation 116, 220, 236,

338, 411, 442
Enterprise JavaBeans 30, 36,

164, 442, 468
error messages 71

626 INDEX
errors
replacement parameters 214

exception
SQL 442

exception handling 21, 35, 78,
118, 210, 216, 258, 262

ExceptionHandler 258, 262
exceptions

best practices 443
chained 442
ExceptionHandler 118
global 118
type 119

execute method 78
extension point 40, 238,

258, 361

F

Facade pattern 469
factory 111, 125, 170, 451
findForward 34
fine-grained 155
firewall 151, 156
flexible point 40
Form

DynaActionForm 150
formatKey 424
<form-beans> 119
formset 377–378, 392, 403
framework 5–6, 37, 66, 69, 72,

74, 134, 136, 368, 431, 438,
476, 556

Servlet frameworks 39
full-text search 459

G

getter 160, 162, 176
Global ActionForwards 187
<global-exceptions> 118
<global-forwards> 120
global-forwards

Artimus 489
Go4 39

H

Hashtable 201
hidden field 224, 519

hotspot 223, 237, 275
ResourceServlet 486

HTML 37, 72, 286–287,
297, 347

generate 269
html

errors 77, 388, 425
form 71, 73
image 425
img 425
link 142, 561
messages 425
multibox 434
option 427, 434
password 71–72
reset 71
submit 71
text 71–72

HTML base tag 68
html tag 285
HTTP 7–8, 37, 75, 153, 289
HTTP request 186
HttpUtils 201
hyperlinks 32

I

ImageButtonBean 300
immutable 155, 228, 414

transfer object 447
value object 168, 170

import 67
IncludeAction 221
inheritance 40
<init-params> 123
integration layer 438–439
interface 163
internationalization 412

definition 410
introspection

definition 114
IOException 216, 243
ISO 412, 420
ISO-Latin 153
iterate 290

J

J2EE Blueprints 212, 443
JAAS 260

Jakarta Commons Logging
Component 83

Jakarta Commons Validator 368
Jakarta Taglibs 279
JAR 539
Jasper 47, 49
Java

install 133
Java 1.4 244, 448
Java Development Kit 16

install 16
Java HotSpot compiler 448
Java Mail 11
Java Message Service 11
Java Naming and Directory

Interface 11
Java Servlet container

install 133
java.text.MessageFormat 416
java.text.SimpleDateFormat 383
java.util.Locale 129, 383, 412
java.util.Map 171
java.util.ResourceBundle 129
JavaBean 12, 14, 163, 442

definition 12
Specification 442
Tutorial 442

JavaDocs 116
JavaScript 71, 75, 87, 154,

225–226, 253, 305, 366, 368,
376, 521

generate from tags 306
JavaServer Faces 4, 279
JavaServer Pages 10, 66, 88, 118,

140, 148, 161, 194, 220, 268,
271, 320, 332, 493, 556, 565

custom tags 274
include 320
install custom tags 276

JDBC 11, 30, 36, 125, 245, 438,
445, 482, 496

driver 438
jEdit 27, 134

install 91
Jetspeed 477
JNDI 100, 483, 497
jsessionid

definition 66
JSP 1.2 272
JSP See JavaServer Pages
JSP tag library 36

INDEX 627
JSP tags 11–12, 249, 271
localize 422

JSTL 12, 268, 271
expression language 272
Struts 271

JUnit 443
JVM 173, 244, 413–414

L

LabelValueBean 297, 548
layered architecture 60
Layers pattern 43, 45, 438–439
LDAP See Lightweight Directory

Access Protocol
Lightweight Directory Access

Protocol 438
load-on-startup 109
local ActionForward 187
local exception 204
local forward 203
locale 128, 179–180, 214, 383,

412
change 430
definition 129
resetLocale method 180

locale-sensitive
definition 413

localization 36, 82, 85, 124, 176,
213, 225, 283, 368, 392

Collections 433
definition 411
images 426
JSP tags 422
labels 299
options 299
resource files 130
special characters 420

localizing collections 299
logging 54, 56, 82–83, 239
logic tag 68, 287

Control flow tag 289
Evaluation tag 287

logon application 60–61, 556
Velocity 566

LogonAction 34, 77
loosely bound 89
Lucene 6, 458, 460, 487–488

Artimus 461
classes 460
Create index 461

factory 462
initialize index 487
introduction 460

M

Macromedia
HomeBase 278
UltraDev 278

magic token 98
maintainability 439
maintenance 114, 116, 155, 162,

169, 224, 247, 288, 355,
372, 556

Map 160, 163, 171–172, 181, 499
mapped properties 160
markup 66, 77, 288

definition 347
mask 396
mask validator 396
McClanahan, Craig 4, 417, 534
message formatting 419
message key 56, 140, 226,

376, 378
Message Tool 420
MessageFormat 416
MessageResources 213, 418

message-resources 118, 123,
489

ResourceBundle 128–130,
384

definition 129
ListResourceBundle 415
PropertyResourceBundle

415
<message-resources> 123
messaging protocol

definition 157
modal

definition 366
Model 31, 77, 89, 194, 239
Model 2 77, 194, 516
Model/View/Controller

architecture 239
modular application 139
module 113
msg element 378
multibox 297
multipage validation 395
multipart MIME 159
MultipartRequest 49

multithreaded 103
mutable 430

ActionForm 155
definition 155
value objects 167

mutator 13
MVC 46, 77, 247, 273, 444,

515–516, 556
MVC 2 14, 41
MySQL 125, 245

N

native data types 166
native2ascii 420
nomenclature 56

Tiles 346
nonmodal 366
normalization 120
notify/subscribe 41

O

ObjectAssembler 118
ObjectRelationalBridge 455
object-to-relational

mapping 445
ObjectVenture 118
Objectwave 286
ObjectWorks 31
Observer notification

pattern 43
onsubmit 390, 521

P

parameter property 103, 201,
221, 224, 231, 236, 248, 493

password 72
clear 294

path 74, 121, 510
pattern

Front Controller 194
Hollywood Principle 257
Inversion of Control 257, 495
Layers 438
View Helper 51

pattern-based validation 368
performance 9, 52–53, 139, 164,

173, 194, 213, 334, 495, 516

628 INDEX
performant 52
definition 52
reflection 448

persistence layer 455
PHP 270
pluggable 40, 127, 258, 374,

390, 393
definition 392

pluggable validator 392
Create 392

<plug-in> 124
plug-in 263
PlugIn Action 258, 540
Poolman 483
POST 152
PostScript 557
prepared statements, using 441
presentation layer 44, 82, 88,

115, 158, 179, 268, 320,
430, 556

ProcessBean 446
API contract 499
definition 445
performant 448
populate 448

processRoles 260
properties 99
Properties file 99, 106, 128, 132,

201–202, 387, 451, 482
logon application 63
Velocity 568

Protected Variation 115
definition 116

protocol 151, 157, 160, 438
proxy 178

Q

query string 159, 185–186, 201,
253, 444, 493

queuing messages 215

R

radio button 293
redirect 51, 88, 122, 185–186,

229, 490
refactor 219, 329, 348, 351,

355, 358
definition 330
extract method 344

Tiles 348
reflection 50, 52, 114, 157, 173,

176, 224, 248, 448
definition 114
performant 448
transfer by 173

Register application 18, 99
regular expression

definition 369
Jakarta RegExp package 381

reload 70, 96, 138, 358
remote 165
replacement parameter 214,

372, 376, 378, 403
request 151–152, 159, 195, 202,

211, 213, 283, 289, 297
request context 186
request methods 7
request parameters 156, 186
RequestDispatcher 186, 198,

219
RequestProcessor 258–259
reset 228
Resin 49, 138, 272, 483
resource 245, 368, 382, 420,

423, 450
resource bundle 410

definition 414
resource layer 438–439
restricted character 185
ResultList 496
Rich Site Summary 438, 464,

477, 488
channel 465
ChannelBean 466
item 465
Syndication 466

Roles 50
RSS See Rich Site Summary
runtime 90, 114, 128, 159,

216–217, 321, 325, 410, 416
Velocity 559

S

Scaffold 6, 179, 181, 187, 201,
219, 223–224, 229–230,
236–237, 244, 248, 252, 358,
401, 434, 478, 482

ResultList 449

Scaffold BaseForm 401
Scaffold Forward-only

FindForwardAction 234
ParameterAction 233
RelayAction 231
SuccessAction 230

Scaffold helper Actions 237
AttributeExistsAction 238
BaseHelperAction 236
RemoveAttributeAction 239

Scioworks 118
scriptlet 10, 271, 278, 283
search

boolean 459
date range 459
full-text 459

search utilities 488
security 82, 125, 164, 199, 217,

238, 242, 260–261, 288, 483
action-based 538, 550
authorization 484
declarative 480
expired password 262
proprietary 261
protect URLs 483
realm 100

security role 199, 217, 342, 513
semaphore 444
serialized 155
server-side validation 519
servlet 9, 566

ActionServlet 14, 49
ActionServlet parameters 110
requests 109
VelocityViewServlet 559

Servlet API 153, 201
2.3 201

servlet container 68
servlet context 280
Servlet specification 66, 186,

221
ServletExceptions 216
ServletRequest.getLocale() 418
Servlets 2.3 API 272
session 66, 83, 242, 430
session context 186, 211
Session Facade pattern 469
setter 160, 162, 176
Simper 455
singleton 256
Smalltalk 31

INDEX 629
source tree 90, 130
SQL 38, 125, 243, 438, 445, 486,

557
fetch 486

standard base actions
BaseAction 222
DispatchAction 224
LookupDispatchAction 225

standard bridge actions
ForwardAction 220
Include Action 221

static
definition 8

stringTokenizer 201
Struts

strengths 56–57
weaknesses 54, 56

Struts 1.0 vs 1.1 76, 78, 107, 184,
220, 224, 256, 374, 538, 542

Struts 1.1 76–78, 80, 83, 96, 100,
109–110, 113, 117, 123, 125,
140, 150, 160, 163, 171–173,
181, 184, 196, 204, 210, 212,
214–216, 224, 256, 258, 344,
399, 424, 489, 503–504, 516

application resources 553
features 535
migration 534
ReloadAction 544
Tiles 540
Validator 543

Struts configuration file 15, 21,
45, 69, 92, 106, 113, 133,
195, 249, 538

DTD 118
elements 117
RequestProcessor 259
struts-config
Velocity 569

struts-config objects
subclassing 126

Validator PlugIn element 543
Velocity 561

Struts files
install 134

Struts JAR
share 142

Struts message resources file 77
Struts resource page 69
Struts Taglib Developer

Guide 274

Struts tags
converters 286
features 280
localize 284

Struts tip 155, 176, 179, 217,
223–224, 226, 232, 236, 241,
244, 297, 303, 306, 507

Struts Validator 136, 371,
374, 399

struts-bean.tld 46
struts-config.xml See Struts config-

uration file
struts-html.tld 46
Struts-Layout taglib 279
struts-logic.tld 46
style sheets 67, 305
suffix 202
Swing 31, 75–76, 482
synchronizer token 242, 295

T

tag library 109
Tag Library Descriptor 12, 109,

276, 541
taglib 148, 279, 323
thread 210
thread-safe 239, 495

definition 210
tier 158
Tiles 6, 136, 221, 538

ActionForwards 335, 338
Artimus 499
attributes
add 343
importAttribute 340
put 341
useAttribute 340

checklist 135
configure 134
conventions 361
create configuration 336
declare Definitions 331
Definition 327, 540
Definition factory 335
Definition naming

convention 500
Definition reuse 334
deploy 328
deploy Definition 333
extend Definition 336

extraction practices 353
get 325
getAsString 325
ignore property 334
inheritance 337
insert 325
JSP declaration 332
localize 433
migration 343
migration to Struts 1.1 534
migration to Tiles 1.1 540
MVC 330
overloading 333, 337
parameters 327
region 326
Struts 1.1 540
useAttribute 501
web.xml 336

timestamp 175
TLD See Tag LIbrary Descriptor
Tokens 187
Tomcat 4, 16, 49, 96, 133,

138–139, 143, 271
install 17
test 17

toString() 325
transaction 445
transfer object 151, 155, 165,

470, 497, 507
definition 155
ProcessBean 447

transformer 151, 155
Turbine 39

U

Unicode
definition 420

Uniform Resource Identifier 35,
109, 120, 152, 184–185, 209

definition 70
Universal Modeling

Language 115
upload 153
URI See Uniform Resource Identifier
URL encoding 152

definition 152
URL rewriting 66
URL-pattern 260

630 INDEX
V

validation 33, 72, 87, 149, 212
client-side 368
enable server-side 373
hallmarks 367
interrelated fields 397
spoof 368
Web-tier 367

validation.xml 124
Validator 6, 388, 503, 519

configuration files 387
custom messages 396
declare validator element 394
invoke 404
JavaScript 521
JSP tags 388
localize 432
logon example 374
migration 399
migration to Struts 1,1 534
setup 399
Struts 1.1 543
taglib 379
techniques 394
Validate method 379
validator.xml 377
ValidatorActionForm 391
ValidatorForm 391
validator-rules.xml 374

Validator messages
custom messages 386
default validator

messages 385
replacement parameters 386

ValidatorForm 76
super class 404

validator-rules.xml 136
value object 53, 155, 167, 169,

238, 273
mutable 167

Velocity 4, 30, 36, 39, 46, 66, 69,
107, 239, 270, 555–557

compare to custom tags 560
context 559
context attributes 560
deploy 567
HTML editors 557
install

VelocityViewServlet 566
logon application 563
references 559
servlet resources 559
setting up

VelocityViewServlet 566
statements 559
Struts 561
Template Language 557
toolbox configuration 568
toolbox parameter 567
toolkit 562

View 31, 88

W

WAR 18, 62, 90, 133, 137, 478
web server 152
web.xml 12, 49, 82, 85, 92, 106–

107, 133, 277, 344, 480
WebLogic 49
welcome file 109
welcome page 93
whitebox 257
wizard 76, 238–239, 390

X

XDoclet 470
XML 69, 331, 488–489, 519, 538

	contents
	foreword
	preface
	acknowledgments
	about this book
	Introduction
	1.1 What is this book about?
	1.1.1 Who makes the Struts software?
	1.1.2 Why is Struts open source?
	1.1.3 Why is it called Struts?

	1.2 What are application frameworks?
	1.2.1 Other types of frameworks

	1.3 Enabling technologies
	1.3.1 Hypertext Transfer Protocol (HTTP)
	1.3.2 Common Gateway Interface (CGI)
	1.3.3 Java servlets
	1.3.4 JavaServer Pages
	1.3.5 JSP tags
	1.3.6 JavaBeans
	1.3.7 Model 2

	1.4 Struts from 30,000 feet
	1.4.1 Building a simple application
	1.4.2 Jump-starting development
	1.4.3 Where the rubber meets the road
	1.4.4 Looking back

	1.5 Summary

	Exploring the Struts architecture
	2.1 Talking the talk
	2.2 Why we need Struts
	2.2.1 One step back, three steps forward
	2.2.2 Enter Struts
	2.2.3 Struts controller components
	2.2.4 Developing a web application with Struts

	2.3 Why we need frameworks
	2.3.1 The Web—a never-ending kluge
	2.3.2 The servlet solution
	2.3.3 Servlet frameworks
	2.3.4 The whitebox-blackbox continuum

	2.4 Struts, Model 2, and MVC
	2.4.1 The evolution of MVC
	2.4.2 The rise of Model 2
	2.4.3 Application layers—decoupling the view
	2.4.4 How Struts implements Model 2, MVC, and layers

	2.5 Struts control flow
	2.5.1 The big picture
	2.5.2 The finer details
	2.5.3 Is Struts performant?

	2.6 The strengths and weaknesses of Struts
	2.6.1 The weak points
	2.6.2 Struts’ strong points

	2.7 Summary

	Building a simple application
	3.1 Strut by Strut
	3.1.1 Why a logon application?

	3.2 Touring a logon application
	3.2.1 Start here
	3.2.2 Screens we’ll see
	3.2.3 The welcome screen
	3.2.4 The logon screen
	3.2.5 The welcome screen, again
	3.2.6 The welcome screen, good-bye
	3.2.7 Feature roundup

	3.3 Dissecting the logon application
	3.3.1 The browser source for the welcome screen
	3.3.2 The JSP source for the welcome screen
	3.3.3 The configuration source for the welcome screen
	3.3.4 The browser source for the logon screen
	3.3.5 The configuration source for the logon screen
	3.3.6 The LogonSubmit source
	3.3.7 The LogonForm source
	3.3.8 The LogonAction source
	3.3.9 The LogoffAction source

	3.4 Constructing an application
	3.4.1 Defining the requirements
	3.4.2 Planning the application
	3.4.3 Planning the source tree
	3.4.4 Setting up your development tools
	3.4.5 Setting up the build.xml file
	3.4.6 Setting up the web.xml file
	3.4.7 Setting up the struts-config.xml file
	3.4.8 Testing the deployment
	3.4.9 Constructing our welcome page
	3.4.10 Constructing the logon page
	3.4.11 Constructing the Constants class
	3.4.12 Constructing the other classes
	3.4.13 Creating the user directory
	3.4.14 Configuring the ActionErrors
	3.4.15 Compiling and testing the logon page
	3.4.16 Amending the welcome page
	3.4.17 The Struts ActionForward Action

	3.5 Summary

	Configuring Struts components
	4.1 Three XMLs and a Properties file
	4.1.1 The rest of the family

	4.2 The web application deployment descriptor
	4.2.1 The web.xml file
	4.2.2 ActionServlet parameters

	4.3 The Struts configuration
	4.3.1 Details, details
	4.3.2 Change management
	4.3.3 The principle of Protected Variation

	4.4 The Struts configuration elements
	4.4.1 <global-exceptions>
	4.4.2 <form-beans>
	4.4.3 <global-forwards>
	4.4.4 <action-mappings>
	4.4.5 <controller>
	4.4.6 <message-resources>
	4.4.7 <plug-in>
	4.4.8 <data-sources>
	4.4.9 Rolling your own
	4.4.10 A skeleton Struts config

	4.5 The application resources file
	4.6 The Ant build file
	4.7 Configuring the Struts core
	4.7.1 Installing Java and a Java servlet container
	4.7.2 Installing a development environment
	4.7.3 Installing the Struts core files

	4.8 Configuring the Tiles framework
	4.9 Configuring the Struts Validator
	4.10 Getting started with the Struts Blank application
	4.11 Configuring modular applications
	4.11.1 Divide and conquer
	4.11.2 Prefixing pages
	4.11.3 Retrofitting a configuration

	4.12 Sharing the Struts JAR
	4.13 Summary

	Coping with ActionForms
	5.1 Garbage in, treasure out
	5.1.1 ActionForm requirements

	5.2 The many faces of an ActionForm
	5.2.1 The ActionForm as a field harvester
	5.2.2 The ActionForm as a data buffer
	5.2.3 The ActionForm as a data validator
	5.2.4 The ActionForm as a type transformer
	5.2.5 The ActionForm as a transfer object
	5.2.6 The ActionForm as a firewall

	5.3 ActionForm design consequences
	5.3.1 ActionForms may share names
	5.3.2 ActionForms may minimize custom code
	5.3.3 ActionForms may encapsulate helpers
	5.3.4 ActionForms may nest other beans

	5.4 ActionForm flavors
	5.4.1 Map-backed ActionForms
	5.4.2 DynaActionForms

	5.5 Why isn’t an ActionForm...
	5.5.1 Why isn’t an ActionForm just a Map?
	5.5.2 Why isn’t an ActionForm a plain JavaBean?
	5.5.3 Why isn’t an ActionForm an interface?

	5.6 Debriefing ActionForms
	5.6.1 Implementing a business-layer interface
	5.6.2 Nesting a mutable value object
	5.6.3 Setting an immutable value object
	5.6.4 Setting a mutable value object
	5.6.5 Using a factory method
	5.6.6 Passing a Map
	5.6.7 Transferring values by reflection
	5.6.8 Using an adaptor class

	5.7 BaseForm
	5.7.1 SessionLocale
	5.7.2 Dispatch
	5.7.3 Autopopulation
	5.7.4 BaseMapForm

	5.8 Summary

	Wiring with ActionForwards
	6.1 What ActionForwards do
	6.2 How ActionForwards work
	6.2.1 Forward versus redirect

	6.3 Global and local forwards
	6.4 Runtime parameters
	6.4.1 Adding parameters in the page
	6.4.2 Adding parameters in the Action class

	6.5 Dynamic forwards
	6.6 Why doesn’t the address bar change?
	6.7 Rolling your own ActionForward
	6.8 Summary

	Designing with ActionMappings
	7.1 Enter ActionMappings
	7.1.1 The ActionMapping bean
	7.1.2 The ActionMappings catalog

	7.2 ActionMapping properties�
	7.2.1 The path property
	7.2.2 The forward property
	7.2.3 The include property
	7.2.4 The type property
	7.2.5 The className property
	7.2.6 The name property
	7.2.7 The roles property
	7.2.8 The scope property
	7.2.9 The validate property
	7.2.10 The input property
	7.2.11 The parameter�property
	7.2.12 The attribute property
	7.2.13 The prefix and suffix properties
	7.2.14 The unknown ActionMapping

	7.3 Nested components
	7.3.1 Local forwards
	7.3.2 Local exceptions

	7.4 Rolling your own ActionMapping
	7.5 Summary

	Working with Action objects
	8.1 Ready, set, action!
	8.2 Getting it done with Action objects
	8.2.1 What are Actions?
	8.2.2 When are Actions called?
	8.2.3 What do Actions do?
	8.2.4 What does an Action look like?

	8.3 The standard Actions
	8.3.1 Standard bridge Action classes
	8.3.2 Standard base Actions

	8.4 Chaining Actions
	8.4.1 Starting fresh

	8.5 Scaffold Actions
	8.5.1 Forward-only Actions
	8.5.2 Helper Actions

	8.6 Base View Actions
	8.7 Helper Action techniques
	8.7.1 Optional forwarding
	8.7.2 Calling ahead
	8.7.3 Catching chained exceptions
	8.7.4 Smart error forwarding
	8.7.5 Confirming success
	8.7.6 Alternate views
	8.7.7 Reflecting methods
	8.7.8 Reflecting classes

	8.8 Using smart forwarding
	8.9 Summary

	Extending ActionServlet
	9.1 Where’s the beef?
	9.1.1 The servlet’s Gang of Three

	9.2 The RequestProcessor
	9.2.1 The process method
	9.2.2 processRoles

	9.3 The ExceptionHandler
	9.4 PlugIn
	9.5 Summary

	Displaying dynamic content
	10.1 Tag—you’re it
	10.1.1 JSP tags—what are they good for?
	10.1.2 Struts and JSTL
	10.1.3 Struts tags and MVC

	10.2 Working with tag extensions
	10.2.1 How are tag extensions written?
	10.2.2 How are tag extensions installed?
	10.2.3 What tag extensions are not

	10.3 The Struts taglibs
	10.3.1 Features common to Struts tags
	10.3.2 The bean tags
	10.3.3 The html tags
	10.3.4 The logic tags

	10.4 Using Struts JSP tags
	10.4.1 The Struts tag team
	10.4.2 Fundamentals
	10.4.3 Techniques
	10.4.4 Successful controls

	10.5 Alternate views
	10.5.1 Struts and JSPs
	10.5.2 Servlet contexts
	10.5.3 Beyond JSPs

	10.6 Summary

	Developing applications with Tiles
	11.1 Leveraging layouts
	11.1.1 Layering with dynamic templates
	11.1.2 Template consequences
	11.1.3 Using templates
	11.1.4 Combining templates, Tiles, and Struts

	11.2 Building a layout template
	11.2.1 But what is a tile?
	11.2.2 Deploying a Tiles template
	11.2.3 Adding a style sheet
	11.2.4 Templates and MVC

	11.3 Tiles Definitions
	11.3.1 Declaring Definitions
	11.3.2 JSP declarations
	11.3.3 Configuration file declarations
	11.3.4 Using Definitions as ActionForwards

	11.4 Tile attributes
	11.4.1 useAttribute
	11.4.2 importAttribute
	11.4.3 put
	11.4.4 putList and add

	11.5 Migrating an application to Tiles
	11.5.1 Setting up the Tiles framework
	11.5.2 Testing the default configuration
	11.5.3 Reviewing the pages
	11.5.4 Refactoring a page with <tiles:insert>
	11.5.5 Extracting the <tiles:insert> tags into a Definition
	11.5.6 Normalizing your base layout
	11.5.7 Refining your Definitions into base and extended classes
	11.5.8 Developing a routine
	11.5.9 Managing the migration

	11.6 Summary

	Validating user input
	12.1 I know it when I see it
	12.1.1 Input we can’t refuse
	12.1.2 Web-tier validations
	12.1.3 Validator consequences

	12.2 Overview of the Struts Validator
	12.2.1 Logon example

	12.3 Basic validators
	12.3.1 The required validator
	12.3.2 The mask validator
	12.3.3 The range validator
	12.3.4 The maxLength validator
	12.3.5 The minLength validator
	12.3.6 The byte, short, integer, long, float, and double validators
	12.3.7 The date validator
	12.3.8 The creditCard validator
	12.3.9 The email validator

	12.4 Resource bundles
	12.4.1 The default bundle
	12.4.2 Default validator messages
	12.4.3 Custom validator messages

	12.5 Configuration files
	12.6 Validator JSP tags
	12.7 ValidatorForm and ValidatorActionForm
	12.8 Localized validations
	12.9 Pluggable validators
	12.9.1 Creating pluggable validators

	12.10 Techniques
	12.10.1 Multipage validations
	12.10.2 Cancel buttons
	12.10.3 Custom messages
	12.10.4 Interrelated fields
	12.10.5 Combining validators with the validate method

	12.11 Migrating an application to the Struts Validator
	12.11.1 Setting up the Validator framework
	12.11.2 Testing the default configuration
	12.11.3 Reviewing your validations
	12.11.4 Extending ValidatorForm or the Scaffold BaseForm
	12.11.5 Selecting a validation to migrate
	12.11.6 Adding the formset, form, and field elements
	12.11.7 Adding new entries to the ApplicationResources
	12.11.8 Calling the Struts Validator
	12.11.9 Test and repeat
	12.11.10 Removing the ActionForm subclass

	12.12 Summary

	Localizing content
	13.1 By any other name
	13.1.1 Why localize?
	13.1.2 How Java internationalization works

	13.2 Struts’ internationalized components
	13.2.1 Session Locale attribute
	13.2.2 MessageResources
	13.2.3 The default resource bundle
	13.2.4 ActionErrors
	13.2.5 ActionMessages
	13.2.6 Locale-sensitive JSP tags

	13.3 Localizing a Struts application
	13.3.1 Enabling localization
	13.3.2 Using the framework Locale object
	13.3.3 Placing labels and messages in Properties files
	13.3.4 Creating language-specified Properties files
	13.3.5 Specifying an appropriate key in localization-aware components
	13.3.6 Using <bean:message> with other components

	13.4 Localizing other components
	13.4.1 Localizing the Struts Validator
	13.4.2 Localizing Tiles
	13.4.3 Localizing collections

	13.5 Summary

	Using data services with Struts
	14.1 Stepping out
	14.1.1 JDBC from a patterns perspective
	14.1.2 Introducing our data services

	14.2 Exploring the business layer
	14.2.1 Struts—bringing your own Model
	14.2.2 Defining business objects
	14.2.3 Designing business objects
	14.2.4 Design consequences
	14.2.5 Mixing business with Actions (not)
	14.2.6 A simple example

	14.3 Using ProcessBeans and JDBC with Struts
	14.3.1 Introducing ProcessBeans
	14.3.2 ProcessBeans as transfer objects
	14.3.3 Populating ProcessBeans
	14.3.4 Executing ProcessBeans
	14.3.5 Accessing data services
	14.3.6 Following a typical flow
	14.3.7 Coding a business activity
	14.3.8 ProcessBeans as a persistence layer
	14.3.9 Using other persistence layers

	14.4 Using result objects
	14.4.1 ResultList methods

	14.5 Using helper Actions
	14.6 Using Lucene
	14.6.1 searchProperties redux

	14.7 Using content syndication
	14.7.1 Digesting RSS
	14.7.2 Retrieve and render
	14.7.3 Syndicating RSS

	14.8 Using EJBs with Struts
	14.8.1 Session Facade
	14.8.2 Data transfer objects
	14.8.3 Implementation patterns

	14.9 Summary

	Artimus: pulling out the stops
	15.1 The framework’s framework
	15.2 Scaffold—birth of a toolset
	15.3 About Artimus
	15.3.1 Building Artimus

	15.4 The deployment descriptor (web.xml)
	15.4.1 Configuring Artimus
	15.4.2 Our application properties
	15.4.3 Our connection adaptor
	15.4.4 Our startup priority
	15.4.5 Other configuration settings
	15.4.6 Our security settings
	15.4.7 The URLs we protect
	15.4.8 The authorized users
	15.4.9 Our authentication strategy

	15.5 ArtimusServlet
	15.5.1 Our subclass
	15.5.2 Our String tokens
	15.5.3 Our extension point

	15.6 The application and SQL Properties files
	15.7 index.jsp
	15.8 Global forwards
	15.9 /find/Recent
	15.9.1 extends bean
	15.9.2 super.execute
	15.9.3 getArticles
	15.9.4 Access.findByLast and ResultList
	15.9.5 ProcessResult
	15.9.6 ProcessAction

	15.10 tiles.xml and Article.jsp
	15.10.1 useAttribute
	15.10.2 baseStyle
	15.10.3 title
	15.10.4 Tiles

	15.11 result.jsp
	15.11.1 The legend
	15.11.2 isResult?
	15.11.3 RESULT

	15.12 Article actions
	15.13 view.jsp
	15.13.1 headline
	15.13.2 content
	15.13.3 contributor

	15.14 edit.jsp
	15.14.1 Article content
	15.14.2 Contributed / contributor
	15.14.3 Article ID
	15.14.4 Validation

	15.15 /do/Menu
	15.15.1 logon
	15.15.2 menu
	15.15.3 Our controls
	15.15.4 saveResult
	15.15.5 Our results

	15.16 menu.jsp
	15.16.1 /find/Hours
	15.16.2 /menu/Find
	15.16.3 /find/Last
	15.16.4 /menu/Contributor
	15.16.5 /menu/Manager

	15.17 Summary

	Redux: migrating to Struts 1.1
	16.1 Next station, Struts 1.1
	16.1.1 Struts 1.1 feature roundup
	16.1.2 Features we can use

	16.2 Baseline changes
	16.2.1 Tiles in Struts 1.1
	16.2.2 Validator in Struts 1.1
	16.2.3 ReloadAction in Struts 1.1
	16.2.4 Other baseline changes to web.xml and struts-config.xml
	16.2.5 message.jsp (1.1)
	16.2.6 form.jsp (1.1)
	16.2.7 MenuCreate (1.1)
	16.2.8 Onward

	16.3 Discretionary changes
	16.3.1 Form to DynaActionForm
	16.3.2 Action-based security
	16.3.3 Action path changes
	16.3.4 Application resources in Struts 1.1

	16.4 Summary

	Velocity: replacing JSPs
	17.1 Moving to Velocity templates
	17.2 Change makes the framework
	17.3 Why we need Velocity
	17.3.1 Velocity is light, fast, and versatile
	17.3.2 Velocity works well with others
	17.3.3 Velocity is simple but powerful

	17.4 Using Velocity with web applications
	17.4.1 Using Velocity with servlet resources
	17.4.2 Using Velocity with context attributes
	17.4.3 How Velocity works with Struts
	17.4.4 The VelocityStruts toolkit
	17.4.5 The Struts View tools

	17.5 Our logon templates
	17.6 Setting up VelocityViewServlet
	17.6.1 Installing the VelocityViewServlet
	17.6.2 Deploying the Velocity servlet
	17.6.3 The toolbox configuration file

	17.7 Setting up struts-config
	17.8 Summary

	Design patterns
	A.1 A brief history of design patterns
	A.1.1 The Gang of Four
	A.1.2 J2EE Blueprints
	A.1.3 Core J2EE Patterns

	A.2 Why patterns are important
	A.3 What patterns won’t do
	A.4 Struts—a Who’s Who of design patterns
	A.4.1 The Service to Worker pattern
	A.4.2 The Singleton pattern
	A.4.3 The Session Facade pattern
	A.4.4 Value Object / Value Object Assembler patterns
	A.4.5 The Composite View pattern
	A.4.6 The Synchronizer Token pattern
	A.4.7 The Decorator pattern

	The struts-config API
	B.1 <struts-config>
	B.1.1 <set-property>
	B.1.2 <data-sources>
	B.1.3 <data-source>
	B.1.4 <global-exceptions>
	B.1.5 <exception>
	B.1.6 <form-beans>
	B.1.7 <form-bean>
	B.1.8 <form-property>
	B.1.9 <global-forwards>
	B.1.10 <forward>
	B.1.11 <action-mappings>
	B.1.12 <action>
	B.1.13 <controller>
	B.1.14 <message-resources>
	B.1.15 <plug-in>

	Taglib quick reference
	glossary
	references
	index

