.NET Framework Design Guidelines

 Microsoft Confidential

Pravidla a doporučení pro vývoj na platformě. NET Framework

21
Jmenné konvence

21.1
Velká a malá písmena

21.1.1
Pravidla použití

31.1.2
Výběr slov

41.1.2
Zkratky

41.1.3
Oddělění názvu typu a názvu proměnné

41.2
Názvy pro Namespace

41.3
Názvy typů

51.3.1
Názvy tříd a struktur

51.3.2
Názvy pro interface

51.1.3
Názvy výčtových typů

51.4
Názvy členů

61.4.1
Názvy metod

61.4.2
Názvy vlastností (property)

61.1.4
Názvy událostí

71.1.5
Názvy polí (fields)

71.5
Názvy argumentů

71.6
Názvy Assembly/DLL

72
Designová pravidla

72.1
Návrh typů

82.1.1
Návrh tříd pro dědičnost

92.1.2
Návrh interface

92.1.3 Návrh hodnotových typů (struktur)

102.1.4
Návrh výčtových typů

112.2
Návrh členů (members)

112.2.1
Návrh vlastností (property)

122.2.2
Vlastnosti vs. Metody

122.2.3
Read-Only a Write-Only vlastnosti

122.2.4
Návrh indexerů

122.2.5
Návrh událostí

132.2.6
Metody

132.2.7
Přetěžování metod

142.2.8
Proměnný počet argumentů

142.2.9
Návrh konstruktorů

142.2.10
Datové pole

152.3
Návrh parametrů

152.3.1
Argumenty

152.3.2
Předávání parametrů

152.3.3
Oddělění parametrů a vnitřních členů

163
Layout kódu

163.2
Závorky

173.3
Mezery

183.4
Řádka kódu

1 Jmenné konvence

1.1 Velká a malá písmena

Existují dva základní styly použití velkých a malých písmen.

Pascal Casing

Pascal Casing dává velké písmeno na začátek každého logického slova.

PropertyDescriptor

IOStream

HtmlTag

Používejte Pascal Casing pro všechna veřejná rozhraní (viz dále).

Camel Casing

Camel Casing dává velké písmeno na začátek každého logického slova kromě prvního.

propertyDescriptor

ioStream

htmlTag

Používejte Camel Casing pro názvy parametrů.

1.1.1 Pravidla použití

Následující tabulka definuje použití stylů pro jednotlivé prvky kódu

	Typ
	Casing
	Příklad

	Class
	Pascal
	public class StreamReader

	Enumeration type
	Pascal
	public enum FileMode

	Enumeration value
	Pascal
	FileMode.Append

	Event
	Pascal
	public class Form

{

 public event EventHandler Closed

}

	Exception class
	Pascal
	public class FileNotFoundException

	Fields
	Pascal
	private messageQueue

{

 public static readonly TimeSpan InfiniteTimeout;

}

	Interface
	Pascal
	public interface IEnumerable

	Method
	Pascal
	public class Object

{

 public string ToString()

}

	Namespace
	Pascal
	namespace System.IO

	Property
	Pascal
	public class String

{

 public int Length { get; }

}

	Parameter
	Camel
	public class Convert

{

 public static int ToInt32(string value);

}

Nezneužívejte velká a malá písmena pro vytváření metod, které se líší jenom ve velikosti písmen. Příklad:

namespace ee.cummings;

namespace Ee.Cummings;

void foo(string a, string A)

int Foo {get, set};

int FOO {get, set}

1.1.1. Výběr slov

Používejte pro názvy veřejného rozhraní anglický jazyk. Používejte plného rozsahu slov ,

z názvu metody by mělo být zřejmé jaký je její účel.

Nepoužívejte podtržítka, pomlčky ani žádné jiné pomocné znaky.

Nepoužívejte klíčová slova standardně používaná v programovacích jazycích.

1.1.2 Zkratky

Nepoužívejte zkrácené verze slov. Příklad, lepší je GetWindow než GetWin.

Nepoužívejte akronymy které nejsou všeobecně známy. Pro akronymy delší než 2 znaky použijte Pascal Casing, přiklad HtmlButton ale např. System.IO (2 znaky).

1.1.2. Oddělění názvu typu a názvu proměnné

Pro názvy proměnných (parametrů) používejte jméno, které vystihuje její účel a ne jméno odvozené od typu proměnné.

V připadě že u proměnné neznáte její sémantický význam použijte generické jméno. Příklad:
void Write(double value);

void Write(float value);

1.2. Názvy pro Namespace

Namespace nebo jmenný prostor slouží pro hierarchické rozčlenění typů do logické struktury. Šablona pro název jmenného prostoru má vzor:

<Company>.<Technologie/Produkt>.<interní logické členění>

Příklad :

Microsoft.VisualStudio.Design

Pro název namespace používejte Pascal Casing a kde je to možné (mimo zkratek a obchodních jmen) množné číslo.

Příklad:

System.Collections je lepší než System.Collection

Nepoužívejte stejné jméno pro třídy a jmenné prostory.

1.3. Názvy typů

Typ je základní stavební kámen .Net Frameworku. Pojem typ zahrnuje jednoduché datové struktury jako např. číslo, datum , tak i složitější konstrukce jako např . třídy a struktury.

Pro názvy typů odvozených od standardních systémových typů platí následující tabulka.
	Základní Typy
	Název odvozeného typu

	· System.Attribute
	suffix “Attribute”

	· System.Collections.Icollection
	suffix “Collection”

	· System.Delegate
	suffix “EventHandler” pro obsluhu událaostí a “Callback” pro callback.

nepoužívejte suffix pro čistý “Delegate”

	· System.EventArgs
	suffix “EventArgs”

	· System.Exception
	suffix “Exception”

Příklad, ClickedEventArgs je typ odvozený od System.EventArgs.
1.3.1. Názvy tříd a struktur

Třídy a struktury reprezentují datové typy, které zapouzdřují data a metody, které s nimi pracují. Pro názvy používejte podstatná jména v Pascal Casing a nepoužívejte prefixy (jako např. C pro Class). Pro odvozené třídy je možné použít složená slova.

Příklad:

public class FileStream : Stream
{…
}
1.3.2. Názvy pro interface

Interface je speciální typ , který představuje definici kontraktu , který musí být při implementaci dodržen. Pro názvy interface se opět použije Pascal Casing a striktně prefix I před názvem každého interface.

1.1.3 Názvy výčtových typů

Výčtový typ (enum) je speciální typ , který dává alternativní pojmenování hodnotám primitivního datového typu (typicky integer).

Pro názvy výčtových typů se používá Pascal Casing jak pro název, tak i pro hodnoty výčtového typu. Nepoužívejte prefixy ani suffixy (například adXXX pro ADO výčtové typy)

Příklad:

Nepsrávně:

public enum PhotoshopMode
{

 PhotoshopModeBitmap = 0,

 PhotoshopModeGrayscale = 1,

 PhotoshopModeIndexed = 2,

}

Správně:

public enum PhotoshopMode

{

 Bitmap = 0,

 Grayscale = 1,

 Indexed = 2,

}

1.4. Názvy členů

Třídy, struktury , interface reprezentují typy s vnitřní strukturou. Vnitřní prvek se nazývá člen (member) a může to být :

· Metoda

· Událost

· Vlastnost

· Pole (field, ne array)

1.4.1. Názvy metod
Pro názvy metod používejte slovesa a Pascal Casing, nepoužívejte maďarskou notaci. Příklad:

RemoveAll()

GetCharArray()

1.4.2. Názvy vlastností (property)

Pro názvy vlastností používejte podstatná jména a Pascal Casing, nepoužívejte maďarskou notaci.

Příklad:
public class Button

{

 public Color BackColor
{
}

}

Nepoužívejte názvy, ke kterým existuje obdobná metoda s prefixem Get, příklad:

Nesprávně

public string TextWriter
{
get {...}

set {...}

}

public string GetTextWriter()

{
...
}

Pro vlastnosti typu boolean používejte pozitvní názvy
Příklad:

CanSeek je lepší než CantSeek.

Volitelně můžete použít prefix Is, Can, Has, ale jen tam, kde to zvyšuje čitelnost.

Příklad:

· CanRead je srozumitelnější než Readable ale naopak Created je vhodnější než IsCreated.

1.4.3. Názvy událostí

Pro názav události používejte EventHandler suffix a Pascal Casing, nepoužívejte maďarskou notaci.
Příklad:

public delegate void ClickedEventHandler(object sender, ClickedEventArgs e);

Vždy používejte 2 parametery - sender a e.

Příklad:

public delegate void <Some>EventHandler(object sender, <Some>EventArgs e);

Pro třídy argumentů používejte suffix EventArgs.

Příklad:

public class ClickedEventArgs : EventArgs

{

 int x;

 int y;

 public ClickedEventArgs (int x, int y)

{

 this.x = x;

 this.y = y;

 }
 public int X { get { return x; } }

 public int Y { get { return y; } }

}

Pro názvy událostí reprezentující koncept před-po akci, používejte průběžný a minulý čas (a ne BeforeXxx\AfterXxx vzor). Například akce close bude vystavovat události Closing a Closed.

1.4.4. Názvy polí (fields)

Pro názvy polí používejte podstatná jména a camel casing s prefixem „_“. Neexistuji public fields, všechno musí být zapouzdřeno pomocí property nebo metody.
1.5. Názvy argumentů

Metody typicky mají argumenty. Pro názvy argumentů používejte camel Casing a ne maďarskou notaci. Používejte popisné a výstižné názvy parametrů založené na významu a ne na jeho typu. Nepoužívejte vyhrazené(reserved) parametry pro potřeby budoucích verzí. V případě potřeby je možné metodu jednoduše přetěžit.

1.6. Názvy Assembly/DLL

Assembly reprezentuje základní distribuční jednotku aplikace v .Net Frameworku

Název assembly je tvořen dle následujícího vzoru:

<Company>.<Component>.dll

Příklad:

Manawydan.Framework.dll

2. Designová pravidla

Následující kapitola obsahuje pravidla a doporučení , které je vhodné aplikovat pří návrhu typů a jejich vnitřní implementaci.

2.1. Návrh typů

Při návrhu všech typů dodržujte následující obecná pravidla:

· Definice typu musí být uvnitř namespace.

· Používejte častěji třídy než interfacy
· Každá třída má obsahovat explicitní konstruktor. V případě, že třída není veřejně instancovatelná, deklarujte konstruktor jako privátní.

2.1.1. Návrh tříd pro dědičnost

Základní třídy (předci při implementaci dědičnosti) reprezentují vhodný způsob zapouzdření společné funkcionality mezi více třídami s možností customizace v potomcích. Z pohledu verzování, je dědičnost tříd flexibilnější než použití interface

Interfaces proto používejte když:

· Třídy, které navzájem nesouvisejí mají poskytovat stejné rozhraní.

· Tyto třídy už jsou poděděny od jiných tříd.

V ostatních případech je implementace dědičnosti lepší.

Implementujte chráněné (protected) virtuální metody na základních třídách, které umožní potomkúm vlastní rozšíření základní funkcionality.

Veřejné rozhraní (public metody a vlastnosti) má poskytovat funkcionalitu pro uživatele této třídy, tyto metody nesmí být virtuální.

Příklad:

public Control
{
 //…
 public void SetBounds(int x, int y, int width, int height)
{

 …
 SetBoundsImpl (…);
 }

 public void SetBounds(int x, int y, int width, int height,
 BoundsSpecified specified)
{

 …
 SetBoundsImpl (…);
 }

 protected virtual void SetBoundsImpl(int x, int y, int width,
int height, BoundsSpecified specified)
{
 // Do the real work here.
 }
}

Definujte chráněný (protected) konstruktor na všech abstraktních třídách, a zároveň nesmí existovat konstruktror veřejný.

V potomcích neměňte přístupový modikátor (public,protected,private) k metodám.

Nepoužívejte “sealing” tříd, pokud to není opravdů nutné.

Omezte počet a komplexnost virtuálních metod.

V případě přetěžovaných metod implementujte jako virtuální tu s nejkpomplexnejším rozhraním, příklad:

public class Foo

{
 private const string defaultForA = "a default";
 private const int defaultForB = 42;
 protected void Bar()
{
 Bar(defaultForA, defaultForB);
 }
 protected void Bar (string a)
{
 Bar(a, defaultForB);
 }
 protected virtual void Bar (string a, int b)
{
 // core implementation here
 }
}

2.1.2. Návrh interface

Před samotnou implementací interface zvažte, jestli místo interface nepoužít třídu nebo abstraktní třídu.

Je vhodné poskytnout třídu, která reprezentuje základní implementaci interfacu.

Příklad:

System.Collections.DictionaryBase je default implementace pro System.Collections.IDictionary interface.

Nepoužívejte interface jen pro označení třídy (interface bez jediného člena). Pro označení třídy použivejte vlastní atributy.

Příklad:

Nesprávně

public interface IImmutable {} // empty interface

public class String : IImmutable { …}

Správně

[Immutable]

public class Key {…}

Výjimkou může být nutnost kontroly označení v okamžiku kompilace (atributy sa kontrolují za běhu). Příklad:

public interface ITextSerializable {} // empty interface

public void Serialize(ITextSerializable item)
{

 // use reflection to serialize all public properties

 …

}

2.1.3 Návrh hodnotových typů (struktur)

Používejte struktury pro implementaci typu v následujících případech:

· Typ se chová jako primitivní typ (int, date).

· Velikost instance typů je <= 16 bytů

· Typ je něměnný

· Chcete aby se choval jako “value type” (např z důvodů správy paměti).

2.1.4 Návrh výčtových typů

· Používejte výčtové typy (enum) pro podporu silného typování parametrů, vlastností a návratových hodnot.

Příklad:

public enum TypeCode
{

 Boolean,

 Byte,

 Char,

 DateTime,

 …

}

Convert.ChangeType(object value, TypeCode typeCode);

· Preferujte výčtové typy před statickými konstantami.

· Nepoužívejte výčtové typy pro neuzavřené seznamy (např. verze OS a pod.).

· Používejte System.FlagsAttribute atribut pre enum jen v případě, že valuace typu reprezentují bitovou masku. Pro bitové masky je vhodné poskytnout hodnoty, které reprezentují časté kombinace bitů.

Příklad:

[Flags()]
public enum WatcherChangeTypes
{

 Created = 1,

 Deleted = 2,

 Changed = 4,

 Renamed = 8,

 All = Created | Deleted | Changed | Renamed

}

· Provádějte kontrolu argumentu i u výčtových typů.

Příklad:

public void PickColor(Color color)

{

switch (color)
{

case Red:

...

break;

case Blue:

...

break;

case Green:

...

break;

//repeat for all known values of Color

default:

throw new ArgumentOutOfRangeException();

break;

 }
}

· Nepoužívejte výčtové typy s jedinou hodnotou.

2.2 Návrh členů (members)

2.2.1 Návrh vlastností (property)

· Implementujte smysluplné implictní hodnoty.
· Zachovávejte původní hodnotu v případě, kdy kód pro “set” vyvolá výjimku. Vlastnosti můžou být nastavovány v různém pořadí, vnitřní implementace by měla být bezstavová vůči ostatním vlastnostem.

· Je vhodné vystavit informaci o změně vlastnosti formou událostí, typicky se implementují události před a po změně.

· Implementace události před změnou může změnu vlastnosti přerušit vyvoláním výjimky. Jméno události se skládá z jména vlasnosti a suffixu “ing” (např. TextChanging).
Příklad:

public class TextBox
{

 public event TextChangingEventHandler TextChanging;

 public string Text
 {

 get { return text; }

 set

 {

 if (text != value)

 {

 OnTextChanging(Event.Empty);

 text = value;

 }

 }

 }

}

· Implementace události po změně neumožňuje zrušení nastavení hodnoty vlastnosti, umožňuje ale implementaci “aplikačního triggeru”. Jméno události se skládá z jména vlasnosti a suffixu “ed” (např. TextChanged).
Příklad:

class TextBox

{

 public event TextChangedEventHandler TextChanged;

 public event TextChangingEventHandler TextChanging;

 public string Text

 {

 get { return text; }

 set

 {

 if (text != value)

 {

 OnTextChanging(Event.Empty);

 text = value;

 OnTextChanged(…);

 }

 }

 }

 protected virtual void OnTextChanged(…)
 {

 TextChanged(this,…);

 }

 protected virtual void OnTextChanging(…)
 {

 TextChanging(this,…);

 }

}

Nevyvolávejte výjimky v metodě “get” vlastnosti.

2.2.2 Vlastnosti vs. Metody

Vlastnosti použijte když

· Člen reprezentuje logické úložiště dat

string Name { get, set }

// Name reprezentuje logický atribut třídy, proto by měl být

// implementován jako property

Guid Guid.GetNext()

// Guid obvykle nemá atribut Next, takže je vhodné implementovat

// jako metodu

Metodu použijte když

· Operace reprezentuje konverzi (Object.ToString())

· Operace je časovo náročná (nastavení vlastnosti by nemělo být náročné)

· Opakované volání nemusí skončit stejným výsledkem.

· Člen reprezentuje pole.

2.2.3 Read-Only a Write-Only vlastnosti

· Používejte read-only vlastnosti když není povolena změna vlastnosti po inicializaci.

· Nepoužívejte set-only vlastnosti. V tomto případě implementujte metodu.

2.2.4 Návrh indexerů

· Používejte indexery pro zpřistůpnšění informace v poli.

public char this[int index] {get;}

· Používejte jenom System.Int32, System.Int64, System.String, a System.Object jako index indexeru. V připadě jiného nebo složitějšího indexu je vhodné implementovat místo indexeru metodu.

2.2.5 Návrh událostí

· Návratová hodnota události musí být void.

Příklad:

public delegate void ClickedEventHandler(object sender, ClickedEventArgs e);

· V případě, že událost zapouzdřuje specifická data, je nutné implementovat datovou třídu pro argumety události. Tato třída musí být poděděna od System.EventArgs.

Příklad:

public class ClickedEventArgs : EventArgs

{

}

· Vyvolávejte (raise) události v protected virtuálních metodách třídy.

· Implementujte událost s podporou možnosti zrušení akce.

2.2.6 Metody

· Implicitně používejte nevirtuální metody.

· Nenavrhujte metody, které nemůžou být volány na instanci třídy inicializované základním konstruktorem. Jestliže metoda i tak vyžaduje explicitní inicializaci, ošetřete v implementaci metody případ volání před explicitní inicializací - vyvolejte výjimku která jednoznačně deklaruje co má být inicializováno.

2.2.7 Přetěžování metod

· Používejte přetěžování, když implemenujete různé metody se stejným sémantickým významem.

· Používejte korektně implicitní hodnoty. V skupině přetěžených metod, metoda s největším počtem parametrů by měla nazývat parametry které indikují změnu oproti implicitní hodnotě v metodě s méně parametry. Typicky se to týká parametrů typu boolean. V následujícím příkladě bude 1. metoda vyhledaávat v case sensitive módu. V metodě 2 je druhý parametr nazýván ignoreCase místo caseSensitive protože lépe indikuje jak se mění implicitní chování.

· Příklad:

1: MethodInfo Type.GetMethod(String name); //ignoreCase = false

2: MethodInfo Type.GetMethod (String name, boolean ignoreCase);

· Typicky se používá pro implicitní hodnoty nulový stav (0, 0.0, false, "", atd).

· Neimplementujte skupiny metod, kde metoda s nejmenším počtem parametrů má víc jak 3 parametry. V případě konstruktoru je možné povolit 5 parametrů.

· Dodržujte konzistenci v řazení a pojmenování parameterů.

Příklad:

public class Foo
{

 readonly string defaultForA = "default value for a";

 readonly int defaultForB = 42;

 readonly double defaultForC = 68.90;

 public void Bar()
{

 Bar(defaultForA, defaultForB, defaultForC);

 }

 public void Bar(string a)
{

 Bar(a, defaultForB, defaultForC);

 }

 public void Bar(string a, int b)
{

 Bar(a, b, defaultForC);

 }

 public void Bar(string a, int b, double c)
{

 // core implementation here

 }

}

2.2.8 Proměnný počet argumentů

Metody, které můžou být volány s neomezeným počtem parametrů jsou implementovány s posledním argumentem jako

· Pole

string String.Format(string format, object[] parameters);

 String.Format("{0} {1} {2} {3}", new object[] {1, 2, 3, 4});

· Pomocí klíčového slova params

 string String.Format(string format, params object[] parameters);

 String.Format("{0} {1} {2} {3}", 1, 2, 3, 4);

Používejte params místo množiny přetěžovaných metod s parametrami stejného významu.

2.2.9 Návrh konstruktorů

· Implementujte jednoduché, v optimáním případě bezparametrové konstruktory.

V případě, že třída slouží jako kontejner statických metod implementujte jenom privátní konstruktor

public sealed class Enviroment
{
 private Enviroment(); // Prevents the class from being created.
 //…
}

· Implementujte statické konstruktory jako privátní.

· Nevolejte virtuální metody stejné třídy z konstruktoru.

· Používejte výjímky pro chybové stavy i v konstruktorech.

· Poskytujte parametery v konstruktorech pro explicitní nastavení více vlastností jedním voláním.

2.2.10 Datové pole

· Nevystavujte instanční datové proměnné(fields), data vystavte vždy přes vlastnosti.

· Používejte konstantní pole pro data, které se nikdy nezmění.

Příklad:

public struct Int32

{

 public const int MaxValue = 0x7fffffff;

 public const int MinValue = unchecked((int)0x80000000);

}

· Používejte static readonly pole pro předdefinované instance objektů.

Příklad:

public struct Color{

 public static readonly Color Red = new Color(0x0000FF);

 public static readonly Color Green = new Color(0x00FF00);

 public static readonly Color Blue = new Color(0xFF0000);

 public static readonly Color Black = new Color(0x000000);

 public static readonly Color White = new Color(0xFFFFFF);

 public Color(int rgb)
{ }

 public Color(byte r, byte g, byte b)

{ }

 public byte R

{
get {...}
}

 public byte G

{
get {...}
}

 public byte B

{

get {...}
}

}

· Nepoužívejte prefixy, ani pro rozlišeni statický - instanční.

2.3 Návrh parametrů

2.3.1 Argumenty

· Kontrolujte platnost argumentů v každé public nebo protected metodě a případně vyvolejte patřičné výjimky. Typicky se jedná o potomka System.ArgumentException.

Příklad:

class Foo
{

public int Count
{

get

{

return count;

 }

 set
{

if (value < 0 || value >= MaxValue)

throw new ArgumentOutOfRangeException(Sys.GetString(

"InvalidArgument",

"value",
value.ToString()
));

count = value;

}

}

public void Select(int start, int end)
{

if (start < 0)

throw new ArgumentException(Sys.GetString(

"InvalidArgument",

"start",

start.ToString()

));

 if (end < start)

 throw new ArgumentException(Sys.GetString(

"InvalidArgument",

"end",

end.ToString()

));

}

}

2.3.2 Předávání parametrů

· Vyhýbejte se předávání “reference types” referencí, předávejte raději hodnotou. I v tomto případě se totiž předává jen odkaz na předávanou instanci a to je ve většíně případů vyhovující.

· Nevystavujte metody, které mají jako parametry pointry nebo vícerozměrná pole.

2.3.3 Oddělění parametrů a vnitřních členů

· Používejte klíčové slovo “this” když referencujete instanční členy.

Příklad:

Nesprávně

public Employee (string myName, int myExtension)

{

name = myName;

extension = myExtension;

}

Správně

public Employee (string name, int extension)

{

this.name = name;

this.extension = extension;

}

3 Layout kódu

3.1 Závorky

Používejte závorky uvnitř výrazu když je použito více operátorů (+, -, *, /, <, =, >, <>, nebo logický operátor). Eliminuje se tak diskuse o přednosti operátorů.

Příklad:

Nesprávně

if (isOpen && isAvailable || isRequired)

 total = fees + subtotal * tax;

Správně

if (isOpen && (isAvailable || isRequired))

 total = (fees + subtotal) * tax;

Otevírací závorka bloku kódu má být na novém řádku jako začátek bloku. (dá se nastavit ve Visual Studiu) .

Příklad:

Dohodnuté použítí závorek

if (a > 2)

{

 b = 3;

 c = 4;

 if (d < 5)

 {

 e = 6;

 }

 if (f < 5)

 {

 g = 6;

 h = 7;

 }
 i = 8;

}

Nevhodné použití závorek

if (a > 2) {

 b = 3;

 c = 4;

 if (d < 5) {

 e = 6;

 }

 if (f < 5) {

 g = 6;

 h = 7;

 }

 i = 8;

}

Jedinnou výjjimkou, kdy se připouští použití otvírací závorky na téže řádce je použití v definici property u get a set, pokud obsahuje pouze jeden příkaz. Pak může vypadat takto:
public string Width

{

get{ return this._width;}

set{ this._width = value;}

}
3.2 b Mezery

Používejte mezery pro zvýšení čitelnosti logických výrazů. Oddělujte klíčová slova od identifikátorů, operátorů a ostatních řetězců.

Přidejte mezeru k vnější straně závorek s výjimkou parametrů metody, není důvod přidávat mezeru z vnitřní strany závorek.

Příklad:

Nesprávně

if((subtotal<total)&&((total<credit))

 tax=invoice.CalculateTax () ;

Správně

if ((subtotal < total) && (total < credit))

 tax=invoice.CalculateTax();

3.3 Řádka kódu

Na jedný řádce kódu umístěte jednu datovou deklaraci

Příklad:

Nepsrávně

int customerCount; int vendorCount;
 string customerName, vendorName;

Správně
int customerCount;
int vendorCount;

string customerName;
string vendorName;

Parametry a výrazy se snažte udržet v jedný řádce

Příklad:

Nesprávně

if ((total > creditLimit) &&

 (requireAuthorization == true))

 order.CalcTotal(subtotal,
 miscellaneous,

 fees,

 freight);

Správně

if ((total > creditLimit) && (requireAuthorization == true))

 order.CalcTotal(subtotal, miscellaneous, fees, freight);
Pokud musíte výraz rozdělit, umístěte logický operátor spojující výrazy na začátek nového řádku.

Nesprávně

if ((total > creditLimit) &&

(requireAuthorization == true))

Správně

if ((total > creditLimit)
&& (requireAuthorization == true))
3.4 Tabulátory
Používejte tabulátor.
Zachovávat a nenahrazovat mezerami.[image: image1.png]

[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

PAGE
19

