Metodika pre vytváranie komponentov aktivít na serveri v projekte Pelikán
Autor: Marek Tomša

Dátum vytvorenia: 10.12.2006
Obsah
41
Vytvorenie súborov

52
Implementácia

52.1
Rozhrania

52.1.1
Rozhranie inštancie aktivity

62.1.2
Rozhranie triedy aktivít

62.1.3
Callback rozhranie

72.2
Triedy

72.2.1
Trieda aktivít

82.2.2
Trieda inštancie aktivity

103
Integrácia - server

103.1
Konfigurácia ServiceHost-u

103.2
Konfigurácia HostManager-a

114
Integrácia – klient

114.1
Doplnenie typu aktivity do enumerácie ServiceType

114.2
Konfigurácia ServiceManager-a na klientovi

125
Implementácia na strane klienta

125.1
Pridanie referencie na službu

125.2
Implementácia Connector triedy

135.2.1
Implementácia callback metód

Úvod
Tento dokument predstavuje návod, ako programovať komponenty serverových aktivít v hre s kódovým menom Pelikán. Je určená pre členov tímu Resharpers, ktorí implementujú komponenty aktivít na strane servera.
Súvisiace dokumenty

Technická dokumentácia – komunikačný rámec

Technická dokumentácia – rámec aktivít

Štandardy programovania v jazyku C#

Použité skratky

VS – Microsoft Visual Studio 2005
Pojmy

Aktivita – typicky hra, implementovaná ako služba na serveri v rámci hry s kódovým označením Pelikán.
Trieda aktivít – viacero inštancií danej aktivity. Riadi vytváranie inštancií aktivity a registrovanie a prideľovanie hráčov k inštanciám aktivity.

Trieda implementujúca triedu aktivít – implementácia triedy aktivít vo forme triedy v jazyku C#

1 Vytvorenie súborov
Táto kapitola popisuje postup pri vytváraní novej aktivity. Na príklade aktivity Hangman ukazuje použitie rámca aktivít na vytvorenie aktivity. Zároveň je predpisom, ako organizovať súbory a pomenúvať jednotlivé typy pri vytváraní aktivity.
Adresáre

Pre novú aktivitu sa vytvorí vo VS v projekte Server.World podadresár v adresári Games s názvom zhodným s názvom aktivity. Na tento adresár sa dokument ďalej odkazuje ako na adresár aktivity.
Príklad:
V adresári Games sa vytvorí podadresár s názvom Hangman.
Triedy

Do adresára aktivity sa pridá trieda s názvom <Názov aktivity>Game. V prípade, že nejde o hru, použije sa sufix Activity. Na súbor, ktorý VS vytvorí pre túto triedu, referuje tento dokument ďalej ako na súbor aktivity. Na názov triedy sa referuje ako názov triedy aktivity.
Príklad:
Do adresára \Games\Hangman pridáme triedu s názvom HangmanGame.
2 Implementácia
Všetky typy pre danú aktivitu sú zapísané v súbore aktivity. Pre vytvorenie aktivity je potrebné deklarovať rozhrania a triedy implementujúce rozhrania, popísané v technickej dokumentácii k rámcu aktivít, odvodené z tried GameBase a GameInstance.
2.1 Rozhrania
Implementujú sa rozhrania s nasledovným významom:

	Pomenovanie
	Význam

	Rozhranie inštancie aktivity
	deklaruje všetky metódy jednej inštancie hry na serveri

	Rozhranie triedy aktivít
	deklarácia pre zabezpečenie genericity v „rámci aktivít“. Implementuje ho trieda predstavujúca triedu aktivít danej aktivity

	Rozhranie implementované na strane klienta (callback rozhranie)
	deklarácia metód, ktoré volá server smerom k pripojeným klientom

2.1.1 Rozhranie inštancie aktivity
Pomenovanie

Rozhranie inštancie aktivity sa pomenuje nasledovne:
I<názov triedy aktivity>Instance

Nadtriedy
Žiadne

Atribúty

Rozhranie inštancie aktivity sa označí nasledovným atribútom:

[ServiceContract(SessionMode=SessionMode.Required)]

Význam
Rozhranie deklaruje všetky metódy jednej inštancie hry na serveri.
Príklad

[ServiceContract(SessionMode=SessionMode.Required)]

public interface IHangmanGameInstance

{

[OperationContract(IsOneWay = true)]

void TryLetter(char c);

}

2.1.2 Rozhranie triedy aktivít

Pomenovanie

Pomenuje sa nasledovne:

I<názov triedy aktivity>

Nadtriedy
Rozhranie triedy hier sa implementuje ako prázdne rozhranie (bez deklarácií metód) implementujúce rozhranie inštancie aktivity a rozhranie IGameContract.

Atribúty

Rozhranie sa označí nasledovným atribútom:

[ServiceContract(SessionMode=SessionMode.Required, CallbackContract=typeof(...))]

Ako hodnota parametra CallbackContract sa použije typ callback rozhrania aktivity (pozri kapitolu 3.1.3).

Význam

Rozhranie slúži ako deklarácia pre zabezpečenie genericity v „rámci aktivít“. Implementuje ho trieda zastrešujúca triedy aktivít danej aktivity.
Príklad
[ServiceContract(SessionMode=SessionMode.Required,
CallbackContract=typeof(IHangmanCallback))]

public interface IHangmanGame : IHangmanGameInstance, IGameContract

{

}

2.1.3 Callback rozhranie

Pomenovanie

Callback rozhranie sa pomenuje nasledovne:

I<názov aktivity>Callback.

Nadtriedy

Rozhranie implementuje rozhranie IGameCallback.
Atribúty

Rozhranie sa označí nasledovným atribútom:

[ServiceContract(SessionMode=SessionMode.Required)]

Význam

V callback rozhraní sa deklarujú metódy, ktoré volá server smerom k pripojeným klientom.
Príklad

[ServiceContract(SessionMode=SessionMode.Required)]

public interface IHangmanCallback : IGameCallback

{

[OperationContract(IsOneWay = true)]

void Update(HangmanGameState word);

[OperationContract(IsOneWay = true)]

void PlayerGuessed(PlayerToken who, char guessedChar);

[OperationContract(IsOneWay=true)]

void YourTurn(HangmanGameState state);

}

2.2 Triedy
Pri implementácii aktivity sa musia implementovať aspoň nasledovné triedy:

· Trieda implemetujúca triedu aktivít

· Trieda implementujúca inštanciu aktivity

2.2.1 Trieda aktivít
Pomenovanie

Trieda implementujúca triedu aktivít má názov zhodný s triedou, ktorej vytvorenie je popísané v kapitole 2.
Nadtriedy

Trieda aktivít dedí z triedy GameBase<TGameInstance, TCallback> a implementuje rozhranie triedy aktivít (viď 3.1.2).
Ako typový parameter TGameInstance sa použije trieda inštancie aktivity (viď 3.2.2).

Ako typový parameter TCallback sa použije callback rozhranie aktivity (viď 3.1.3).
Atribúty

Trieda aktivít sa označí nasledovným atribútom:
[ServiceBehavior(ConcurrencyMode=ConcurrencyMode.Multiple, InstanceContextMode=InstanceContextMode.Single)]
Význam

Trieda aktivít slúži na zastrešenie viacerých inštancií danej aktivity. Na serveri prebieha paralelne niekoľko inštancií danej aktivity. Trieda aktivít riadi prihlasovanie hráčov k inštanciám aktivity, vytváranie a rušenie inštancií aktivity a registrovanie hráčov pre inštancie aktivity. Viac o význame a implementácii triedy aktivít je v technickej dokumentácii rámca aktivít.
Ďalšie poznámky

Trieda aktivít sa implementuje podľa vzoru unikát (singleton).

Príklad

public class HangmanGame : GameBase<HangmanGame.HangmanGameInstance, IHangmanCallback>, IHangmanGame

{

#region HangmanGame Singleton

public static HangmanGame Instance

{

get

{

return NestedHangmanGame.instance;

}

}

class NestedHangmanGame

{

// Explicit static constructor to tell C# compiler

// not to mark type as beforefieldinit

static NestedHangmanGame()

{

}

internal static readonly HangmanGame instance = new HangmanGame();

}

#endregion

private HangmanGame()

{

}

#region IHangmanGame Members

public void TryLetter(char c)

{

}

#endregion

}
2.2.2 Trieda inštancie aktivity

Pomenovanie

Trieda inštancie aktivity sa implementuje ako vnorená (nested) trieda triedy implementujúcej triedu aktivít.
Nadtriedy

Trieda inštancie aktivity dedí z triedy GameInstance<T> a implementuje rozhranie inštancie aktivity.
Atribúty

Žiadne
Význam

Trieda inštancie aktivity zabezpečuje realizáciu logiky inštancie danej aktivity. Metódy volané na strane klienta sú implementované v tejto triede.
Príklad
Príklad uvádza aj triedu implementujúcu triedu aktivít na ilustráciu vnorenia triedy inštancie aktivít.

public class HangmanGame : GameBase<HangmanGame.HangmanGameInstance, IHangmanCallback>, IHangmanGame

{

public class HangmanGameInstance : GameInstance<IHangmanCallback>, IHangmanGameInstance

{

//implementácia všetkých metód rozhrania IHangmanGameInstance

//implementácia zvyšku hernej logiky

}

}

3 Integrácia - server
Táto kapitola popisuje kroky, ktoré treba vykonať pre správnu konfiguráciu a integráciu implementovanej aktivity, aby bežala pri každom spustení servera.
3.1 Konfigurácia ServiceHost-u

V súbore app.config v projekte Server sa pridá do sekcie <services> nasledovná podsekcia:

<service behaviorConfiguration="metadataSupport"

 name="Server.Core.Games.Hangman.HangmanGame">

<endpoint

binding="wsDualHttpBinding"

contract="Server.Core.Games.Hangman.IHangmanGame" />

 <endpoint

address="mex"

binding="mexHttpBinding"

contract="IMetadataExchange" />

 <host>

 <baseAddresses>

 <add baseAddress="http://localhost:8080/Hangman/" />

 </baseAddresses>

 </host>

</service>

	Atribút
	Hodnota

	name
	plné meno (fully qualified name) triedy implemenetujúcej triedu aktivít

	contract (mex endpoint)
	IMetadataExchange

	contract (endpoint kontraktu aktivity)
	plné meno rozhrania triedy aktivít

	baseAddress
	„http://localhost:8080/“ + názov aktivity

3.2 Konfigurácia HostManager-a

V projekte Server, v súbore HostManager.cs, v triede HostManager, v metóde internal static void StartServices()sa pridajú nasledovné riadky:

ServiceHost gameHost = new ServiceHost(HangmanGame.Instance, new Uri[] { });

hosts.Add(gameHost);

Ako prvý argument konštruktora triedy ServiceHost sa použije referencia na singleton inštanciu implementovanej aktivity. Ako druhý argument sa použije prázdne pole inštancií Uri. Uri koncového bodu (endpoint) služby je konfigurovaný v app.config súbore v projekte Server (viď kapitolu 4.1)
4 Integrácia – klient
Kroky popísané v tejto kapitole sa vykonávajú v prípade, že má byť umožnené použiť danú aktivitu ako argument metódy InitService, teda umožniť serveru prikázať klientovi kontaktovať danú službu.

4.1 Doplnenie typu aktivity do enumerácie ServiceType

Tento krok zabezpečí, že server bude schopný prikázať klientovi osloviť danú aktivitu.

Do enumerácie ServiceType v súbore ICallbackContract.cs v projekte Server.World v adresári Contracts\Service\ sa pridá na koniec enumerácie hodnota s názvom aktivity.

Príklad:

public enum ServiceType

{

Math,

Hangman //pridaná hodnota

}
4.2 Konfigurácia ServiceManager-a na klientovi

Tento krok zabezpečí, že klient bude vedieť reagovať na príkaz osloviť danú aktivitu.

Do súboru ServiceManager.cs v projekte Client.Core sa do tela konštruktora triedy ServiceManager pridá inštancia delegáta do tabuľky changers.

Príklad:

changers.Add(serviceType, delegate(InitServiceSolicit args)

{

HangmanConnector.Instance.Connect(args.Token, args.Endpoint);

});

Kde serviceType určuje typ implementovanej aktivity (z kapitoly 5.1) a telo delegáta zabezpečí pripojenie k službe aktivity s pomocou Connectora implementovaného na strane klienta (viď kapitola 6).
5 Implementácia na strane klienta

5.1 Pridanie referencie na službu
Spustí sa výstup projektu Server.

Vo VS v projekte Client.Core sa pridá referencia na službu (Add Service Reference...)
Do textboxu „Service URI:“ sa zadá Uri endpointu služby implementovanej aktivity (tak ako bolo nakonfigurované v kapitole 4.1).

Do textboxu „Service reference name:“ sa zadá názov aktivity.

Príklad:

[image: image1.png]

5.2 Implementácia Connector triedy

Connector trieda sa implementuje podľa vzoru unikát (singleton). Implementuje callback rozhranie aktivity (viď kapitolu 3.1.3).
Ako členská premenná sa použije Client trieda, ktorú vygenerovalo VS po pridaní referencie.
Implementuje sa metóda Connect, ktorá inštancuje Client triedu vygenerovanú pri pridaní referencie.

Ako argument InstanceContext do konštruktora Client triedy sa použije this.

Príklad:

this.c = new Client.Hangman.Hangman.HangmanGameClient(
new System.ServiceModel.InstanceContext(this));

Na počítačoch s operačným systémom Windows XP Professional, kde beží služba IIS, je potrebné použiť nasledovný trik pre nastavenie iného portu ako 80 (implicitná hodnota):

WSDualHttpBinding b;

b = this.c.Endpoint.Binding as WSDualHttpBinding;

b.ClientBaseAddress = loopbackUri;

kde loopbackUri je platné Uri odkazujúce sa na voľný otvorený port na klientovi.
Posledným krokom je zavolanie metódy Open na inštancii Client:
this.c.Open();

5.2.1 Implementácia callback metód

Táto kapitola obsahuje popis implementácie callback metód v Connector triede.

V deklarácii triedy:

public class HangmanConnector : IHangmanGameCallback
Sa kurzor presunie na slovo IHangmanGameCallback a stlačí sa ctrl+. (control a bodka). Toto vygeneruje prázdne metódy pre všetky metódy deklarované v callback rozhraní.
Pre každú metódu sa implementuje v súlade s pravidlami popísanými v dokumente „Štandardy programovania v jazyku C#“ udalosť typu EventHandler<EventArgs<T>>, kde typový parameter T je typ, ktorý je buď typom argumentu callback metódy (v prípade jediného argumentu), alebo obaľuje argumenty callback metódy (v prípade viacerých argumentov).
