[image: image9.jpg]

FAKULTA INFORMATIKY

A INFORMAČNÝCH TECHNOLÓGIÍ

[image: image10.png]

Tímový projekt

IMAGINE CUP 2007
Dokument riadenia projektu

	Vedúci projektu:
	prof. Ing. Mária Bieliková PhD.
	Autori :
	Bc. Andrej Frlička

Bc. Marek Tomša

Bc. Richard Veselý

Bc. Oto Vozár

	Akademický rok:

Semester:
	2006/2007

Zimný
	
	

Obsah
1-11
Ponuka

1-11.1
Úvod

1-11.2
Motivácia a zloženie tímu

1-11.2.1
Motivácia

1-21.2.2
Členovia tímu

1-31.3
Imagine Cup – Imagine a world where technology enables a better education for all

1-31.4
Úspech v súťaži Imagine Cup

1-41.4.1
Idey a koncepty

1-51.4.2
Uvažované inovatívne technológie

1-51.5
Hrubý návrh

1-71.6
Predpokladané zdroje

1-71.7
Záver

1-81.8
Príloha A – Preferencie tímu

1-91.9
Príloha B – Rozvrh členov tímu

2-12
Plán projektu

2-12.1
Plán projektu na prvý semester

3-23
Úlohy členov tímu

3-23.1
Roly členov tímu ku dňu 19.10.2006

3-23.1.1
Roly manažmentu projektu

3-23.1.2
Roly tvorby projektu

4-14
Záznamy zo stretnutí

4-14.1
Zápisnica k 1. Stretnutiu

4-14.1.1
Priebeh stretnutia

4-24.1.2
Úlohy

4-34.2
Zápisnica k 2. Stretnutiu

4-34.2.1
Téma stretnutia

4-34.2.2
Úlohy

4-54.3
Zápisnica k 3. stretnutiu

4-54.3.1
Priebeh stretnutia

4-64.3.2
Závery stretnutia

4-64.3.3
Úlohy

4-84.4
Zápisnica k 4. stretnutiu

4-84.4.1
Priebeh stretnutia

4-94.4.2
Úlohy

4-114.5
Zápisnica k 6. stretnutiu

4-114.5.1
Priebeh stretnutia

4-124.5.2
Úlohy

4-144.6
Zápisnica k 6. stretnutiu

4-144.6.1
Priebeh stretnutia

4-154.6.2
Úlohy

4-174.7
Zápisnica k 7. stretnutiu

4-174.7.1
Priebeh stretnutia

4-184.7.2
Úlohy

5-15
Štandardy tímu

5-15.1
Tvorba dokumentácie

5-15.1.1
Titulná strana

5-35.1.2
Štrukturovanie textu

5-35.1.3
Formátovanie textu

5-55.1.4
Odkazovanie v texte

5-65.2
Práca v platforme .Net framework

5-65.2.1
Menné konvencie

5-125.2.2
Pravidlá dizajnu

5-245.2.3
Rozvrhnutie kódu

1 Ponuka

Kapitola obsahuje plné znenie dokumentu ponuky tímu v rámci tímového projektu. Číslovanie kapitol, ako aj formátovanie bolo upravené pre potreby dokumentu riadenia.

1.1 Úvod

Dokument predstavuje ponuku tímu na tému Imagine Cup v rámci predmetu Tvorba softvérového systému v tíme. Prvá kapitola uvádza našu motiváciu a zloženie tímu, druhá predstavuje návrh riešenia vychádzajúci z analýzy úspešných projektov a nápadov, ktoré vzišli počas stretnutí tímu vo forme sumáru konceptov a ideí a tretia uvádza predpokladané zdroje potrebné pri riešení. V prílohe uvádzame preferencie výberu ostatných ponúkaných tém a rozvrh jednotlivých členov tímu.

1.2 Motivácia a zloženie tímu

V tejto kapitole uvádzame našu motiváciu k riešeniu témy Imagine Cup v rámci predmetu Tvorba softvérového systému v tíme. V druhej časti kapitoly sú informácie o záujmoch, skúsenostiach a schopnostiach jednotlivých členov tímu v kontexte riešenia zadania projektu.

1.2.1 Motivácia

Na túto tému sme sa prihlásili preto, lebo pred dvomi rokmi sme vyhrali československé kolo spomínanej súťaže v Budapešti, minulý rok slovenské kolo a zúčastnili sme sa východoeurópskeho finále v Maribore a tento rok sa chceme ísť pozrieť do Soulu.

Veríme, že sme schopní vytvoriť tím s najlepšími predpokladmi na to, aby spolu s podporou fakulty vytvoril projekt, ktorý bude mať vysoké šance na úspech v súťaži Imagine Cup.

Všetci štyria členovia majú bohaté skúsenosti s platformou .NET, čo je esenciálna podmienka pre účasť v tejto súťaži. Traja z členov tímu pracujú spolu už štvrtý rok a tvoria veľmi zohraný tím. Bakalárske štúdium ukončili spoločnou účasťou na projekte CSIDC, s ktorým sa zúčastnili a mali úspech v minulom ročníku súťaže Imagine Cup, kedy postúpili do východoeurópskeho finále, kde nadobudli neoceniteľné skúsenosti a oboznámili sa s mnohými projektmi, ktoré boli úspešné aj v celosvetovom finále. Tiež sa zúčastnili súťaže WESC, čo dokazuje ich pripravenosť pracovať s plným nasadením.

Marek Tomša, Richard Veselý a Oto Vozár, pôsobia ako Microsoft Student Partneri, čo im zabezpečuje prístup k technológiám a zdrojom od firmy Microsoft z prvej ruky. Vďaka účasti v tomto programe a osobnej angažovanosti mali šancu oboznámiť sa s pre-release verziami platformy .NET 3.0 a tieto novonadobudnuté skúsenosti sú pripravení aplikovať pri prácach na implementácii projektu.

Štvrtým členom je kreatívny človek s veľkým potenciálom schopný nadchnúť sa a pracovať tak, ako to účasť v tejto súťaži vyžaduje.

1.2.2 Členovia tímu

Andrej Frlička – dizajnér, dokumentarista

Bakalárske štúdium ukončil projektom využívajúcim technológiu .NET v n-vrstvovej distribuovanej aplikácii, pri ktorej riešení získal skúsenosti s .NETom na všetkých úrovniach. Získal tiež pochvalný list dekana za vynikajúco vypracovanú bakalársku prácu.

 K riešeniu problémov pristupuje s nadšením a vysokou osobnou angažovanosťou. Je to kreatívna osobnosť s dobre rozvinutým umeleckým cítením. Venuje sa skladaniu elektronickej hudby, editácii zvuku a pedagogickej činnosti. Má bohaté skúsenosti s prácou v grafických a hudobných editačných programoch a s tvorbou webových stránok a rozsiahle skúsenosti s tvorbou používateľskej dokumentácie.

Ovláda programovacie jazyky C/C++, C#, Java a technológie Windows Forms, ASP.NET, SQL Server a ASP.NET Web Services.

Vo voľnom čase sa venuje behaviorálnej analýze.

Marek Tomša – manažér, architekt

Bakalárske štúdium ukončil cum laude obhájením bakalárskej práce na tému CSIDC 2006, ktorú riešil v tíme spolu s Richardom Veselým, Otom Vozárom a Michalom Dobišom.

Z programovacích jazykov ovláda jazyk C# a má hlboké znalosti platformy .NET. Z riešenia minulých projektov má skúsenosti s vedením tímu a s písaním technickej a prezentačnej dokumentácie.

Z technológií preferuje klientské technológie ako Windows Forms a Windows Presentation Foundation, ale má skúsenosti aj so serverovými technológiami MS SQL Server, a ASP.NET Web Services a s vývojom pre malé zariadenia. Má skúsenosti s pre-release verziami platformy .NET vo verzii 3.0, ktoré plánuje uplatniť pri riešení tohto projektu.

Vo voľnom čase sa venuje práci s handicapovanými ľuďmi.

Richard Veselý – kódič

Bakalárske štúdium ukončil riešením projektu CSIDC 2006. Pracuje ako programátor v nadnárodnej spoločnosti na enterprise projektoch nasadených v zahraničí. Jeho najsilnejšou stránkou je schopnosť veľmi vysokého pracovného nasadenia pri implementácii. Je schopný naučiť sa akúkoľvek novú technológiu v priebehu projektu a nové skúsenosti okamžite aplikovať pri implementácii.

Ovláda programovacie jazyky C#, VB (VB6, VB.NET, VBA, VBScript...) a Java. Má skúsenosti s klientskými technológiami Windows Forms, ADO.NET, serverovými technológiami MS SQL Server 2000/2005, IIS, ASP.NET 1.0/1.1/2.0 a Web Services, webovými technológiami (D/X)HTML, CSS, JavaScript, AJAX, s XML, XPath, XQuery, XSLT, regulárnymi výrazmi, a s mnohými ďalšími bude mať čoskoro.

Medzi jeho kvality patrí tiež vynikajúca schopnosť prezentovať v anglickom jazyku, čo je veľmi dôležitý aspekt pre úspech tímu v súťaži Imagine Cup.

Vo voľnom čase wrappuje webové stránky.

Oto Vozár – algoritmik, databázový špecialista, grafik

Bakalárske štúdium ukončil cum laude obhájením bakalárskej práce, týkajúcej sa problematiky vizualizácie neurónových sieti.

Dokáže pracovať s nesmiernym zápalom a svojou usilovnosťou ženie tím dopredu. Rád dotiahne všetko do posledného detailu. V tíme často zastáva úlohu grafika, pričom aplikuje svoj rozvinutý umelecký cit.

Z programovacích jazykov preferuje jazyk C# a platformu .NET, pričom v rámci projektov pracoval najmä s technológiami Windows Forms, ASP.NET, SQL, ADO.NET, ASP.NET Web Services a WCF, GDI+ a DirectX.

Vo voľnom čase hrá na akordeón a študuje 3D algoritmy a enginy.

1.3 Imagine Cup – Imagine a world where technology enables a better education for all

Špecifikom súťaže Imagine Cup je, že zadanie témy dáva veľmi široké možnosti výberu konkrétneho riešenia. Táto kapitola neuvádza len jeden konkrétny návrh riešenia, ale najmä nápady a koncepty, ktorých zlúčením a aplikovaním môže vzniknúť úspešný projekt. Skúsenosti nám ukázali, že úspešný nápad takmer zákonite nevznikne na začiatku riešenia projektu, ale prichádza počas fázy prototypovania a projekt dotvára svoju tvár počas všetkých etáp životného cyklu a preto aj návrh, uvedený na konci tejto kapitoly, je potrebné považovať za predbežný a pripravený na akúkoľvek zmenu.

Podkapitola 3.1 uvádza analýzu aspektov, ktoré zabezpečili úspech predchádzajúcich projektov v tejto súťaži a podkapitola 3.2 súhrn konceptov a tiež konkrétnych nápadov, ktoré plánujeme aplikovať pri riešení projektu. V poslednej podkapitole uvádzame predbežný návrh realizácie projektu spolu s nápadmi na jeho rozšírenie.

1.4 Úspech v súťaži Imagine Cup

Podkapitola obsahuje súhrn aspektov podieľajúcich sa na úspechu v súťaži Imagine Cup, vychádzajúci z analýzy úspešných projektov z národných a medzinárodných kôl súťaže, ktorých sa traja z členov tímu v posledných rokoch zúčastnili. Okrem podmienky inovatívnosti, ktorú obvykle spĺňa väčšina projektov, sa ukazuje, že isté druhy projektov majú v súťaži väčší úspech ako iné.

Deti

Orientovať projekt tak, že sa dá na ňom ukázať, že je jeho používanie tak jednoduché, že to zvládnu aj malé deti zvyšuje veľmi v očiach porotcov kvalitu. Toto sa ukázalo na východoeurópskom kole v minulom roku, kedy vyhral tím zo Slovinska, ktorý mal síce jednoduchú (a už existujúcu) myšlienku, spočívajúcu na jednoduchom princípe rozpoznávania obrazu, ale dokázal ju predviesť vo forme hier pre deti, čo sa stretlo s nadšeným ohlasom nielen u publika, ale aj u porotcov. Navyše vzhľadom na tému vzdelávanie ja orientácia smerom k deťom veľmi vhodná, keďže pre nie je vzdelanie najdôležitejšie.

Handicapovaní

Veľa úspešných projektov sa týka integrácii handicapovaných ľudí. V svetovom finále sa umiestnili projekty venujúce sa strojovému rozpoznávaniu znakovej reči pre nepočujúcich a v roku 2006 zvíťazil vo svetovom finále projekt riešiaci navigáciu nevidiacich v interiéroch hlasom.

Nie čisto softvérové riešenie

Projekty, ktoré pozostávajú len zo softvérového riešenia, v súťaži často len málo zaujmú a takmer nemajú šancu na úspech. Dobre sa hodnotí využitie inovatívnych používateľských rozhraní (napr. rozoznávaním obrazu), PDA zariadení, RFID snímačov, GPS lokátorov a podobne.

Potenciál reálneho uplatnenia

Aj keď v podmienkach hodnotenia súťaže tento bod nie je zahrnutý, ukázalo sa, že porotcovia nehodnotili dobre projekt, o ktorého potenciáli reálne ho využiť ich súťažiaci nepresvedčili a napriek tomu, že projekt bol v mnohých aspektoch zaujímavý, nemal úspech.

1.4.1 Idey a koncepty

Táto podkapitola obsahuje popis konceptov a konkrétnych nápadov, ktorých spojením sa môže projekt stať veľmi atraktívnym a úspešným v súťaži.

Adaptívny prístup

Každý má rád, keď sa posadí za program, ktorý mu „rozumie“ nech je na akejkoľvek úrovni zručnosti. Ak má byť vzdelávanie efektívne, je dôležitá najmä jeho dlhodobosť. Adaptívny prístup svojím postupným prispôsobovaním dlhodobosť umožňuje, ale nezabezpečuje. Preto je potrebné motivovať študujúceho k jeho používaniu.

Okrem „globálnej adaptívnosti“ zabezpečujúcej, že produkt sa bude meniť a bude rásť s dieťaťom, je dôležité zohľadniť aj „lokálnu adaptívnosť“, ktorá zabezpečí aktuálne prispôsobenie sa nálade, momentálnym preferenciám alebo predchádzajúcemu progresu používateľa.

Motivácia – kto sa rád učí? Nikto. Kto sa rád hrá? Všetci.

Už od detstva sa radi hráme. Pomyslenie na štúdium v nás naopak vyvoláva pocit nutnosti, čím sa musí do zamýšľaného procesu zapájať vôľa. Hoci je vôľa silný psychologický fenomén, nie je schopná zabezpečiť vytrvalosť. Efektívne sa učiť znamená nadobúdať znalosti, a mať pri tom pocit dobre vykonanej práce a chuť pokračovať ďalej. Motiváciu je možné jednoducho docieliť prostredníctvom hry. Hra nesmie byť jednotvárna, a musí umožňovať rozširovanie.

Ak sa deťom asociuje od raného veku učenie so zábavou, prechod medzi hrou a učením neskôr nemusia ani postrehnúť a budú sa učiť rady.

Konektivita a kolaborácia

Ak má byť učenie efektívne, nestačí len, aby program obsahoval aktuálnu databázu informácií. Študujúci človek musí za väčšinou aktivít vidieť ľudí. Učenie je efektívne vtedy, keď pri ňom človek nie je sám. Projekt preto umožní prepojenie ľudí aj dát za účelom spoločného hrania a vzdelávania sa.

Dostupnosť

Sústavné vzdelávanie je v dnešnej dobe pre mnoho ľudí nedostupnou komoditou. Trvalosť vzdelávania je možné dosiahnuť jedine vtedy, keď je neustále dostupný jeho zdroj. Dnešní študujúci sa nesmú a nechcú spoliehať len na jednu formu prístupu ku vzdelaniu. Vzdelanie musí byť prístupné všade a vždy podľa potreby.

1.4.2 Uvažované inovatívne technológie

Okrem nápadov je potrebné pre úspech projektu zabezpečiť aj v niečom málo tradičné alebo úplne nové prístupy vo forme použitých technológií. My sme doteraz uvažovali o nasledovných:

Rozhrania cez dotykové obrazovky (TabletPCs)

Takto realizované rozhranie umožní jednoduché ovládanie pre širokú škálu používateľov a prináša nové možnosti spôsobov interakcie.

Lego Mindstorm

Ide o produkt spoločnosti Microsoft, ktorý umožňuje programovať robotov postavených s využitím špeciálnej sady Lego v prostredí .NET. V projekte by sme ho mohli použiť na vytvorenie jednoducho použiteľného a atraktívneho rozhrania pre deti.

1.5 Hrubý návrh

Táto kapitola obsahuje popis približného návrhu podoby realizácie projektu, ktorý nie je však v ničom záväzný a predpokladáme jeho zmenu.

[image: image1.jpg]Let them grow while they play

More fun. Better education. Better world starts here.

1‑1 Motivačný záber
Predpokladá sa realizovanie systému, ktorý by predstavoval framework na zabezpečenie silne adaptívneho procesu výučby a jednej konkrétnej realizácie aplikácie postavenej na tomto frameworku. Takýto koncept sa ukázal v minulom roku súťaže ako veľmi úspešný.

Aplikácia postavená na navrhovanom frameworku by predstavovala komplexný systém meniaci sa tak ako dieťa rastie, ktorý by sa prispôsoboval tempu učenia sa dieťaťa počas jeho života. Začínalo by to perifériami vo forme herných kociek, formičiek, skladačiek, postavených zo sady Lego Mindstorm a využívajúcich senzory a akčné členy na zabezpečenie interaktivity pri hre, navrhnutými špeciálne tak, aby ich mohli používať veľmi malé deti, učiace sa rozoznávať farby a tvary. Neskôr by pribudlo rozhranie dotykovej obrazovky a deti by využívali systém na kreslenie, kedy by mohli obkresľovať tvary na obrazovke, učiť sa zároveň rozoznávať zvuky, systém by im vedel pustiť rozprávku...(dieťa obkreslí a vyfarbí kravičku, naučí sa ako robí kravička a môže dostať hneď rozprávku o kravičke).

V tomto momente prichádza do úvahy možnosť prispôsobovania sa, kedy systém zistí, čo sa dieťaťu páči viac a toto mu v budúcnosti ponúka častejšie. Napríklad by malo zo začiatku dieťa na výber obkresliť alebo vyfarbiť zviera, auto, dom alebo geometrické tvary, a podľa toho, ako by sa rozhodovalo by systém odhadoval jeho schopnosti a záujmy, na základe ktorých by sa mu prispôsoboval.

V školskom veku by sa zo systému stal akýsi zápisník, synchronizovaný so serverom, kde by malo dieťa uložené svoje poznámky a nemuselo by si ich nosiť medzi domovom a školou. Prekážkou môže byť relatívna nepohodlnosť pri písaní dotykovým perom na tablet, čo by sa dalo vyriešiť zapojením webcam, ktorá by snímala to čo dieťa nakreslí/napíše na obyčajný papier, a tieto obrázky po spracovaní (spracovanie by mohlo určovať ako dobre sa dieťa učí jednotlivé písmená a nechávalo by to dieťa precvičovať písmená ktoré mu nejdú viac ako tie ktoré zvláda (v druhej fáze napríklad využiť OCR na prevod poznámok do textu)) ukladá na server. Dáta na serveri by boli synchronizované a doma by bol prístup k tomu istému obsahu ako v škole.

Ponúka sa možnosť pridať do projektu niečo na spôsob e-learningu, kedy by bola časť školskej výučby zabezpečená s pomocou tohto systému a niektoré predmety by sa žiaci učili výlučne elektronicky. V tejto fáze by bolo možné využiť výsledky výskumu na fakulte a zakomponovať do projektu niečo, čo ukáže reálne uplatnenie nejakej metódy/prístupu vyvinutej v rámci výskumu.

Ďalšie nápady a vlastnosti produktu:

· na jednom počítači viacero používateľov aplikácie (profily),

· porovnanie úspechov jednotlivých študentov,

· virtuálne triedy,

· rozhrania na integrovanie modulov na skúšanie, na integráciu systému na informačný systém v ktorom sú hodnotenia, na systém prihlášok na ďalšiu školu...

· integrácia viacerých netradičných hier – napríklad dieťa si vystrihne z papiera objekty v hre (tieto buď „vloží“ do tabletu obkreslením dotykovým perom alebo vymyslíme spôsob ako rozpoznávať dotyk takéhoto predmetu na obrazovke) a hrá sa cez internet s iným dieťaťom tak, že nimi pohybuje po obrazovke tabletu

· karaoke

· mnohé ďalšie adaptívne hry pri ktorých sa deti učia

1.6 Predpokladané zdroje

Vzhľadom na podmienku účasti v súťaži Imagine Cup, ktorá predpisuje implementovať riešenie v jednom z produktov rady Microsoft Visual Studio 2005 a jazyku C#, VB.NET alebo C++ predpokladáme využitie prostredia Microsoft Visual Studio 2005 Prefessional. Ďalšou z podmienok súťaže je použiť v projekte ASP.NET webovú službu, čo implikuje potrebu webového servera Microsoft IIS. Tieto zdroje sme schopní zabezpečiť si aj svojpomocne na súkromných počítačoch, tak ako aj ostatné hardvérové a softvérové zdroje.

1.7 Záver

V súťaži ako je Imagine Cup je okrem vedomostí a skúseností potrebný najmä kreatívny nápad a plné nasadenie všetkých členov tímu.

Vedomosti majú mnohí, skúsenosti už menej ľudí, kreatívny nápad málokto, ale nájsť skupinu ľudí, ktorá okrem toho, že má faktické predpoklady na úspech, má aj dostatočný zápal na to, aby projekt dotiahla s využitím maximálneho času a úsilia do úspešného konca môže byť ťažké.

My sme taký tím a sme pripravení a odhodlaní dosiahnuť v tejto súťaži veľa. Ďakujeme za Váš čas a pozornosť pri čítaní tohto dokumentu.
1.8 Príloha A – Preferencie tímu

Vzhľadom na fakt, že ide o požadovanú časť ponuky, uvádzame tu preferencie členov tímu ohľadom výberu ostatných ponúkaných projektov, aj keď v prípade potreby výberu inej témy by tím pracoval v inom zložení a predpokladáme, že v riadnom kole výberu sa bude vypracovávať ešte jedna ponuka.

Preferujeme témy v nasledovnom poradí:

· Softvérový návrh v rámci súťaže Imagine Cup (Imagine Cup)

· Kandidát na najlepší multimediálny produkt roku 2007 (EuroPrix)

· Počítačová hra - plánovanie a simulácia horolezeckej expedície (HOREX) s p. Ing. Štefanovičom

· Znalostný manažment na báze technológie .NET (Knowledge Office)

· Tvorba obaľovačov na získavanie informácií z webu (WRAPPER)

· Tvorba testov s využitím LaTeXu (TESTY)

· Softvérová podpora životného cyklu študentského projektu (PROJEKTY)

· RoboCup – nové stratégie (RoboCup S)

· Robocup – tretí rozmer (RoboCup 3D)

· Počítačová hra - plánovanie a simulácia horolezeckej expedície (HOREX) s p. Doc. Šperkom
1.9 Príloha B – Rozvrh členov tímu

	
	7:20
	8:15
	9:15
	10:10
	11:10
	12:05
	13:05
	14:00
	15:00
	15:55
	16:55
	17:50
	18:50

	
	8:10
	9:05
	10:05
	11:00
	12:00
	12:55
	13:55
	14:50
	15:50
	16:45
	17:45
	18:40
	19:45

	
	APS
	Mimoškolské aktivity
	
	
	TSST1
	@TSST1
	

	Pon
	
	
	
	Stretnutie k TP 2
	
	
	

	
	všetci
	OV
	
	
	
	
	
	všetci
	všetci
	

	
	
	
	
	
	
	
	
	
	
	
	

	Uto
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	NS
	
	
	
	ZK
	
	

	Str
	
	
	
	Stretnutie k TP 4
	
	Stretnutie k TP 1
	

	
	RV, OV
	
	
	
	
	
	všetci
	
	
	
	

	
	
	NP
	ASS
	
	
	MSI
	@MSI
	

	Stv
	
	
	
	
	
	
	
	

	
	
	všetci
	všetci
	
	
	všetci
	všetci
	

	
	
	@ZK
	@NP
	
	
	
	
	

	Pia
	
	
	
	Stretnutie k TP 3
	
	
	
	

	
	
	všetci
	všetci
	
	
	
	
	
	
	

Legenda:

	AF
	Andrej Frlička

	MT
	Marek Tomša

	RV
	Richard Veselý

	OV
	Oto Vozár

Preferujeme stretnutia v uvedenom poradí (najprv č. 1, potom 2, 3 a 4).

2 Plán projektu

2.1 Plán projektu na prvý semester

	ID
	Opis
	začiatok
	predpokladaný koniec
	dátum ukončenia

	úloha
	Činnosť
	
	
	
	

	1
	
	Špecifikácia a analýza
	
	
	

	
	1
	Zber nápadov pre prvý prototyp
	10/1/2006
	10/30/2006
	

	
	2
	Špecifikácia rámca
	10/23/2006
	10/30/2006
	

	
	3
	Špecifikácia obsahu
	10/18/2006
	11/6/2006
	

	
	4
	Zber nápadov pre rozšírenia
	10/1/2006
	12/5/2006
	

	2
	
	Návrh a implementácia prvého prototypu
	
	
	

	
	1
	Implementácia prototypu rámca
	10/30/2006
	11/3/2006
	

	
	2
	Implementácia obsahu
	11/2/2006
	11/13/2006
	

	
	3
	Príprava a odovzdanie dokumentácie analýzy špecifikácie a návrhu
	10/23/2006
	11/16/2006
	

	3
	
	Rozširovanie prototypu
	
	
	

	
	1
	Špecifikácia rozšírení
	11/7/2006
	11/14/2006
	

	
	2
	Implementácia a testovanie rozšírení prototypu
	11/15/2006
	12/10/2006
	

	
	3
	Integrácia a odovzdanie prototypu
	12/11/2006
	12/18/2006
	

	4
	
	Dokumentovanie
	
	
	

	
	1
	Príprava a odovzdanie projektovej dokumentácie
	10/23/2006
	12/18/2006
	

	
	2
	Prezentácia prototypu
	12/21/2006
	12/21/2006
	

3 Úlohy členov tímu

3.1 Roly členov tímu ku dňu 19.10.2006

Dokument popisuje roly všetkých členov v tíme ku dňu 19.10.2006.

3.1.1 Roly manažmentu projektu

Nasledujúci zoznam popisuje všetky roly súvisiace s manažmentom projektu. Osoby uvedené sú zodpovedné za riadenie príslušnej oblasti tvorby softvéru.

	Rola
	Meno

	Vedúci tímu
	Marek Tomša

	Manažment integrácie projektu
	Marek Tomša

	Manažment rozvrhu projektu
	Marek Tomša

	Manažment rizík
	Andrej Frlička

	Manažment akosti
	Oto Vozár

	Manažment ľudských zdrojov
	Andrej Frlička

	Manažment komunikácie
	Andrej Frlička

	Manažment rozsahu projektu
	Rišo Veselý

	Manažment vývoja
	Rišo Veselý

3.1.2 Roly tvorby projektu

Tabuľka rozdeľuje činnosti tvorby tímového projektu. Osoby, ktoré sú v zozname uvedené majú hlavné slovo pri vykonávaní zodpovedajúcej činnosti. Ostatní sa podieľajú aj na činnostiach pri ktorých nie sú pridelení podľa potreby.

	Rola
	Mená

	Programovanie
	Rišo Veselý, Oto Vozár

	Dokumentácia
	Andrej Frlička, Marek Tomša

	Dizajn a grafika
	Oto Vozár, Andrej Frlička

	Prezentácia
	Richard Veselý

4 Záznamy zo stretnutí

4.1 Zápisnica k 1. Stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	1
	11.10.2006
	Soft. Štúdio
	18.10.2006

	Pedagóg
	prof. Ing. Mária Bieliková (MB)
	Vypracoval
	Andrej Frlička

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

	
	Bc. Oto Vozár
	(OV)
	

4.1.1 Priebeh stretnutia

Privítanie a zoznámenie

Zoznámenie sa, zahájenie činnosti na projekte, rozdelenie úloh a povinností, začiatok analýzy

Pokyny pre prácu v rámci stretnutia tímového projektu

· Priložiť dôraz na manažment rizík

· Robiť manažment rizík

· Priložiť dôraz

· Nastaviť si očakávania od ľudí

· Písanie dokumentácie

· Štýl dokumentácie – technická

· Neoddeľuje sa text od diagramov (Nie do samostatných príloh)

· Vytvoriť blok na synchronizáciu údajov pre tvorbu technickej dokumentácie

· Časť o riadení projektu

· Časť o projekte

· Priebežne dokumentovať aj neúspešné pokusy, resp. Alternatívy

· Vytvoriť si projektový denník

· Forma: individuálna

· Min 1x za týždeň používať.

· Každý, kto píše zápis, by ho mal okamžite uverejniť na webe.

· Využitie nástrojov na podporu manažmentu

· Len evidencia úloh v nástroji

· Poznámky a zápisy zo stretnutia – voliteľné.

· Všetky drobné úlohy do konca septembra doimplementovať.

Rozdelenie úloh v tíme

Začiatok analýzy problémovej oblasti

· Integrovať systém s ostatnými systémami

· Prispôsobovať veku dieťaťa

· Využiť výstupy z iných vzdelávacích systémov

· Zamyslieť sa nad rolou učiteľa , rodiča, staršieho kamaráta, starého rodiča

· Virtuálna trieda

4.1.2 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	 Začaté
	Plánované
	Kto
	Stav

	Nové úlohy

	ID
	Opis úlohy
	 Začaté
	Plánované
	Kto
	Stav

	 1.1
	Vytvoriť web prezentáciu projektu
	11.10.2006
	20.10.2006
	 AF
	 Začaté

	 1.2
	Rozdeliť úlohy v tíme
	11.10.2006
	18.10.2006
	 MT
	 Začaté

	 1.3
	Vymedziť alternatívy riešenia
	11.10.2006
	20.10.2006
	 Všetci
	 Začaté

4.2 Zápisnica k 2. Stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	1
	16.10.2006
	Soft. Štúdio
	18:00

	Pedagóg
	Neprítomný
	Vypracoval
	Andrej Frlička

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

	
	Bc. Oto Vozár
	(OV)
	

4.2.1 Téma stretnutia

Motion capturing

Rozpoznávanie hovoreného slova

Analýza inovatívnych rozhraní

Pokus o integráciu nápadov
Nápady
· Výučba hudby

· Dospelý pripraví pre dieťa herné prostredie

· Dieťa sa postaví, môže hovoriť, ukazovať

· 2D plocha

· 2 rôzne vizuálne značky pre rodiča a pre dieťa

· Motion capture

· Tímy a družstvá

· Písanie, spelling, čítanie

· Rozvoj schopností interaktívnymi hrami.

· Ukazovanie písmen, tvarov

· Dve značky

· Hľadanie značky v miestnosti

· Stereoskopické okuliare

4.2.2 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	 Začaté
	Plánované
	Kto
	Stav (%)

	 1.1
	Vytvoriť web prezentáciu projektu
	11.10.2006
	20.10.2006
	 AF
	50

	 1.2
	Rozdeliť úlohy v tíme
	11.10.2006
	18.10.2006
	 MT
	60

	 1.3
	Vymedziť alternatívy riešenia
	11.10.2006
	20.10.2006
	 Všetci
	40

	Nové úlohy

	ID
	Opis úlohy
	 Začaté
	Plánované
	Kto
	Stav (%)

	1.4
	Naštudovať vhodnú metodológiu a zvoliť vhodný nástroj na riadenie projektu
	16.10.2006
	24.10.2006
	Všetci
	Začaté

	1.5
	Distribuovať programovacie smernice.
	16.10.2006
	24.10.2006
	RV
	Začaté

	1.6
	Zistiť vlastnosti technológie rozpoznávania zvuku
	16.10.2006
	24.10.2006
	OV,MT
	Začaté

	1.7
	Analyzovať možnosti alternatívnych možností ovládania
	16.10.2006
	24.10.2006
	MT
	Začaté

	1.8
	Zistiť informácie o motion capturing
	16.10.2006
	24.10.2006
	AF,OV
	Začaté

4.3 Zápisnica k 3. stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	3
	18.10.2006
	Soft. Štúdio
	8:15-10:00

	Pedagóg
	prof. Ing. Mária Bieliková, PhD.
	Vypracoval
	Marek Tomša

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

	
	Bc. Oto Vozár
	(OV)
	

4.3.1 Priebeh stretnutia

· Diskusia o možnostiach alternatívneho rozhrania

· zamietnutie rozoznávania ruky ako kresliaceho nástroja – prijatá alternatíva kreslenia na TabletPC ako vhodnejšia

· prijatie alternatívy speech rozhrania

· Vyhodnotené že trh s výukovým sw/hrami pre pre deti vo veku 6+ je slabý

· Barney z roku 1995

· Magic Schoool bus z roku 1995

· Takmer žiadna zmienka na internete

· dostupné hry úzko špecializované

· Kolaboratívne hry pre deti nie sú žiadne

· Second Life od 13 rokov vyššie

· Diskusia o vlastnostiach produktu

· aktivity s rodičom prijaté ako veľmi výhodná vlastnosť

· skilly a vytváranie tímov

· Odporúčanie zloženia tímov tak aby boli rôznorodé

· Zásah rodiča (učiteľa)

· kolaborácia – deti sa učia navzájom, motivované spoločným úspechom tímu

· Možnosti rozšírenia herného sveta

· Editor rozšírení – nateraz úloha s nízkou prioritou

· Návrh prepojiť jednotlivé druhy aktivít tak aby sa dieťa učilo to čo mu nejde

· Matematika + hudba

· Vyklepávanie rytmu = teraz ťukneš dvakrát, naučí sa zlomky ako takty a rytmy (?)

· určovať kombinácie na základe nálady – určená na začiatku dieťaťom alebo rodičom/učiteľom

· K tomu možnosť riadiť výber aktivít rodičom/učiteľom priamo – pri výučbe jednotlivých predmetov

· Diskusia o zdrojoch obsahu

· Prevziať z nejakého výučbového systému

· z detskej knihy – pridať sprievodcu ako postavičku z knihy

· prevziať metodiku z učebníc pre deti

· spelling cez Speech API

4.3.2 Závery stretnutia

· revidovaný plán stretnutia bude ako príloha zápisov zo stretnutí

· zápisy budeme vkladať ako PDF, nie do šablón v joomle

· budeme mať v CMS wiki do ktorej budeme vpisovať nápady

· prijímame myšlienku realizovať projekt ako rámec virtuálneho sveta pre deti s výukou vo forme hier

· pokračujeme v zbere nápadov pre obsah

4.3.3 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	 Začaté
	Plánované
	Kto
	Stav (%)

	1.4
	Naštudovať vhodnú metodológiu a zvoliť vhodný nástroj na riadenie projektu
	16.10.2006
	24.10.2006
	Všetci
	Dokončené

	1.5
	Distribuovať programovacie smernice.
	16.10.2006
	24.10.2006
	RV
	Prebieha

	1.6
	Zistiť vlastnosti technológie rozpoznávania zvuku
	16.10.2006
	24.10.2006
	OV,MT
	Dokončené

	1.7
	Analyzovať možnosti alternatívnych možností ovládania
	16.10.2006
	24.10.2006
	MT
	Dokončené

	1.8
	Zistiť informácie o motion capturing
	16.10.2006
	24.10.2006
	AF,OV
	Dokončené

	Nové úlohy

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.9
	Vytvoriť plán projektu
	18.10.2006
	23.10.2006
	MT
	Plánované

	1.10
	Zapracovať požadované úpravy stránky
	18.10.2006
	23.10.2006
	AF
	Začaté

	1.11
	Analyzovať Speech API v .NET 3.0 vs. MS Speech Server a odporučiť jednu z technológií
	19.10.2006
	23.10.2006
	RV
	Plánované

	1.12
	Vymyslieť hry
	18.10.2006
	23.10.2006
	Všetci
	Začaté

	1.13
	Zistiť aké predmety sa učia v prvom ročníku ZŠ a analyzovať možnosti implementácie
	19.10.2006
	23.10.2006
	AF
	Plánované

	1.14
	Spraviť prieskum medzi deťmi aké hry sa hrajú a čo by sa im páčilo
	21.10.2006
	23.10.2006
	AF
	Plánované

	1.15
	Zistiť ako sa počíta násobilka na prstoch
	18.10.2006
	23.10.2006
	MB
	Plánované

4.4 Zápisnica k 4. stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	4
	23.10.2006
	Soft. Štúdio
	12:30-13:30

	Pedagóg
	prof. Ing. Mária Bieliková, PhD.
	Vypracoval
	Richard Veselý

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

	
	Bc. Oto Vozár
	(OV)
	

4.4.1 Priebeh stretnutia

· Návrh pokrytia problémovej domény do hĺbky, nie do šírky

· Návrh vytvoriť 4 až 5 hier, ktoré budú koncepčne zvládnuté a funkčné (demonštrovateľné)

· Hľadať námety

· Hľadať možnosti interakcie hier s deťmi (motion, speech)

· Návrh automatizovať systém

· Autonómnosť rozhodnutia, aké aktivity by malo dieťa vykonávať

· Schopnosť vystupovať v roli učiteľa, v prípade, že reálny absentuje alebo nezasahuje do pedagogického procesu

· Rodič by mal mať schopnosť do výuky zasahovať a konfigurovať niektoré aspekty pedagogického procesu

· Zaznamenávať odpovede dieťaťa

· Možnosť vyhotovenia prospechovej štatistiky

· Analýza problémových oblastí

· Návrh zaviesť do systému funkcionalitu žiackej knižky

· Zvážiť spracovanie externých dát (hodnotení prospechu zo školy)

· Evidencia virtuálnych výsledkov

· Personalizácia – „milión detí, milión hier”

· Návrh kombinácie vnemov v hrách – napr. prezentácia zvuku alebo obrázku zvieraťa, pričom dieťa napíše prvé písmeno prezentovaného objektu

· Analýza domény – matematika

· Personalizácia príkladov (v závislosti od toho, kto stojí pri tabuli)

· Kategórie príkladov (násobilka, reťazovky, ...)

· Adaptívna obtiažnosť

· Zohľadňuje úspešnosť odpovedí a na jej základe upravuje zložitosť príkladov

· V prípade nízkej úspešnosti prechod do režimu učenia sa

· Opakovať príklady, ktoré boli v minulosti neúspešne zodpovedané

· Rozdelenie virtuálneho sveta na bezpečné a nebezpečné zóny

· Bezpečné zóny – vstup do sveta, dedinky, mestá, arény

· Nebezpečné zóny – okolie osídlených oblastí

· Konfrontácia (napr. s príšerami po vzore MMORPG) a skúšanie z nadobudnutých vedomostí

· Personalizácia s ohľadom na pohlavný dimorfizmus

· Použitie tutorov – zvieratok/postavičiek s vysokým „cute“ faktorom (Mokona Modoki)

· Skill balancing – výber vhodnej množiny skúšaných detí v prípade skupinovej hry, aby neboli vedomosti jednotlivých členov skupiny príliš nevyvážené

4.4.2 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.9
	Vytvoriť plán projektu
	18.10.2006
	23.10.2006
	MT
	Dokončené

	1.10
	Zapracovať požadované úpravy stránky
	18.10.2006
	23.10.2006
	AF
	Dokončené

	1.11
	Analyzovať Speech API v .NET 3.0 vs. MS Speech Server a odporučiť jednu z technológií
	19.10.2006
	23.10.2006
	RV
	Dokončené

	1.12
	Vymyslieť hry
	18.10.2006
	23.10.2006
	Všetci
	Prebieha

	1.13
	Zistiť aké predmety sa učia v prvom ročníku ZŠ a analyzovať možnosti implementácie
	19.10.2006
	23.10.2006
	AF
	Dokončené

	1.14
	Spraviť prieskum medzi deťmi aké hry sa hrajú a čo by sa im páčilo
	21.10.2006
	23.10.2006
	AF
	Prebieha

	1.15
	Zistiť ako sa počíta násobilka na prstoch
	18.10.2006
	23.10.2006
	MB
	Prebieha

	Nové úlohy

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.16
	Analyzovať ScrumWorks – podporný prostriedok na manažovanie softvérového projektu
	23.10.2006
	28.10.2006
	RV
	Plánované

	1.17
	Analýza hudobnej pedagogickej domény z hľadiska možnosti implementácie
	23.10.2006
	28.10.2006
	OV
	Plánované

	1.18
	Špecifikovať rámec
	23.10.2006
	28.10.2006
	Všetci
	Plánované

	1.19
	Vytvoriť počiatočnú verziu dokumentácie – šablóna, štruktúra (riadenie a výsledok)
	23.10.2006
	28.10.2006
	AF
	Plánované

	1.20
	Pridať do plánu Ganttov diagram
	23.10.2006
	28.10.2006
	MT
	Plánované

4.5 Zápisnica k 6. stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	5
	6.11.2006
	Soft. Štúdio
	13:30-15:00

	Pedagóg
	prof. Ing. Mária Bieliková, PhD.
	Vypracoval
	Andrej Frlička

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

	
	Bc. Oto Vozár
	(OV)
	

4.5.1 Priebeh stretnutia

· Diskusia ku dokumentácii

· V časti riadenia je potrebné pridať obsah

· Každá časť v sekcii riadenia je zložená z hlavičky a dokumentov, ktoré sa prikladajú v nezmenenej podobe

· Sekcia riadenia musí obsahovať obsah.

· Úvodný text ku každej kapitole v sekcii riadenia by mal zahŕňať popis kapitoly a dátumy pridania jednotlivých jej častí (napríklad ponuka).

· Preberací protokol, ako aj posudky nie sú povinnou súčasťou dokumentácie ku prvému kontrolnému bodu

· Diskusia o štandardoch

· Sekcia štandardy obsahuje najmä pravidlá písania dokumentácie, písania zdrojového kódu. Môže zahŕňať aj šablónu, podľa ktorej sa píšu dokumenty

· Do dokumentu je možné pridať upravené programovacie štandardy.

· Neskôr bude možné pridať aj štandardy práce s databázou

· Diskusia o vytvorených prototypoch

· Vhodné implementovať metronóm pre prácu so zložitejšími rytmami

· Vhodné naštudovať štandard midi (Musical Instrument Digital Interface). Ako abstrakciu nad nástrojmi a ako reprezentáciu hudobných

· Diskusia o hrách

· Dieťa by mohlo ukazovať časti tela na svojom vlastnom obraze

· Mohli by sa určovať mláďatá zvierat, pretože s tým majú deti obvykle problémy

· Hra čiarový labyrint by sa mohla uplatniť ako matematická hra (navigácia v priestore)

· Kolaboratívne kreslenie

· Zaujímavé by bolo zaradiť hru, ktorá by pomohla deťom uvedomiť si, že slová sú zložené z písmen – Deti s tým majú obvykle problémy

· SCRABBLE, HANGMAN – predstavitelia slovných hier

4.5.2 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.12
	Vymyslieť hry
	18.10.2006
	23.10.2006
	Všetci
	Prebieha

	1.14
	Spraviť prieskum medzi deťmi aké hry sa hrajú a čo by sa im páčilo
	21.10.2006
	23.10.2006
	AF
	Zrušené

	1.16
	Analyzovať ScrumWorks – podporný prostriedok na manažovanie softvérového projektu
	23.10.2006
	28.10.2006
	RV
	Prebieha

	1.20
	Pridať do plánu Ganttov diagram
	23.10.2006
	28.10.2006
	MT
	Dokončené

	1.21
	Príprava dokumentácie (analýza problému, špecifikácia požiadaviek a návrh riešenia)
	30.10.2006
	16.11.2006
	Všetci
	Prebieha

	1.22
	Vytvorenie prvého prototypu prostredia
	30.10.2006
	6.11.2006
	Všetci
	Dokončené

	Nové úlohy

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.23
	Pridať obsah do časti riadenia
	6.11.2006
	13.11.2006
	AF
	Plánované

	1.24
	Vytvoriť šablónu písania dokumentácie (Definovať štýly a ich použitie)
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.25
	Vytvoriť preberací protokol
	6.11.2006
	13.11.2006
	AF
	Plánované

	1.26
	Vytvoriť systém číslovania obrázkov
	6.11.2006
	13.11.2006
	AF
	Plánované

	1.27
	Vymyslieť spôsob zápisu rytmu
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.28
	Zistiť, či máme k dispozícii x-box
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.29
	Informácie o XNA z konferencie
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.30
	Pozrieť frekvenčnú analýzu
	6.11.2006
	13.11.2006
	Všetci
	Plánované

	1.31
	Navrhnúť sieťovú technológiu
	6.11.2006
	13.11.2006
	Všetci
	Plánované

	1.32
	Implementovať metronóm
	6.11.2006
	13.11.2006
	RV
	Plánované

4.6 Zápisnica k 6. stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	5
	6.11.2006
	Soft. Štúdio
	13:30-15:00

	Pedagóg
	prof. Ing. Mária Bieliková, PhD.
	Vypracoval
	Andrej Frlička

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

	
	Bc. Oto Vozár
	(OV)
	

4.6.1 Priebeh stretnutia

· Diskusia ku dokumentácii

· V časti riadenia je potrebné pridať obsah

· Každá časť v sekcii riadenia je zložená z hlavičky a dokumentov, ktoré sa prikladajú v nezmenenej podobe

· Sekcia riadenia musí obsahovať obsah.

· Úvodný text ku každej kapitole v sekcii riadenia by mal zahŕňať popis kapitoly a dátumy pridania jednotlivých jej častí (napríklad ponuka).

· Preberací protokol, ako aj posudky nie sú povinnou súčasťou dokumentácie ku prvému kontrolnému bodu

· Nutné zvoliť správne číslovanie obrázkov pri ich vysokom počte

· Diskusia o štandardoch

· Sekcia štandardy obsahuje najmä pravidlá písania dokumentácie, písania zdrojového kódu. Môže zahŕňať aj šablónu, podľa ktorej sa píšu dokumenty

· Do dokumentu je možné pridať upravené programovacie štandardy.

· Neskôr bude možné pridať aj štandardy práce s databázou

· Diskusia o vytvorených prototypoch

· Vhodné implementovať metronóm pre prácu so zložitejšími rytmami

· Vhodné naštudovať štandard MIDI (Musical Instrument Digital Interface). Ako abstrakciu nad nástrojmi a ako reprezentáciu hudobných udalostí.

· Vizualizovať závislosť chybovosti vyklepkávania od času (Tak aby prípadná chyba neznedohnotila skóre vo vyklepkávaní príliš)

· XNA sa javí ako vhodná platforma pre programovanie herného sveta

· Diskusia o hrách

· Dieťa by mohlo ukazovať časti tela na svojom vlastnom obraze

· Mohli by sa určovať mláďatá zvierat, pretože s tým majú deti obvykle problémy

· Hra čiarový labyrint by sa mohla uplatniť ako matematická hra (navigácia v priestore)

· Kolaboratívne kreslenie

· Zaujímavé by bolo zaradiť hru, ktorá by pomohla deťom uvedomiť si, že slová sú zložené z písmen – Deti s tým majú obvykle problémy

· SCRABBLE, HANGMAN – predstavitelia slovných hier

· Diskusia o hernom svete

· Na rôzne hry by mohli existovať rôzne ihriska, resp. rôzne arény

· Vytvoriť ligu pozostávajúcu z arén a trofejí

· Mohli by existovať lokálne (oblastne zamerané) alebo globálne súťaže

· Deti by si mohli hry zadávať vzájomne, čím by mohli meniť silu „útoku“ na súpera

· Mohlo by existovať niekoľko rôznych typov súbojov s rôznymi pravidlami

· Náročnosť súboju by závisela od úrovne znalostí (minimálna by sa zvolila podľa minimálnej skúsenosti najslabšieho člena

· Postavy by mohli mať špeciálne vlastnosti v závislosti od svojej úrovne

· Redukovať odčítavanie a znižovanie skóre , prípadne ho slušne zaobaliť.

· Herná mena by mohla existovať vo viacerých minciach (prínos ku matematike)

· Mágia, kúzla prípadne vedomosti by sa mohli využívať nielen v dueloch ale aj ako konštruktívny prvok (Liečenie, pomoc spoluhráčovi...), prípadne ako staviteľský prvok (čím by sa odbúrala nutnosť hernej meny a všetko by bolo priamo závislé na vedomostiach)

· Vznikol problém, ako kvantifikovať rozdiely medzi jednotlivými oblasťami výuky, a ako kvantifikovať jednotlivé výsledky hier (ako ich reprezentovať v hre).

4.6.2 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.12
	Vymyslieť hry
	18.10.2006
	23.10.2006
	Všetci
	Prebieha

	1.14
	Spraviť prieskum medzi deťmi aké hry sa hrajú a čo by sa im páčilo
	21.10.2006
	23.10.2006
	AF
	Zrušené

	1.16
	Analyzovať ScrumWorks – podporný prostriedok na manažovanie softvérového projektu
	23.10.2006
	28.10.2006
	RV
	Prebieha

	1.20
	Pridať do plánu Ganttov diagram
	23.10.2006
	28.10.2006
	MT
	Dokončené

	1.21
	Príprava dokumentácie (analýza problému, špecifikácia požiadaviek a návrh riešenia)
	30.10.2006
	16.11.2006
	Všetci
	Prebieha

	1.22
	Vytvorenie prvého prototypu prostredia
	30.10.2006
	6.11.2006
	Všetci
	Dokončené

	Nové úlohy

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.23
	Pridať obsah do časti riadenia
	6.11.2006
	13.11.2006
	AF
	Plánované

	1.24
	Vytvoriť šablónu písania dokumentácie (Definovať štýly a ich použitie)
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.25
	Vytvoriť preberací protokol
	6.11.2006
	13.11.2006
	AF
	Plánované

	1.26
	Vytvoriť systém číslovania obrázkov
	6.11.2006
	13.11.2006
	AF
	Plánované

	1.27
	Vymyslieť spôsob zápisu rytmu
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.28
	Zistiť, či máme k dispozícii x-box
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.29
	Informácie o XNA z konferencie
	6.11.2006
	13.11.2006
	OV
	Plánované

	1.30
	Pozrieť frekvenčnú analýzu
	6.11.2006
	13.11.2006
	Všetci
	Plánované

	1.31
	Navrhnúť sieťovú technológiu
	6.11.2006
	13.11.2006
	Všetci
	Plánované

	1.32
	Implementovať metronóm
	6.11.2006
	13.11.2006
	RV
	Plánované

4.7 Zápisnica k 7. stretnutiu

	Zápisnica č.
	Dátum
	Miesto
	Čas stretnutia

	7
	8.11.2006
	D212
	16:00-18:00

	Pedagóg
	prof. Ing. Mária Bieliková, PhD.
	Vypracoval
	Andrej Frlička

	Zúčastnení:
	Bc. Andrej Frlička
	(AF)
	

	
	Bc. Marek Tomša
	(MT)
	

	
	Bc. Richard Veselý
	(RV)
	

4.7.1 Priebeh stretnutia

· Diskusia o komunikácii

· Na komunikáciu medzi jednotlivými zložkami systému sa bude používať technológia WCF (Windows communication foundation) od firmy Microsoft. Technológia umožňuje obojsmernú riadenú komunikáciu s kontextom.

· Problémom pri komunikácii môže byť viacero klientov, ktorý majú na server protichodné požiadavky. Situáciu je možné riešiť dvomi spôsobmi:

· využitím stavových automatov

· dekomponovaním servera a rozdelením zodpovednosti na jednotlivé jeho časti.

· Diskusia o prostriedkoch na manažment tímu

· Po prekonzultovaní vlastností a požiadaviek na softvér riadenia projektu sme sa rozhodli využiť vlastnosti systému DotPreject, ktorý ponúka prehľadné webové rozhranie.

· Diskusia o architektúre komunikácie

· Klient sa bude pripájať na webový server, ktorý mu poskytne nasledujúce možnosti.

· Ponúkne mu informácie o aktuálnom stave výrezu sveta, v ktorom sa práve nachádza.

· Pomôže mu vytvoriť, resp. sprostredkovať komunikáciu s jedným alebo viacerými ďalšími klientmi
· Poskytne mu informácie o pripojení na jednotlivé dátové webové služby.

· Zabezpečí zber štatistických informácií o používateľovi

· Komunikácia bude prebiehať vo viacerých komunikačných kanáloch:

· Textový kanál

· Zvukový kanál

· Audiovizuálny kanál

· V prípade potreby server len pomôže vytvoriť spojenie (audioviz. Kanál) a ďalej ho nesleduje.

· Diskusia o komunikačných vlastnostiach klienta, servera a webových služieb

· Na serveri budú dáta neustále zavedené v pamäti, aby sa zvýšila rýchlosť a spoľahlivosť práce s nimi. Dáta sa budú v pravidelných intervaloch alebo počas plánovanej odstávky servera serializovať na pevný disk, aby sa zamedzilo prípadným stratám v profiloch používateľov.

· Ukladanie dát na server bude v prvom priblížení blokujúce.

· Herné webové služby budú sprístupnene bez potreby autentifikácie.

· Klient eviduje informácie o predošlom stave herného okna, a aktualizuje ich podľa nového stavu. Ich diferenciou a prepočtami zabezpečuje plynulosť pohybu hráčov na mape aj v prípade zníženia dátovej šírky siete.

· Diskusia o mapovom serveri

· Mapy budú uložené aj na klientovi aj na serveri. Klient si v prípade ich neaktuálnosti mapy od servera vyžiada.

· Na mapovom serveri bude bežať niekoľko inštancií objektov nazývaných svety, a niekoľko inštancií nazývaných hráč(a samozrejme aj ďalšie objekty)

· Svet je objekt, ktorý združuje informácie o hernej ploche po ktorej sa hráči pohybujú.

· Hráč je objekt, ktorý združuje informácie o pozícii používateľa v ňom.

· Bude existovať niekoľko svetov, ktoré budú navzájom prepojené. Svet je napríklad aj dungeon.... Medzi svetmi existujú spojnice. Server zabezpečiť prechod hráčov medzi svetmi.

· Server eviduje, kde sa hrá nachádza a informuje tých hráčov, čo sú v jeho blízkosti o zmenách jeho stavu. Server zabezpečí v prípade zmeny kontextu hráča (napríklad uprostred hry) , že ho nebude informovať o dianí v hernom svete.

4.7.2 Úlohy

	Úlohy z minula

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.12
	Vymyslieť hry
	18.10.2006
	23.10.2006
	Všetci
	Prebieha

	1.16
	Analyzovať ScrumWorks – podporný prostriedok na manažovanie softvérového projektu
	23.10.2006
	28.10.2006
	RV
	Dokončené

	1.21
	Príprava dokumentácie (analýza problému, špecifikácia požiadaviek a návrh riešenia)
	30.10.2006
	16.11.2006
	Všetci
	Prebieha

	1.23
	Pridať obsah do časti riadenia
	6.11.2006
	13.11.2006
	AF
	Prebieha

	1.24
	Vytvoriť šablónu písania dokumentácie (Definovať štýly a ich použitie)
	6.11.2006
	13.11.2006
	OV
	Prebieha

	1.25
	Vytvoriť preberací protokol
	6.11.2006
	13.11.2006
	AF
	Prebieha

	1.26
	Vytvoriť systém číslovania obrázkov
	6.11.2006
	13.11.2006
	AF
	Prebieha

	1.27
	Vymyslieť spôsob zápisu rytmu
	6.11.2006
	13.11.2006
	OV
	Prebieha

	1.28
	Zistiť, či máme k dispozícii x-box
	6.11.2006
	13.11.2006
	OV
	Prebieha

	1.29
	Informácie o XNA z konferencie
	6.11.2006
	13.11.2006
	OV
	Prebieha

	1.30
	Pozrieť frekvenčnú analýzu
	6.11.2006
	13.11.2006
	Všetci
	Prebieha

	1.31
	Navrhnúť sieťovú technológiu
	6.11.2006
	13.11.2006
	Všetci
	Prebieha

	1.32
	Implementovať metronóm
	6.11.2006
	13.11.2006
	RV
	Prebieha

	Nové úlohy

	ID
	Opis úlohy
	Začaté
	Plánované
	Kto
	Stav (%)

	1.33
	Nainštalovať DotPreject do webového sídla tímu
	8.11.2006
	13.11.2006
	AF
	Plánované

5 Štandardy tímu
Kapitola štandardy tímu sa zaoberá metódami, ktoré sú platné pre všetkých členov tímu. Obsahujú základné informácie o často používaných postupoch pri práci vo vývojových prostrediach ako aj pri písaní projektovej dokumentácie.
5.1 Tvorba dokumentácie

Podkapitola obsahuje kostru dokumentu, ktorý sa používa ako podklad pri písaní dokumentácie ku tímovému projektu. Forma textu je upravená pre potreby dokumentu riadenia projektu.
5.1.1 Titulná strana

Podkapitola zobrazuje šablónu titulnej strany.

FAKULTA INFORMATIKY

A INFORMAČNÝCH TECHNOLÓGIÍ

Titul
Podtitul 1
Podtitul 2

	Vedúci projektu:
	prof. Ing. Mária Bieliková PhD.
	Autori :
	Bc. Andrej Frlička

Bc. Marek Tomša

Bc. Richard Veselý

Bc. Oto Vozár

	Akademický rok:
Semester:
	2006/2007
Zimný
	
	

5.1.2 Štrukturovanie textu

Kapitola rozoberá štrukturovanie textu či už pre potreby sémantického oddelenia a navigácie.
Kapitoly
Kapitolám zodpovedá štýl Heading 1. Podkapitolám zodpovedajú štýly Heading 2 resp. 3. V prípade, že potrebujeme text jemnejšie štrukturovať, volíme Štýl Heading 4 a 5.
Pre každú kapitolu je zavedené samostatné číslovanie strán.
Zoznamy

Ak vyvstane potreba štrukturovať text kvôli prehľadnosti môžeme využiť číslované alebo nečíslované zoznamy.

Príklad nečíslovaného zoznamu ktorý tvoríme štýlom Bulleted:
· Položka 1. úrovne
· Položka 2. úrovne
· Položka 3. úrovne

· Položka 3. úrovne

Príklad číslovaného zoznamu ktorý tvoríme štýlom Numbered:
1. Položka 1.úrovne

a. Položka 2. úrovne

i. Položka 3. úrovne

Tabuľky
Tabuľky majú štýl Mriežka tabuľky a ich text je potrebné nastaviť na štýl Text tabuľky. Tabuľku uvádzame textom, ktorý má štýl popis.

Tabuľka 5‑1. Ukážka tvorby tabuľky
	X
	Y

	Bunka 1
	Bunka 2

5.1.3 Formátovanie textu

Číslovanie

Kapitoly a podkapitoly číslujeme arabskými číslicami ktoré sú oddelené bodkami.

Popisy obrázkov, tabuliek, príkladov aj vzorcov zahŕňajú čísla kapitol.
Zdrojový kód

Zdrojový kód v texte uvádzame štandardným spôsobom a nastavujeme mu štýl code, čím sa odlíši od okolitého textu. V prípade, že ide o samostatne stojaci dôležitý výrez z kódu, je vhodné pridať ku nemu popis.
public bool Equals(VariableBinder other)

{
Dictionary<string, string>.ValueCollection.Enumerator x= this.binding.Values.GetEnumerator();

Dictionary<string, string>.ValueCollection.Enumerator x2= this.binding.Values.GetEnumerator();

for (int i = 0; i < binding.Keys.Count; i++)

 {

if (x.Current != x2.Current) return false;

 }

return true;

}
Príklad 5‑1. Titulok príkladu.

Poznámky

Poznámky do textu uvádzame za pomoci štýlu DefCu.
Toto je text poznámky, ktorý je iba skúšobný. Predstavuje ukážku formátovania takéhoto typu textu.
Vzorce

V prípade, že chceme uviesť vzorec, použijeme štýl Equation. Popis použitého vzorca uvedieme v štýlom popis.
	
	A = 3*B + C
	

Vzorec 5‑1Výpočet lineárnej rovnice

Obrázky
Obrázky definujú vkladáme do textu priamo a využívame na ich správne naformátovanie štýl figure. Pod každým obrázkom vložíme popis, čím ho jednoznačne identifikujeme. Popis obsahuje číslo kapitoly, v ktorej sa text nachádza a číslo obrázku v rámci kapitoly.
[image: image2.jpg]#nagm%t//up

Obrázok 5‑1. Logo imagine cup.
5.1.4 Odkazovanie v texte

Referencie

Referencie na objekty v dokumente vkladáme pomocou príkazu :

Insert – Reference – Cross-reference.
Nastavíme typ referencie, zvolíme požadovaný objekt zo zoznamu a do textu sa automaticky vloží požadovaná referencia.

Literatúra

Použité zdroje sa uvádzajú vo formáte, ktorý predpisuje príslušná norma. Literatúra sa zapisuje použitím štýlov reference a reference name. Štýl reference name je založený na štýle reference ku ktorému pridáva kapitálky.

1. Bieliková, M. (2003). Adaptívna prezentácia hypermédií na webe. In: Proc. of DATAKON 2003, L. Popelínský (Ed.), Brno, Október 18-21, pp. 72—91.

5.2 Práca v platforme .Net framework
Dokument poukazuje na základy práce v prostredí .Net framework, zvýrazňuje vhodné praktiky pri programovaní a pomáha odstraňovať nevhodné návyky.

5.2.1 Menné konvencie
Veľké a malé písmená
Existujú dva základné štýly použitia veľkých a malých písmen.

Pascal Casing

Pascal Casing dáva veľké písmeno na začiatok každého logického slova.

PrepertyDescriptor

IOStream

HtmlTag

Používajte Pascal Casing pre všetky verejné rozhrania (viď ďalej).

Camel Casing

Camel Casing dáva veľké písmeno na začiatok každého logického slova s výnimkou prvého.
propertyDescriptor

ioStream

htmlTag

Používajte Camel Casing pre názvy parametrov.

5.2.1.1.1 Pravidla použitia
Nasledujúca tabuľka definuje použitie štýlov pre jednotlivé prvky kódu

	Typ
	Casing
	Príklad

	Class
	Pascal
	public class StreamReader

	Enumeration type
	Pascal
	public enum FileMode

	Enumeration value
	Pascal
	FileMode.Append

	Event
	Pascal
	public class Form

{

 public event EventHandler Closed

}

	Exception class
	Pascal
	public class FileNotFoundException

	Fields
	Pascal
	private messageQueue

{

 public static readonly TimeSpan InfiniteTimeout;

}

	Interface
	Pascal
	public interface IEnumerable

	Method
	Pascal
	public class Object

{

 public string ToString()

}

	Namespace
	Pascal
	namespace System.IO

	Property
	Pascal
	public class String

{

 public int Length { get; }

}

	Parameter
	Camel
	public class Convert

{

 public static int ToInt32(string value);

}

Nezneužívajte veľké a malé písmená na vytváranie metód, ktoré sa navzájom líšia iba vo veľkosti písmen. Napríklad:

namespace ee.cummings;

namespace Ee.Cummings;

void foo(string a, string A)

int Foo {get, set};

int FOO {get, set}

5.2.1.1.2 Výber slov
Používajte pre názvy verejného rozhrania anglický jazyk. Používajte plný rozsah slov ,z názvu metódy by malo byť zrejmé aký je jej účel.

Nepoužívajte podtržníky , pomlčky ani žiadne iné pomocné znaky.

Nepoužívajte kľúčové slová štandardne používané v programovacích jazykoch.

5.2.1.1.3 Skratky
Nepoužívajte skrátené verzie slov. Lepšie je napísať GetWindow ako GetWin.

Nepoužívajte akronymy ktoré nie sú všeobecne známe. Pre akronymy dlhšie ako 2 znaky použite Pascal Casing, príklad HtmlButton ale napr. System.IO (2 znaky).

5.2.1.1.4 Oddelenie názvu typu a názvu premenné
Pre názvy premenných (parametrov) používajte meno, ktoré vystihuje jej účel a nie meno odvodené od typu premennej.

V prípade že u premennej nepoznáte jej sémantický význam použite generické meno. Príklad:

void Write(double value);

void Write(float value);

Názvy pre Namespace

Namespace alebo menný priestor slúži na hierarchické rozčlenenie typov do logickej štruktúry. Šablóna pre názov menného priestoru má vzor:

<Company>.<Technológie/Produkt>.<interné logické členenie>

Príklad :

Microsoft.VisualStudio.Design

Ako názov namespace používajte Pascal Casing a tam, kde je to možné (mimo skratiek a obchodných mien) množné číslo.

Príklad:

System.Collections je lepší ako System.Collection

Nepoužívajte rovnaké meno pre triedy a menné priestory.

Názvy typov
Typ je základný stavebný kameň .Net Frameworku. Pojem typ zahrnuje jednoduché dátové štruktúry ako napr. číslo, dátum , ako aj zložitejšie konštrukcie ako napr. . triedy a štruktúry.

Pre názvy typov odvodených od štandardných systémových typov platí nasledujúca tabuľka.

	Základné Typy
	Názov odvozeného typu

	System.Attribute
	suffix “Attribute”

	System.Collections.Icollection
	suffix “Collection”

	System.Delegate
	suffix “EventHandler” pre obsluhu událaostí a “Callback” pre callback.

nepoužívajte suffix pre čistý “Delegate”

	System.EventArgs
	suffix “EventArgs”

	System.Exception
	suffix “Exception”

Príklad, ClickedEventArgs je typ odvodený od System.EventArgs.

5.2.1.1.5 Názvy tried a štruktúr
Triedy a štruktúry reprezentujú dátové typy, ktoré obaľujú dáta a metódy, ktoré s nimi pracujú. Pre názvy používajte podstatné mená v Pascal Casing a nepoužívajte prefixy (ako napr. C pre class). Pre odvozené triedy je možné použiť zložené slová.

Príklad:

public class FileStream : Stream

{…

}
5.2.1.1.6 Názvy pre interface

Interface je špeciálny typ , ktorý predstavuje definíciu kontraktu , ktorý musí byť pri implementácii dodržaný. Pre názvy interface sa opäť použije Pascal Casing a striktne prefix I pred názvom každého interface.

5.2.1.1.7 Názvy enumeračných typov
Enumeračný typ (enum) je špeciálny typ , ktorý dáva alternatívne pomenovanie hodnotám primitívneho dátového typu (typicky integer).

Pre názvy enumeračných typov sa používa Pascal Casing tak pre názov, ako aj pre hodnoty enumeračného typu. Nepoužívajte prefixy ani sufixy (napríklad adXXX pre ADO enumeračné typy)

Príklad:

Nesprávne:

public enum PhotoshopMode

{

 PhotoshopModeBitmap = 0,

 PhotoshopModeGrayscale = 1,

 PhotoshopModeIndexed = 2,

}

Správne:

public enum PhotoshopMode

{

 Bitmap = 0,

 Grayscale = 1,

 Indexed = 2,

}

Názvy členov
Triedy, štruktúry , interface reprezentujú typy s vnútornou štruktúrou. Vnútorný prvok sa nazýva člen (member) a môže to byť :

· Metóda

· Udalosť
· Vlastnosť
· Pole (field, nie array)

5.2.1.1.8 Názvy metód

Pre názvy metód používajte slovesa a Pascal Casing, nepoužívajte maďarskou notáciu. Príklad:

RemoveAll()

GetCharArray()

5.2.1.1.9 Názvy vlastností (property)

Pre názvy vlastností používajte podstatná mená a Pascal Casing, nepoužívajte maďarskou notáciu.

Príklad:

public class Button

{

 public Color BackColor
{

}

}

Nepoužívajte názvy, ku ktorým existuje obdobná metóda s prefixom Get, príklad:

Nesprávne
public string TextWriter

{

get {...}

set {...}

}

public string GetTextWriter()

{

...

}

Pre vlastnosti typu boolean používajte pozitívne názvy

Príklad:

· CanSeek je lepší ako CantSeek.

Voliteľne môžete použiť prefix Is, Can, Has, ale len tam, kde to zvyšuje čitateľnosť.

Príklad:

CanRead je zrozumiteľnejší ako Readable ale naopak Created je vhodnejší ako IsCreated.

5.2.1.1.10 Názvy udalostí
Pre názov udalostí používajte EventHandler sufix a Pascal Casing, nepoužívajte maďarskou notáciu.

Príklad:

public delegate void ClickedEventHandler(object sender, ClickedEventArgs e);

Vždy používajte 2 parametre - sender a e.

Príklad:

public delegate void <Some>EventHandler(object sender, <Some>EventArgs e);

Pre triedy argumentov používajte sufix EventArgs.

Príklad:

public class ClickedEventArgs : EventArgs

{

 int x;

 int y;

 public ClickedEventArgs (int x, int y)

{

 this.x = x;

 this.y = y;

 }

 public int X { get { return x; } }

 public int Y { get { return y; } }

}

Pre názvy udalostí reprezentujúce koncept pred-po akcii, používajte priebehový a minulý čas (a nie BeforeXxx\AfterXxx vzor). Napríklad akcia close bude vystavovať udalosti Closing a Closed.

5.2.1.1.11 Názvy polí (fields)

Pre názvy polí používajte podstatná mená a camel casing s prefixom „_“. Neexistujú public fields, všetko musí byť zabalené, pomocou vlastnosti alebo metódy.

Názvy argumentov
Metódy typicky majú argumenty. Pre názvy argumentov používajte camel Casing a nie maďarskú notáciu. Používajte popisné a výstižné názvy parametrov založené na význame a nie na jeho type. Nepoužívajte vyhradené(reserved) parametre pre potreby budúcich verzií. V prípade potreby je možné metódu jednoducho preťažiť.

Názvy Assembly/DLL

Assembly reprezentuje základnú distribučnú jednotku aplikácie v .Net Frameworku

Názov assembly je tvorený podľa nasledujúceho vzoru:

<Company>.<Component>.dll

Príklad:

Manawydan.Framework.dll

5.2.2 Pravidlá dizajnu
Nasledujúca kapitola obsahuje pravidlá a odporučenia , ktoré je vhodné aplikovať pri návrhu typov a ich vnútornej implementácii.

Návrh typov
Pri návrhu všetkých typov dodržujte nasledujúce obecné pravidlá:

· Definície typu musia byť vo vnútri namespace.

· Používajte častejšie triedy ako interface
· Každá trieda má obsahovať explicitní konštruktor. V prípade, že trieda nie je verejne inštancovateľná , deklarujte konštruktor ako privátny.

5.2.2.1.1 Návrh tried pre dedičnosť
Základné triedy (predkovia pri implementácii dedičnosti) reprezentujú vhodný spôsob zaobalenia spoločnej funkcionality medzi niekoľkými triedami s možnosťou špecializácie v potomkoch. Z pohľadu verzií , je dedičnosť tried flexibilnejšia ako použitie interface

Interface preto používajte keď:

Triedy, ktoré navzájom nesúvisia majú poskytovať rovnaké rozhraní.
Triedy dedia od iných tried.

V ostatných prípadoch je implementácia dedičnosti lepšia.

Implementujte chránené (protected) virtuálne metódy na základných triedach, ktoré umožnia potomkom vlastní rozšírení základnej funkcionality.

Verejné rozhranie (public metódy a vlastnosti) má poskytovať funkcionalitu pre používateľa triedy a jeho metódy nesmú byť virtuálne.

Príklad:

public Control

{
 //…
 public void SetBounds(int x, int y, int width, int height)

{

 …
 SetBoundsImpl (…);
 }

 public void SetBounds(int x, int y, int width, int height,

 BoundsSpecified specified)

{

 …
 SetBoundsImpl (…);
 }

 protected virtual void SetBoundsImpl(int x, int y, int width,

int height, BoundsSpecified specified)

{
 // Do the real work here.
 }
}

Definujte chránený (protected) konštruktor na všetkých abstraktných triedach, a zároveň nesmie existovať konštruktor verejný.

V potomkoch nemeňte prístupový modifikátor (public,protected,private) k metódam.

Nepoužívajte “sealing” tried, pokiaľ to nie je naozaj nutné.

Obmedzte počet a komplexnosť virtuálnych metód.

V prípade preťažovaných metód implementujte ako virtuálne tie s najkomplexnejším rozhraním, príklad:

public class Foo

{
 private const string defaultForA = "a default";
 private const int defaultForB = 42;
 protected void Bar()

{
 Bar(defaultForA, defaultForB);
 }
 protected void Bar (string a)

{
 Bar(a, defaultForB);
 }
 protected virtual void Bar (string a, int b)

{
 // core implementation here
 }
}

5.2.2.1.2 Návrh interface

Pred samotnou implementáciou interface zvážte, či namiesto interface nepoužiť triedu alebo abstraktní triedu.

Je vhodné poskytnúť triedu, ktorá reprezentuje základnú implementácii interface.

Príklad:

System.Collections.DictionaryBase je default implementácia pre System.Collections.IDictionary interface.

Nepoužívajte interface len na označenie triedy (interface bez jediného člena). Na označenie triedy používajte vlastní atribúty.

Príklad:

	Nesprávne

public interface IImmutable {} // empty interface

public class String : IImmutable { …}

Správne
[Immutable]

public class Key {…}

Výnimkou môže byť nutnosť kontroly označenia v okamihu kompilácie (atribúty sa kontrolujú za behu). Príklad:

public interface ITextSerializable {} // empty interface

public void Serialize(ITextSerializable item)

{

 // use reflection to serialize all public properties

 …

}

Návrh hodnotových typov (štruktúr)

Používajte štruktúry pre implementáciu typu v nasledujúcich prípadoch:

Typ sa chová ako primitívni typ (int, date).

Veľkosť inštancie typov je <= 16 bytov
Typ je nemenný
Chcete aby sa choval ako “value type” (napr. z dôvodov správy pamäti).

5.2.2.1.3 Návrh enumeračných typov
· Používajte enumeračné typy (enum) na podporu silného typovania parametrov, vlastností a návratových hodnôt.

Príklad:

public enum TypeCode

{

 Boolean,

 Byte,

 Char,

 DateTime,

 …

}

Convert.ChangeType(object value, TypeCode typeCode);

· Preferujte enumeračné typy pred statickými konštantami.

· Nepoužívajte enumeračné typy pre neuzavreté zoznamy (napr. verzie OS a pod.).

· Používajte System.FlagsAttribute atribút pre enumerácie len v prípade, keď ohodnotenia typov reprezentujú bitovú masku. Pre bitové masky je vhodné poskytnúť hodnoty, ktoré reprezentujú časté kombinácie bitov
Príklad:

[Flags()]
public enum WatcherChangeTypes

{

 Created = 1,

 Deleted = 2,

 Changed = 4,

 Renamed = 8,

 All = Created | Deleted | Changed | Renamed

}

· Vykonávajte kontrolu argumentu i u enumeračných typov.

Príklad:

public void PickColor(Color color)

{

switch (color)

{

case Red:

...

break;

case Blue:

...

break;

case Green:

...

break;

//repeat for all known values of Color

default:

throw new ArgumentOutOfRangeException();

break;

 }
}

· Nepoužívajte enumeračné typy s jedinou hodnotou.

Návrh členov (members)

5.2.2.1.4 Návrh vlastností (property)

· Implementujte zmysluplné implicitné hodnoty.

· Zachovávajte pôvodnú hodnotu v prípade, keď kód pre “set” vyvolá výnimku. Vlastnosti môžu byť nastavované v rôznom poradí, vnútorná implementácia by mala byť bezstavcová voči ostatným vlastnostiam.

· Je vhodné vystaviť informáciu o zmene vlastnosti formou udalostí, typicky sa implementujú udalostí pred a po zmene.

Implementácia udalostí pred zmenou môže zmenu vlastnosti prerušiť vyvolaním výnimky. Meno udalostí sa skladá z mená vlastnosti a sufixu “ing” (napr. TextChanging).
Príklad:

public class TextBox

{

 public event TextChangingEventHandler TextChanging;

 public string Text

 {

 get { return text; }

 set

 {

 if (text != value)

 {

 OnTextChanging(Event.Empty);

 text = value;

 }

 }

 }

}

Implementácia udalostí po zmene neumožňuje zrušenie nastavenia hodnoty vlastnosti, umožňuje ale implementáciu “aplikačného triggeru”. Meno udalostí sa skladá z mená vlastnosti a sufixu “ed” (napr. TextChanged).
Príklad:

class TextBox

{

 public event TextChangedEventHandler TextChanged;

 public event TextChangingEventHandler TextChanging;

 public string Text

 {

 get { return text; }

 set

 {

 if (text != value)

 {

 OnTextChanging(Event.Empty);

 text = value;

 OnTextChanged(…);

 }

 }

 }

 protected virtual void OnTextChanged(…)

 {

 TextChanged(this,…);

 }

 protected virtual void OnTextChanging(…)

 {

 TextChanging(this,…);

 }

}

Nevyvolávajte výnimky v metóde “get” vlastnosti.

5.2.2.1.5 Vlastnosti vs. Metódy
Vlastnosti použite keď

Člen reprezentuje logické zhromaždisko dát
string Name { get, set }

// Name reprezentuje logický atribut triedy, proto by měl být

// implementován ako property

Guid Guid.GetNext()

// Guid obvykle nemá atribut Next, takže je vhodné implementovat

// ako metodu

Metódu použite keď
Operácia reprezentuje konverziu (Object.ToString())

Operácia je časovo náročná (nastavení vlastnosti by nemalo byť náročné)

Opakované volanie nemusí skončiť rovnakým výsledkom.

Člen reprezentuje pole.

5.2.2.1.6 Read-Only a Write-Only vlastnosti

· Používajte read-only vlastnosti keď nie je povolená zmena vlastnosti po inicializácii.

· Nepoužívajte set-only vlastnosti. V tomto prípade implementujte metódu.

5.2.2.1.7 Návrh indexerov
· Používajte indexery na sprístupnenie informácie v poli.

public char this[int index] {get;}

· Používajte iba System.Int32, System.Int64, System.String, a System.Object ako index indexeru. V prípade iného alebo zložitejšieho indexu je vhodné implementovať namiesto indexeru metódu.

5.2.2.1.8 Návrh udalostí
· Návratová hodnota udalostí musí byť void.

Príklad:

public delegate void ClickedEventHandler(object sender, ClickedEventArgs e);

· V prípade, že udalosť zaobaľuje špecifické dáta, je nutné implementovať dátovou triedu pre argumenty udalostí. Tato trieda musí byť zdedená od System.EventArgs.

Príklad:

public class ClickedEventArgs : EventArgs

{

}

· Vyvolávajte (raise) udalostí v chránených virtuálnych metódach triedy.

· Implementujte udalosť s podporou možnosti zrušení akcie.

5.2.2.1.9 Metódy
· Implicitne používajte nevirtuálne metódy.

· Nenavrhujte metódy, ktoré nemôžu byť volány na inštancii triedy inicializované základným konštruktorom. Ak metóda aj tak vyžaduje explicitnú inicializáciu, ošetrite v implementácii metódy prípad volanie pred explicitnou inicializáciou - vyvolajte výnimku ktorá jednoznačne deklaruje čo má byť inicializované.

5.2.2.1.10 Preťažovanie metód
· Používajte preťažovanie, keď implementujete rôzne metódy z rovnakým sémantickým významom.

· Používajte korektné implicitní hodnoty. V skupine preťažených metód, metóda s najväčším počtom parametrov by mala nazývať parametre ktoré indikujú zmenu oproti implicitnej hodnote v metóde s menším počtom parametrov. Typicky sa to týka parametrov typu boolean. V nasledujúcom príklade bude 1. metóda vyhľadávať v case sensitive módu. V metóde 2 je druhý parameter nazývaný ignoreCase namiesto caseSensitive pretože lepšie indikuje ako sa mení implicitné správanie.

· Príklad:

1: MethodInfo Type.GetMethod(String name); //ignoreCase = false

2: MethodInfo Type.GetMethod (String name, boolean ignoreCase);

· Typicky sa používa pre implicitné hodnoty nulový stav (0, 0.0, false, "", atď.).

· Neimplementujte skupiny metód, kde metóda s najmenším počtom parametrov má viac ako 3 parametre. V prípade konštruktora je možné povoliť 5 parametrov.

· Dodržujte konzistenciu v radení a pomenovávaní parametrov.

Príklad:

public class Foo

{

 readonly string defaultForA = "default value for a";

 readonly int defaultForB = 42;

 readonly double defaultForC = 68.90;

 public void Bar()

{

 Bar(defaultForA, defaultForB, defaultForC);

 }

 public void Bar(string a)

{

 Bar(a, defaultForB, defaultForC);

 }

 public void Bar(string a, int b)

{

 Bar(a, b, defaultForC);

 }

 public void Bar(string a, int b, double c)

{

 // core implementation here

 }

}

5.2.2.1.11 Premenlivý počet argumentov
Metódy, ktoré môžu byť volány s neobmedzeným počtom parametrov sú implementované s posledným argumentom ako

Pole

string String.Format(string format, object[] parameters);

 String.Format("{0} {1} {2} {3}", new object[] {1, 2, 3, 4});

· Za pomoci kľúčového slova params

 string String.Format(string format, params object[] parameters);

 String.Format("{0} {1} {2} {3}", 1, 2, 3, 4);

Používajte params namiesto množiny preťažovaných metód s parametrami rovnakého významu.

Návrh konštruktorov
· Implementujte jednoduché, v optimálnom prípade bezparametrické konštruktory
V prípade, že trieda slúži ako kontejner statických metód implementujte iba privátny konštruktor
public sealed class Enviroment
{
 private Enviroment(); // Prevents the class from being created.
 //…
}

· Implementujte statické konštruktory ako privátne.

· Nevolajte virtuálne metódy rovnakej triedy z konštruktorov.

· Používajte výnimky pre chybové stavy i v konštruktoroch.

· Poskytujte parametre v konštruktoroch pre explicitné nastavenia niekoľkých vlastností jedným volaním.

5.2.2.1.12 Dátové pole

· Nevystavujte inštančné dátové premenné(fields), dáta vystavte vždy cez vlastnosti.

· Používajte konštantné pole pre dáta, ktoré sa nikdy nezmenia.

Príklad:

public struct Int32

{

 public const int MaxValue = 0x7fffffff;

 public const int MinValue = unchecked((int)0x80000000);

}

· Používajte static readonly pole pre preddefinované inštancie objektov.

Príklad:

public struct Color{

 public static readonly Color Red = new Color(0x0000FF);

 public static readonly Color Green = new Color(0x00FF00);

 public static readonly Color Blue = new Color(0xFF0000);

 public static readonly Color Black = new Color(0x000000);

 public static readonly Color White = new Color(0xFFFFFF);

 public Color(int rgb)

{ }

 public Color(byte r, byte g, byte b)

{ }

 public byte R

{

get {...}

}

 public byte G

{

get {...}

}

 public byte B

{

get {...}

}

}

· Nepoužívajte prefixy, ani pre rozlíšenie statický - instanční.

Návrh parametrov
5.2.2.1.13 Argumenty

· Kontrolujte platnosť argumentov v každej public alebo protected metóde a prípadne vyvolajte patričné výnimky. Typicky ide o potomka System.ArgumentException.

Príklad:

class Foo

{

public int Count

{

get

{

return count;

 }

 set

{

if (value < 0 || value >= MaxValue)

throw new ArgumentOutOfRangeException(Sys.GetString(

"InvalidArgument",

"value",

value.ToString()

));

count = value;

}

}

public void Select(int start, int end)

{

if (start < 0)

throw new ArgumentException(Sys.GetString(

"InvalidArgument",

"start",

start.ToString()

));

 if (end < start)

 throw new ArgumentException(Sys.GetString(

"InvalidArgument",

"end",

end.ToString()

));

}

}

5.2.2.1.14 Odovzdávanie parametrov
· Vyhýbajte sa odovzdávaniu “reference types” referencií, odovzdávajte radšej hodnotou. Aj v tomto prípade sa totiž odovzdáva len odkaz na odovzdávanú inštanciu a to je vo väčšine prípadov vyhovujúce.

· Nevystavujte metódy, ktoré majú ako parametre ukazovateľ alebo viacrozmerné pole.

5.2.2.1.15 Oddelenie parametrov a vnútorných členov
· Používajte kľúčové slovo “this” keď referencujete inštančné členy.

Príklad:

Nesprávne
public Employee (string myName, int myExtension)

{

name = myName;

extension = myExtension;

}

Správne
public Employee (string name, int extension)

{

this.name = name;

this.extension = extension;

}

5.2.3 Rozvrhnutie kódu

Zátvorky
Používajte zátvorky vo vnútri výrazu keď je použitých niekoľko operátorov (+, -, *, /, <, =, >, <>, alebo logický operátor). Eliminuje sa tak diskusia o prednosti operátorov.

Príklad:

Nesprávne

if (isOpen && isAvailable || isRequired)

 total = fees + subtotal * tax;

Správne
if (isOpen && (isAvailable || isRequired))

 total = (fees + subtotal) * tax;

Otváracia zátvorka bloku kódu má byť na novom riadku ako začiatok bloku. (dá sa nastaviť vo Visual Studiu) .

Príklad:

Dohodnuté použitie zátvoriek

if (a > 2)

{

 b = 3;

 c = 4;

 if (d < 5)

 {

 e = 6;

 }

 if (f < 5)

 {

 g = 6;

 h = 7;

 }

 i = 8;

}

Nevhodné použití zátvoriek

if (a > 2) {

 b = 3;

 c = 4;

 if (d < 5) {

 e = 6;

 }

 if (f < 5) {

 g = 6;

 h = 7;

 }

 i = 8;

}

Jedinou výnimkou , keď sa pripúšťa použitie otváracej zátvorky na tom istom riadku je použitie v definícii vlastnosti pri get a set. Ak obsahuje len jeden príkaz. potom môže vyzerať takto:

public string Width

{

get{ return this._width;}

set{ this._width = value;}

}

Medzery
Používajte medzery na zvýšenie čitateľnosti logických výrazov. Oddeľujte kľúčové slova od identifikátorov, operátorov a ostatných reťazcov.

Pridajte medzeru k vonkajšej strane zátvoriek s výnimkou parametrov metódy, nie je dôvod pridávať medzeru z vnútornej strany zátvoriek.

Príklad:

Nesprávne
if((subtotal<total)&&((total<credit))

 tax=invoice.CalculateTax () ;

Správne
if ((subtotal < total) && (total < credit))

 tax=invoice.CalculateTax();

Riadok kódu

Na jednom riadku kódu umiestnite len jednu dátovú deklaráciu.

Príklad:

Nesprávne

int customerCount; int vendorCount;
 string customerName, vendorName;

Správne
int customerCount;
int vendorCount;

string customerName;
string vendorName;

Parametre a výrazy sa snažte udržať v jednom riadku

Príklad:

Nesprávne
if ((total > creditLimit) &&

 (requireAuthorization == true))

 order.CalcTotal(subtotal,
 miscellaneous,

 fees,

 freight);

Správne
if ((total > creditLimit) && (requireAuthorization == true))

 order.CalcTotal(subtotal, miscellaneous, fees, freight);

Ak už musíte výraz rozdeliť, umiestnite logický operátor spojujúci výrazy na začiatok nového riadku.

Nesprávne
if ((total > creditLimit) &&

(requireAuthorization == true))

Správne
if ((total > creditLimit)

&& (requireAuthorization == true))

Tabulátory

Používajte tabulátor.

Tabulátory je treba zachovávať a nenahradzovať ich výskyt používaním medzier..

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

PAGE

